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A theorem analogous to the Weyl branching law for the unimodular groups is derived for Sp(2n).

IN the investigation of possible higher symmetry
groups in elementary particle physics several
authors have considered symplectic groups, as for
instance Sp(6) in Ref. 1 and Sp(14) in Ref. 2. Beside
this, these groups are of importance in nuclear
physics.? It may therefore be useful to have an analogy
of the well-known Weyl branching law for the uni-
modular group SL(n),* that is, to have a formula for
the splitting of an irreducible representation of Sp(2n)
under restriction to Sp(2(n — 1)).

Two special cases, Sp(6) | Sp(4) and Sp(4) | Sp(2),
have been treated in Ref. 5, a general formula for
the symplectic groups, however, as far as the author
knows, has not yet been published. In the following
such a theorem is formulated and proved.

The irreducible representations D of Sp(2n) can be
classified by n nonnegative integers {m, - - - m,} with
my > -+ > m, > 0 which determine a corresponding
Young pattern (cf. Ref. 6). Write the space R,,, in
which the group Sp(2n) of linear transformations acts,

1 H. Bacry, J. Nuyts, and L. Van Hove, Nuovo Cimento 35, 510
(1965).

2 H. D. Doebner and G. C. Hegerfeldt, J. Math. Phys. 8, 731
(1967).

3 Cf., e.g., B. H. Flowers, Proc. Roy. Soc. (London) A212, 248
(1952).

¢ H. Weyl, The Theory of Groups and Quantum Mechanics (Dover
Publications Inc., New York, 1963).

8 M. L. Whippman, J. Math. Phys. 6, 1534 (1965).

8 H. Weyl, Classical Groups (Princeton University Press, Princeton,
New Jersey, 1946).

as a direct sum of a 2(n — 1)-dimensional and a 2-
dimensional subspace R, ,, and R,, respectively.
Then the subgroup of Sp(2n) which leaves R, ,_;,
invariant and acts as identity transformation in R, is
isomorphic to Sp(2(n — 1)). We are now going to
prove the following branching law for a restriction of
D, to this subgroup:

Theorem: On restricting a representation D, ...,
of Sp(2n) to the subgroup Sp(2(n — 1)) one has the
following splitting into irreducible representations

D{m{. a1’} of Sp2(n — 1)):

Sp(2n}
PEUD iy ma) | S2An—1)) =

MIZM' 2 Z Mgy My m, 20

(n—1)
X Z St )D{ml"“ cmp—1"} (1)

my’Zmy" = 2 My = my

with m;, m, integers.

Proof. The characters y,,, of an irreducible repre-
sentation Dy,,, of Sp(2n) can be expressed as a function
of the n independent characteristic roots ¢, -, €
of an arbitrary matrix of Sp(2n):

n

Sp(2n) (€1~ €y)

Ximy = Ximy---mp} -

For the subgroup Sp(2(n — 1)) one has with a suitable
numbering of the roots €, = 1. Hence in order to
prove (1) it suffices to establish the corresponding
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formula for the characters, namely,
(2n), (€1 €y)
Sp(2n X(nlu b ""”n} ,En=1

MZmy'Z 2 My My’ >0

x Z Sp(2(n—1)), (€1 €py)

x('ml T Mgy

@
Z(m) €an be written as the quotient of two determinants
(Ref. 6, p. 218):
151 ...’Eln_ "lnl

193 —_—
aee € €
(61 En) 3 I 2 1] 9 (3)

my2my" = 2

x{ml e mp} n

[e" — €™ v, e — €

where the ith row of the determinants in numerator
and denominator are obtained by attaching the suffix
i to the €’s and where

Ii=m;+@m—j+1). @
For the denominator in (3) one has

|€n_€—n’,_ ,’el _ e_ll
=TI+l et b, b ),
i=1

(&)
which is checked by multiplying the ith row of the
determinant on the right-hand side by (e} + ei‘i) and
then, starting with the last column, subtract each
column from the preceding one.

We use the following identity which can be derived
from Ref. 7, Chap. VII, Eq. (12.2):

Ieh — E-ll, coe, eln — e"-lnl
T N TR S 7
1
len—l + e—-(n—l)’ S €0 + €0|
X Z (Iell' + E—h" cee e’ + E—ln'l

L2'> e >1> | 1y]
+ lelll — ..
the /; being half-integers.
Now let €, — 1 in (6). Then the last column and
last row of the denominator on the right-hand side

of (6) consist of 2’s only, and for the sum one obtains
(withj=1,---,n—=1)

e — ), (6)

L o2 WIS 7 ~ln’
€+, € + €
+0
>0 > o > 1> iy 2 Lo,

L’ -1’ ln’ —Iy

—-2 €j1+€j1’...,€jn+€jﬂ

>0'> o >1,>1,">0 2 bttt 2

Q)

"H. Boerner, Darstellungen von Gruppen (Springer-Verlag,
Berlin, 1955); cf. also the English edition, Chap. VIII: H. Boerner,
Representations of Groups (North-Holland Publishing Company,
Amsterdam, 1963).
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since /;, runs from —(/, — %) to (/, — %) and the deter-
minant is even under I, — —1/,.

From Eq. (12.5) of Chap. VII, Ref. 7, one can
deduce the following relation (withj = 1,---,n — 1;
I; half-integer, /] integer):
Egl’ + €'j—l1" cee Egn' + E;ln'
7 2 N 2

E;z—l + E;(n—l)’ s G(} + E?
2 e, 2
1

— —(n—"%) 3 -
IE?%"‘Q("%,"':EW“:I

J

U'>4"> - >l >
X lezx"_ e;ll,’, cee e;ﬂ—x” - Ej_ln—lul_ (8)
Combining Egs. (3), (5), (7), and (8) one gets [with
L=my+@®m—j+ DI

1
8p(2n), (€, +,1) .
p "x{;ll} =] i L -Z>l,.>ln'>0
271 + E:%)
=1
X
W>h"> - >ip ">y
Iel]." — E-‘ll", e, eln-1" e—ln—l"l
X )
len—% _ E—-(n—g), cee e% — e-&l ’

where /;, I are integers, /; half-integers. Similar to (5)
one has
n—1

H (E} + e:i) !En—% o e—(n—g), el e{- _ 5—%|
=1

— —(n— -1
n—1 _ ~in 1),,_,,61_€ I

= |e (10)
With (3) and (10) and /; = I, + 4, Eq. (9) becomes

Sp(2n), (€1, -~ ,€q_1,1) _
x{’”ll} n-1 —-

11211>122 cee2l>0

X Sp(2(n-1)),,(€)
{my” - mu_1"}>

(11)

l1>11"2[2> R >lﬂ_l”2iﬂ
where
my =1 = (n — i),

i=1,---,n—L

Putting
m=lL—m—i+1), i=1--,n—1,n (12)

”

and summing over m;, m; instead of I, I7 in (11) one
arrives at Eq. (2), which is equivalent to (1).
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The Fresnel equation is derived in general relativity using the classical method applied by Levi-
Civita in the study of a nonrelativistic theory of electromagnetic induction. For the description of the
anisotropic medium the theory proposed by Quan is adopted. The study of the Cauchy problem is
also presented and the convergence of results assures us that the equation proposed is the good one.

I. INTRODUCTION

N general relativity, we study the propagation of
an electromagnetic wave in a medium with general
electric and magnetic anisotropy. For the description
of the anisotropic medium we adopt the theory
proposed by Quan.! The Fresnel equation of wave
normals is obtained by the application of the classical
method, which consists of analyzing the discontinuity
of the first derivative of the electromagnetic field
fus» once applied by Levi-Civita in the study of the
same question in a nonrelativistic theory of electro-
magnetic induction.?

Essentially, we study a special type of singular
regions of the 4-space of general relativity. These
singular regions are assumed to be 3-spaces Z,
(called hypersurfaces of discontinuity), such that
across them the electromagnetic field is continuous,
but the first derivative may not be continuous.
Across X; all the other physical quantities are
supposed to be well behaved and in particular the
metric tensor g,; and its first derivatives are assumed
to be continuous throughout. In the last section the
study of the Cauchy problem for Quan’s theory is
presented.

The scheme followed in the paper generalizes the
work on singular hypersurfaces made by Quan,?
Saini,® and others, with the restriction that only the
electromagnetic shock waves are studied.

As far as the author knows, a general covariant
Fresnel’s equation is not presented in the literature.*
Recently, using semiclassical methods, the author
studied the Fresnel equation for vacuum polarization®
and the desire to confront this result with the equation

1 p. M. Quan, Problémes actuels en théorie de la relativité (Revue
&*Optique, Paris, 1959), p. 61.

2 T, Levi-Civita, Caracteristiche dei Sistemi differenziali e propa-
gazione ondosa (Zanichelli, Bologna, 1931).

3 G. L. Saini, Proc. Roy. Soc. (London) A260, 61 (1961).

4 Cf., for example, L. D. Landau and E. M. Lifshitz, Electrody-
namics of Continuous Media (Pergamon Press, London, 1960).

5 H. F. Kremer, Phys. Rev. 139, B254 (1965).

for a phenomenological theory motivated his interest
on the subject.

Throughout the paper, the Latinindices have a range
1, 2, 3 and the Greek indices a range 1, 2, 3, 4. The
usual rules of the tensor algebra are used, (for example:
At=Bf1 = {(A4*Bf — APB"), and the partial and covar-
iant derivatives are denoted by d, and V, respectively.
The permutation symbol is 7 and

77 = —(1g) e, Nugys = () ¥ersys-
II. FUNDAMENTAL EQUATIONS

An electromagnetical induction is defined in a
domain of the 4-space ¥, of general relativity when
there are two antisymmetric tensor fields, f,; and p,,
called electromagnetic and induction field and two
nonsingular matrices [¢f], and [uf], called induction
matrices, for which

pﬂaU‘z = eﬁfang?
fﬁ,:u Ua = l‘ﬁP:a Uas

where U* is the 4-velocity of the charged medium
defined in the domain.
The notation employed is

frxﬂ = (E, B), Pop = (D, H),
fa:; = %’hpwsf 2, P:ﬂ = %ﬂapyai"ﬁ'

If we introduce the 4-vectors, electric and magnetic
fields and inductions, defined by

ey

&)

E,=f,U" B, Ef;U", 3
D, = p,U*, H,=p,U’

the constitutive equations (1) may be written
Dy = €jE,, By = pgH,. @

It is seen that the matrices [¢/] and [uf] represent
two automorphisms of the vector space tangent to V.
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If we represent by [A¢] and [+£] the inverse transforma-
tions of [¢f] and [uf],

AH = 65 » TZ:“‘; = 65: (%)
we get for the constitutive equations (1):
FpuU* = B30, U°, P U* =73fpU%  (6)

The two fields f,; and p,,; are supposed to satisfy the
Maxwell equations

V. f*# =0, (7a)

V. p* = J?, (7b)

where the 4-current J? is related to f,, by the con-
stitutive equation called Ohm’s law

J? = oU,f? + 6U". ®

In the last equation the scalars o and 6 = U,J* are
respectively the electrical conductivity and the excess
charge.

In what follows, it is useful to consider the inverse
relations of (3):

faﬂ = 2Elpyfl 77"”‘”3,, Uv’ (93.)

f:ﬂ = 2B[¢Uﬁ] + naﬁqu“ Uv’ (9b)
and

paﬂ —_ 2D[aUﬁ] _ ,r]aﬁuvHqu’ (10a)

pYy = 2H,Ug) + 1,5, D* U (10b)

With the aid of Egs. (10a), (3), (1), and (6) we
obtain p** as a function of f;; and f%:

p = 2g°RUPEL S, U + P71 f 1, UMU,. (11)
The last equation is a generalization of the well-

known equation valid for an isotropic medium (ef =
0fe and 78 = u16%):

P = (U f* + 2[4 — ew)/plU, fUA. (12)
HI. FRESNEL EQUATION

The equation of wave normals for the electro-
magnetic theory with inductions, may be obtained
by the application of the method of Levi-Civita.?

In the domain of existence V, of f,,, we define a
hypersurface of discontinuity X4

7(x") = C, (13)

to which corresponds at a given moment a wave
surface which separates ¥ into two distinct regions.
The discontinuities A(d,f,s) and A(9,p,,) of the first
derivatives of f,5 and p,s across X; must satisfy the
so-called “conditions of geometrical compatibility”

AV, fp) = A(a, Jap) = A,,,,ayr, (14a)
A(V,p.p) = A(0,p,p) = K,p0,7, (14b)

HUGO F. KREMER

A,s and K, representing the “discontinuity tensors.”
The derivative of (11) gives

V,p = 2" UL UV,

+ et URU N, f 1, + v2F, (15)
where the quantities ¢ are independent of the deriv-
atives of f,5 and f%.

If we calculate the discontinuity of V,p*# across X
with the use of (15), and taking into account that
Jfap and £ are continuous across X we have
A(aYPaﬂ) = 2go[a Uﬁ]iﬁ U}'A(ayfp).)

+ PR UM ULA@,f 5. (16)

Since not all the 8,,7- are zero, we get from (16),
(14a), and (14b):

K = 2g"UPletUA,,, + 0Pt UAU,A;,  (17)
with
A:u = %npuegAeg = %npuﬁgdggvAi.v . (18)

The relation (17) between K*f and A*# depends only
on the relation between f,, and p,,, that is, on the
constitutive equations.

These tensors must also satisfy other conditions
imposed by the field equations of the theory. These
conditions, called “dynamic compatibility conditions,”
are obtained from (7a) and (7b):

npyaeA.’oaﬂ’T = 0, (19a)

KP9yr = 0. (19b)

With the aid of (17) and (18), Eq. (19b) can be
written in the form
(2gl[p Uﬂfﬁ’ Ua + %ﬂﬂalvnaﬂcggngga U" U).T‘:)Apdaﬂ‘r = 0'

(20)

We note that (19a) admits the solution

Apa' = QaapT - Qpach’ (21)

where Q, is an arbitrary vector. Taking into account
gauge invariance, we see that

A, = qca’,’r — 4,0,7, (22a)
4, = O, + k0,1, (22b)

with k, an arbitrary constant. With the condition
d,7 # 0, we can always choose k so that ¢, = 0 and
we adopt this gauge.
If we substitute (22a) into (20) we get
M"’p"”q,aﬂra‘,‘r =0, (23)
where
Mobro = nﬁalvm‘uguu U;'Teg“’gg" + 4gl[ﬂ U“]eg_”U"].
(24)



FRESNEL’S EQUATION IN GENERAL RELATIVITY

With the definition
H“a = M’ﬁ”aﬂ‘rap‘r,
Eq. (23) may be written
H*g, = 0. (26)

These equations forming a linear and homogeneous
system (26) are not independent because H,, satisfies
the trivial identity

(H*°q,)9;r = 0. (27

Since d,r # 0, we can express the fourth equation
(26) as a linear combination of the three others and
the system is reduced to

(25)

H*g,= 0. (28)
The effective existence of discontinuities of d,f,,
across Xz implies ¢, 7 0, that is,
det |[H*| =0 29
or
det |[M*"*9,70 7| = 0. 30)

This is the general covariant Fresnel equation for
a medium with electric and magnetic anisotropy.
If the medium presents electric anisotropy but is
magnetically isotropic [+ = (1/u)d%], the last equation
assumes the form
det [[(g”g™ — g"g") + (8% — ug"<HU' U’
— (8" — ug"eHUIU” + (g — g UL
— (g7 — ugh’e)UU9y70,7| = 0. (31)
For the complete isotropy (also € = €8%), we have

det [(g7°g™ — §*°g")0y7,07] = 0, (32)

where
g¥ =g — (1 — e)UU”.
Developing Eq. (32) we get the simplest form
g“ﬁaa'raﬂf = 0. (34)
Finally, it is easy to show that the well-known
equation*
det |0,,70™r — 801 + n"ueOmO, 7| =0 (35)

is obtained if we consider a Minkowski space (g,; =
7qp) and a frame moving with the medium.

(33)
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IV. CAUCHY PROBLEM

We now consider the full system Einstein-Maxwell
equations, where the functions o, [¢f], and [uf] are
supposed to be known. The field variables are now
8ap> Jap» 0, and U® and the Einstein equation deter-
mines g,, and U*

Given on a three-dimensional manifold V3 (whose
local equation we take as x* = 0) the field f,5, we try
to determine the values on ¥ of d,f,,.

According to the field equation (7a), we have on
Vs
77)'4vpa4fvp + (pl(c‘d.) = 09 (36)

where ¢* depends only on the Cauchy data (C.d.).

This equation gives, for 4 = k, the values of 9,f,
on V.

For 4 =4, (36) gives ¢*%C.d.) = 0, which repre-
sents a condition that the Cauchy data must satisfy
on Vy,

The other group of the field equations (7b) may be
decomposed in the system:

— M9, fu + $/(C.d) = oU,f* 4 U7, (37a)
YHC.d) = U, f** + 6U%, (37b)

where y, is also known because of the Cauchy data.
If ¥, is not exceptional (det | M7#*| 5 0), Eq. (37a)
may be solved for d,f;,. [We note incidentally that
(37b) determines 4.]
The characteristics of the Maxwell system are the
manifold solutions of

det | M#4%| = 0. (38)

With the aid of the coordinate transformations
defined by
x¥ = 7(x%),

(392)
(39b)

xll’ fr— xa

for which
Mau;uys' — af{a}'af,'a :iMaﬁps — aﬁ,rapTMaBps’ (40)

we get the covariant form (30) obtained in the last
section.

This convergence of results assures us that the
equation obtained is the good one.
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The principle of compensation of dangerous diagrams (PCDD) postulated by Bogoliubov to determine
the coefficients in the canonical transformation to quasi-particles in superconducting systems is derived
from four different criteria (1) the expected number of quasi-particles in the true ground state is 2 mini-
mum, (2) the one-particle density matrix and the two-particle amplitude determined from the BCS
ground state are equated to the true ones, (3) the expectation value of an arbitrary operator is simplified
by diagonalizing its quadratic part, and (4) the starting point for the dressing of the quasi-particle is
chosen in the most convenient way. The condition obtained for the PCDD is then expressed in terms of
quasi-particle Green’s functions. The ladder diagrams are eliminated by examining an integral equation
for the Green’s function describing the creation of two quasi-particles from the vacuum. Finally, the
condition obtained here for the PCDD is compared with the condition obtained previously.

1. INTRODUCTION

THE principle of compensation of dangerous diagrams
(PCDD) postulated by Bogoliubov! to determine
the coefficients in the canonical transformation to
quasi-particles (QP) in superconductivity theory has
been of considerable interest since Henley and Wilets?
showed that the second- and higher-order terms in it
were very important for nuclear matter. The PCDD
states that the coefficients in the canonical transforma-
tion should be determined by setting the sum of all
the diagrams describing the creation of a pair of QP
from the vacuum equal to zero.® It had previously
been thought that the corrections to the lowest-order
diagram were negligible,* but Henley and Wilets®
showed that the energy gap equation sometimes did
not even have solutions if the higher-order terms in
the PCDD were included.

This result seems somewhat strange at first, be-
cause Bogoliubov et al.® have shown that the BCS
model® with pairing forces is asymptotically exact
in the limit of infinite volume. This problem has

* Present address: Department of Physics, Northeastern Univer-
sity, Boston, Massachusetts.

I N. N. Bogoliubov, Zh. Eksperim. i Teor. Fiz. 34, 58 (1958)
[Engtish transl.: Soviet Phys.—JETP 7, 41 (1958)]; Nuovo Cimento
7, 794 (1958); Usp. Fiz. Nauk SSSR 67, 549 (1959) [English transl.:
Soviet Phys.—Usp. 2, 236 (1959)].

2 E. M. Henley and L. Wilets, Phys. Rev. 133, B118 (1964);
Phys. Rev. Letters 11, 326 (1963).

3 N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, 4
New Method in the Theory of Superconductivity (Academy of
Sciences of the USSR Press, Moscow, 1958) (English transl.:
Consultants Bureau, New York, 1959); Fortschr. Physik 6, 605
(1958).

4 V. V. Tolmachev and S. V. Tiablikov, Zh. Eksperim. i Teor.
Fiz. 34, 66 (1958) [English transl.: Soviet Phys.—JETP 7, 46 (1958)].

8 N. N. Bogoliubov, D. N. Zubarev, and Yu. A. Tserkovnikov,
Zh. Eksperim. i Teor. Fiz. 39, 120 (1960) [English transl.: Soviet
Phys.—JETP 12, 88 (1961)]; N. N. Bogoliubov, Physica 26, SI
(1960).

¢ J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).

recently attracted a great deal of attention because it
is one of the few nontrivial examples of an exactly
solvable model in quantum field theory.” However,
since Henley and Wilets? were investigating non-
pairing forces in general it is no contradiction that they
obtained the result that the second- and higher-order
terms in the PCDD are important. Tolmachev and
Tiablikov* calculated the second-order term in the
PCDD for a pairing type interaction and pointed out
that the term was of higher order in the coupling
constant than the order of validity of the model
Hamiltonian in the theory of superconductivity.
The BCS theory has also been applied to finite nuclei®
where it is not exact, and therefore it is important to
investigate the foundations of the PCDD and the effect
of higher-order terms.

The PCDD was originally postulated to remove
some terms in the perturbation expansion of the
ground state energy that could be divergent.!?
Since the expansion itself was not guaranteed to
converge,? this argument was not very convincing.
However, it was shownthat the PCDD corresponded to

(1.1) maximizing the overlap between the true and
the BCS ground state vector,®

(1.2) eliminating two QP states from the true
ground state vector,®

? R. Haag, Nuovo Cimento 25, 287 (1962); H. Ezawa, J. Math.
Phys. §, 1078 (1964); L. Leplae and H. Umezawa, Nuove Cimento
33, 372 (1964); C. T. Chen-Tsai, Chinese J. Phys. (Taiwan) 3, 22
(1965).

§ A. Bohr, B, R. Mottelson, and D. Pines, Phys. Rev, 110, 936
(1958). S. T. Beliaev, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 31, No. 11 (1959); L. S. Kisslinger and R. A. Sorenson, Kgl.
Danske Videnskab. Selskab, Mat. Fys. Medd. 32, No. 9 (1960);
M. Baranger, Phys. Rev. 120, 957 (1960); V. G. Soloviev, KglL
Danske Videnskab. Selskab, Mat. Fys. Skrifter 1, No. 11 (1961);
C. J. Gallagher, Jr., and V. G. Soloviev, Kgl. Danske Videnskab.
Selskab, Mat. Fys. Skrifter 2, No. 2 (1962).

? D. H. Kobe, Phys. Rev. 140, A825 (1965).
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COMPENSATION OF DANGEROUS DIAGRAMS

(1.3) diagonalizing the quadratic part of the reaction
operator (Brillouin—Brueckner-Bogoliubov condi-
tion),® and

(1.4) generalizing Brueckner’s extension of Hartree-
Fock theory (the exact self-consistent-field theory) to
QP.10

These criteria gave a condition for the PCDD which
is called the PCDD(I). It could be expanded by
perturbation theory,*!° but it was difficult to fit into
the framework of QP Green’s functions.!! Using
time-dependent perturbation theory it was even
difficult to show that ladder diagrams do not contrib-
ute to the PCDD. On the other hand, these criteria
give some needed physical insight into a previously
abstruse and mathematical principle.

It is the purpose of this paper to obtain another
formulation of the PCDD which is also based on
reasonable physical criteria, but which can be ex-
pressed conveniently in terms of QP Green’s functions.
The criteria which are used here are:

(IL.1) the total expected number of QP in the true
ground state is a minimum,

(I1.2) the one particle density matrix and the two
particle amplitude determined from the BCS ground
state are equated to the true ones,

(11.3) the expectation value of an arbitrary operator
is simplified by diagonalizing its quadratic part,'? and

(11.4) the starting point for the dressing of the QP
is chosen in the most convenient way.

These four criteria all lead to the same condition for
the PCDD, which is called the PCDD(1I). It is not
exactly the same as the PCDD(I), but it is still
compatible with the original statement of the PCDD
that the sum of all dangerous diagrams vanish.™3

Criterion (II.1) has an especially simple physical
interpretation. If the number of QP in the true ground
state is a minimum, the QP would be expected to
behave more like an ideal gas. The QP interactions
would not be as important and thus the free QP model
would be expected to be a good approximation. The
expansion of the true ground state in terms of the QP
states would converge rapidly. Thus this criterion is
just as physically appealing as the maximum overlap
criterion (1.1).

Perhaps the most important aspect of the new
condition for the PCDD is that it is easily formulated
in terms of QP Green’s functions which have pre-
viously been investigated.!* The equations of motion

10 D, H. Kobe, Quantum Chemistry Group, Uppsala, Sweden, Re-
port No. 137, 1964 (unpublished); Ann. Phys. (N.Y.) 40, 395 (1966).

17, H. Kobe and W. B. Cheston, Ann. Phys. (N.Y.) 20, 279
(1962).

12 The quadratic part of an operator is that part containing a
product of two creation or annihilation operators.
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for the Green’s function describing the creation of
two QP from the vacuum can be used to
obtain a perturbation expansion of the PCDD(II),
and even go beyond ordinary perturbation theory,
It is also very easy to remove the ladder diagrams
from the PCDD(II) by solving an integral equa-
tion.

In the next section the Bogoliubov QP is defined
and the Hamiltonian transformed to QP operators.
The criterion of minimum expected number of QP
in the ground state is applied in Sec. 3 to obtain the
PCDD(II). In Sec. 4 the criterion of best approxi-
mation to the true one- and two-particle density
matrices is used to obtain the best coefficients in the
canonical transformation. It is shown in Sec. 5 that
the diagonalization of the quadratic part of the
expectation value of an arbitrary operator also leads
to the PCDD(II). The best starting point for the
subsequent dressing of the QP is discussed in Sec. 6.
Section 7 gives the Green’s function formulation of
the PCDD(II). The ladder diagrams can be eliminated
by using the QP Green’s functions as shown in Sec.
8. In Sec. 9 a comparison is made between the
PCDD(I) and the PCDD(II). Finally the last section
summarizes the different criteria and the advantages
of the PCDD(II).

2. BOGOLIUBOV QUASI-PARTICLES

In this section the method of the canonical trans-
formation is reviewed, because the equations are
needed later. The necessity for a source term in the
Hamiltonian and its implications are discussed.
Finally the Hamiltonian is transformed to the QP
operators.

The Hamiltonian for a system of particles inter-
acting with two body forces is

H=3 (e — parar — 1 312/ V 349 ajadasa, .
1
Q.1

The operators a} and a, are the creation and anni-
hilation operators for fermions with momentum
k; and spin o, (+ = up/down), and (1) = (k,, oy),
and (2) = (k;, 0y), etc. They satisfy the usual fermion
anticommutation relations. The matrix element of the
potential (12} V'[34) is antisymmetric and positive
for attractive interactions, e, is the kinetic energy,
and y is the chemical potential.

Since we are interested in superconductivity, it is
necessary to introduce a source term into the Hamil-
tonian in order to remove the degeneracy due to the
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appearance of a condensate of bound pairs.}® The
source term is

H,= —v Y (waja', + wia_,a), 2.2
1

where after the calculation the limit » — 0 is taken.

The complex function w; is arbitrary. The terms in

Eq. (2.2) remove the conservation law for the number

of particles. The new Hamiltonian

H' =H+ H, (2.3)

is now used. This Hamiltonian does not commute with
the number operator, and so therefore the number of
particles is not a good quantum number. If |0) is the
true ground state vector of H’, then it is not an eigen-
state of the number operator.

In order to treat the problem of superconductivity,
Bogoliubov!:? and Valatin! introduced the canonical
transformation to quasi-particles (QP)*

(2.4)

The QP is a particle with probability amplitude u; and
a hole with probability amplitude v,. The QP are
also fermions if the transformation is to be canonical,
so the QP creation and annihilation operators satisfy
the usual fermion anticommutation relations. This
condition implies that the coefficients satisfy

"
oy = U8y + V30 4.

w4+l =1, (2.5a)
Uy = U_y, (2.5b)
v = —U_4. (2.5¢)

Equation (2.4) and its Hermitian conjugate can be
solved for the particle annihilation operator

(2.6

Equation (2.6) expresses the particle annihilation
operator in terms of the QP creation and annihilation
operators.

The Hamiltonian H' in Eq. (2.3) obviously has a
different form than the Hamiltonian H in Eq. (2.1).
If Eq. (2.6) and its Hermitian conjugate are substituted
into the Hamiltonian H’ and the QP operators are
putin normal order, the result will be of the same form
as if only H had been used. Thus H and H’ have the

_ t
a; = U0y — U100 5.

13 N. N. Bogoliubov, Physica 26, S1 (1960). This procedure is
analogous to the addition of an infinitesimal magnetic field in the
theory of ferromagnetism. The limit as the field goes to zero is taken
after the magnetization has been calculated, which gives a nonzero
value below the Curie point. Bogoliubov has called all of these
procedures quasi-averages. For superconductors the relation between
the quasi-average method and the nonzero two-particle amplitudes
(or anomalous propagators) was investigated by B. Johansson,
Physica 32, 2164 (1966).

1 J. G. Valatin, Nuovo Cimento 7, 843 (1958).

15 The coefficients #, and v, are taken as real here. It is shown in
the Appendix that this choice can be made without loss of generality.
See also Ref. 13.
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same form after the canonical transformation to QP
has been made. In terms of QP the addition of the
source term H_ to the original Hamiltonian H leaves
it form invariant. The limit v — O can be taken in H’
and the original Hamiltonian is recovered. The only
purpose of the source term is to give us a hunting
license for nonzero two-particle amplitudes (0| a}a’ , |0).
These would definitely be zero if the source terms were
not present.1®
The Hamiltonian H in Eq. (2.1) in terms of the
QP operators can be written as!
H= z Hy,,
Ik
where j + k=0,2,4 and (j, k) = (0, 1, 2, 3, 4). The
term Hj has j QP creation operators and k QP
annihilation operators

H1k= z hjk(1:2”]+k)
1,2,-.~’j+k

t.t t
x alaz . .. ajaj+l ..

@n

(2.8)

where the coefficients #;, can be found in Appendix A
of Kobe and Cheston.!

The QP vacuum state is needed later as the unper-
turbed ground state in Sec. IV. The BCS ground state
vector is®

T %k

IBCS) = [T (u; + v,ala’)) |vac), (2.9)
?
where the product is only over half the total number
of states, and |vac) is the state of no particles. The
BCS ground state can be shown to be the vacuum for
the QP
¢, |BCS) =0 (2.10)

for all k, by using Eq. (2.4). Because of this convenient
property it is natural to choose the BCS state as the
unperturbed ground state.

3. MINIMIZATION OF THE NUMBER
OF QUASI-PARTICLES

The problem now is to determine the best choice of
the coefficients #; and v, in Eq. (2.4), which then gives
the best Bogoliubov QP. In previous papers®0 the
criteria (I.1) through (I.4) have been used to obtain
the PCDD(I). In this section another criterion is used
to give a somewhat different condition for the best
Bogoliubov QP which is called the PCDD(II). It is,
however, completely compatible with the original
statement of the PCDD given by Bogoliubov in terms
of dangerous diagrams.!?

The criterion (I1.1) which is used now is that the
total expected number of QP in the true ground state
is a minimum. If the true ground state vector is given

16 Y, Nambu, Phys. Rev. 117, 648 (1960).
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by |0) the total expected number of QP in it is the
expectation value of the QP number operator

3.1

n= Z (0] wle; [0y = minimum

2

subject to the constraints in Eq. (2.5).

This criterion is a very natural one, since if the
number of QP in the true ground state were a mini-
mum, the QP would be expected to behave almost
ideally. Their number would be small and interactions
would not be as important as if there were many QP
present. Thus the free QP model would be expected
to be a good approximation. This condition is anal-
ogous to reducing the pressure in a volume of gas,
so that it behaves more ideally. By minimizing the
number of QP, the expansion of the true ground state
in terms of zero, two, four, etc. QP states would
converge rapidly. This criterion would also be expected
to be a good starting point for a treatment of QP
interaction effects which is discussed in Sec. 6.

Because of the constraints in Eq. (2.5) it is necessary
to introduce the Lagrangian multipliers A; and mini-~
mize the function

n=n4+ 3 AW+ 02— 1) (3.2
i

However, the operator L, can be defined as'®

L, = u,(0/0v,) — v(0/0ws), (3.3)
which has the property that
LY Aui+ =1 =0. (34

Therefore it does not make any difference if L, is
applied to Eq. (3.1) or (3.2).

If # is minimized (or extremized) with respect to the
coefficients in the canonical transformation, the
result is the condition

Lo = 0 = Re (0] ala’, |0), (3.5)

which is called the PCDD(II). It gives an equation
from which the coefficients #, and v, can be determined
to give the best Bogoliubov QP. In Sec. 9 it is
compared with the PCDD(), and, in Sec. 7 a means
of expanding it in terms of QP Green’s functions is
given.

Equation (3.5) for the extremum is actually a mini-
mum if the second derivatives n, , n,, , and n,,, - (—u/v)
are all positive. The second derivatives 7, and n,,
involve the Lagrangian multipliers A; which must be
eliminated by using the two equations obtained by
setting the first derivatives equal to zero. When this
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procedure is carried out the conditions for a minimum
are

(0] aja, |0) > (0] «jo;, |0), (3.6a)
(O] aza; 0) > (0] ooy 10), (3.6b)
2up, Re (0] ala’, |0) > 0. (3.60)

These conditions should be satisfied since the number
of QP in the true ground state is expected to be small.
The number in the BCS state is, of course, zero.
However, it is not yet known whether the extremum
is a minimum or a maximum.

The conditions in Eq. (3.6) can be shown to be
satisfied by solving Eq. (3.5) for the coefficients u,
and v,, and then substituting them into Eq. (3.6).
Equation (3.5) can be expressed in terms of the
coefficients and particle amplitudes by using Eq. (2.4)
which gives

(Ui — v A, = 2u,.By, 3.7

where A, is defined to be the two-particle amplitude®”

» = Re (0] afal, |0) (3.8)
and B, is defined as
2B, = (0| ga} |0) — (O alia, 10),  (3.9)

which can be either positive or negative. Equation
(3.7) can be solved with the help of Eq. (2.5) and the
results are

2u,, = A JCh (3.10)
and
W — v = B,/C,, G.11)
where
G, = [42 + B (3.12)

The expected number of QP in the true ground state
can be expressed in terms of the particle amplitudes
by using Egs. (2.4), and (3.10) through (3.12) to give

(0] ajo 10) = } — C. (3.13)

Since the expected number of QP in the BCS ground
state is zero and C, =} for the BCS state, the
positive solution has been taken in Egs. (3.10) through
(3.12). If Egs. (3.13), (3.9), and (3.12) are used in Eq.
(3.6) the conditions become

B, < [4% + B, (3.14a)
—B, < [42 + B}, (3.14b)
A2C, > 0. (3.14c)

These conditions are all satisfied for positive or
negative B, as long as 4, in Eq. (3.8) is not zero.

17 A transformation on the single-particle orbitals as shown in Eq.
(A10) can always be made to make (0| alaly |0) real.
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However, this condition is just the condition that the
system is in the superconducting phase. Therefore for
‘superconducting systems, the extremum condition
given by the PCDD(II) in Eq. (3.5) makes the ex-
pected number of QP in the true ground state a true
minimum.
4. BEST DENSITY

The criterion for the best Bogoliubov QP that is
now discussed is that the one- and two-particle
density matrices obtained with the BCS ground state
are the best approximations to the true ones. The
single-particle density matrix obtained from the
BCS ground state can be set equal to the true single-
particle density matrix. The two-particle density
matrix obtained from the BCS ground state can be
equated to a Gorkov'® type factorization of the true
two-particle density matrix. This criterion is essentially
the same as the best density criterion in the inde-
pendent particle model,'® where the orbitals are
Loéwdin’s natural spin orbitals.20

The matrix element of the single-particle density
matrix determined from the BCS ground state is

(BCS| aja, |BCS) = v} (4.1)

if Eqgs. (2.6) and (2.10) are used. This expression can
be chosen such that it is equal to the true single-
particle density matrix®

vf = (0] aja, |0) = (O alya_, |0),  (4.2)

which can, for example, be calculated by the linearized
equation of motion method.?? This condition has in
principle determined the coefficients because of Eq.
(2.5). However, we investigate the two-particle
density matrix to see if there are any auxiliary con-
ditions which must be imposed.

The matrix element of the two-particle density
matrix determined from the BCS ground state is

(BCS| alajaza, |BCS)
= (U0 ug0)05 40, 5 + ”f”g(azaéu — 01305) (4.3)

from Egs. (2.6) and (2.10). However, the two-particle
amplitude determined from the BCS ground state is

(BCS| aja’, |BCS) = u,v,. (4.4)

18L. P. Gorkov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)
[English transl.: Soviet Phys.—JETP 7, 505 (1958)}]; S. T. Beliaev,
Physica 26, S181 (1960); A. Zawadowszki and G. Pdcsik, Phys.
Letters 7, 173 (1963); Nuovo Cimento 32, 1110 (1964).

¥ W. Kutzelnigg and V. H. Smith, Jr., Quantum Chemistry
Group, Uppsala, Sweden, Report No. 130, 1964 (unpublished);
J. Chem. Phys. 41, 896 (1964).

20 p, 0. Lowdin, Phys. Rev. 97, 1474 (1955).

21 The number of particles in the state k is the same as the number
in the state —k by inversion symmetry.

2 D. Pines, The Many-Body Problem (W, A. Benjamin, Inc., New
York, 1961), pp. 94-96.
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The coefficients can be chosen such that u,, is equal
to the true two-particle amplitude!”-#

g, = (0] ala’, |0), 4.5

which is not zero in the superconducting state!s
because of the source term in Eq. (2.3). The two-
particle amplitude and the density matrix can be
shown to satisfy two coupled equations by the
linearized equation of motion method.?

If Egs. (4.2) and (4.5) are substituted into Eq. (4.3),
we obtain a Gorkov!® type factorization of the two-
particle density matrix
(0] ajajaqa, [0)

=~ (BCS| ajalaa, |BCS)

2= (0] afal; 10X0] a_ya10) 65 0,

+ (0] aja; [0X0] a3, 0) (Basdss — S10020).  (4.6)
Equation (4.6) shows why it is not surprising that
Gorkov?® obtained the BCS theory® with this type
of ansatz. The Green’s function equations that he used
are analogous to the linearized equation of motion
method used by Pines.?

If the ansatz in Eq. (4.6) is used in the expectation
value of the Hamiltonian, Eqs. (4.5) and (4.2) sub-
stituted into it, and the expression is minimized with
respect to the coefficients, the BCS result® is obtained.
This procedure corresponds to Valatin’s'* minimiza-
tion of Hy, in Eq. (2.7). All of these methods corre-
spond to the PCDD in lowest order.

Equation (3.7) can easily be obtained by multiplying
Eq. (4.5) by (42 — ¢2) and making use of Eqgs. (4.2)
and (2.5). If, however, Eq. (2.6) is substituted into
Eq. (3.7) the condition

Re (0] afal, [0) =0 %)

is obtained which is the same as Eq. (3.5) for the
PCDD(II). Thus the criterion of best approximation
to the one- and two-particle density matrices gives
the same condition as the minimization of the number
of QP in the true ground state,?*

5. SIMPLIFICATION OF EXPECTATION
VALUES
In his original paper on the canonical transforma-
tion applied to boson systems, Bogoliubov* neglected
the QP interaction terms and merely diagonalized the
quadratic part of the Hamiltonian which lead to only

23 If the coefficients are complex Eq. (A6) would be obtained from
this criterion too.

232V, H. Smith, Jr., Nuovo Cimento 48, 443 (1967), has shown
that the PCDD(I) is equivalent to setting

o8 = (0| aja,|BCS),
which is the transition density matrix.
2 N. N. Bogoliubov, J.Phys. (U.S.S.R.) 11, 23 (1947).
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the compensation of the lowest-order dangerous
diagram. It was shown previously® that diagonalizing
the quadratic part of the reaction operator (or
t matrix) leads to the PCDD(I). No matter how im-
portant these two operators are for the energy, they
should not be overemphasized, since there are many
other important operators. One possible criterion for
the best Bogoliubov QP would be to diagonalize the
quadratic part of the operator that is most important
to the particular problem. However, this criterion
would make the coefficients dependent on which
operator was chosen, which would not be a desirable
feature. Since it is really expectation values which are
of interest, the criterion of diagonalizing the quadratic
part of the expectation value of an arbitrary operator
can be used. In this way the expectation values of
arbitrary operators can be simplified.

An arbitrary one-, two-, three-, or many-particle
operator Q can easily be expressed in second quanti-
zation.?s When it is transformed to the QP creation
and annihilation operators in Eq. (2.4) and put in
normal order, it can be written in a form similar to the
Hamiltonian in Eq. (2.7). The true expectation value of
the operator is

(0| 0 10)
= Qg + (0] 01, 10) + 2 Re (0] Q20|0> + -,
5.1
where
(0101110 = X qu(k, k) 0 e 10)  (5.2)
and
Re (0] 0 10) = 3 gaulk, ~k) Re O] ol 100 (5.3)

The three dots in Eq. (5.1) represent the expectation
values of the parts containing more than two QP
creation and annihilation operators. The coefficients
gq;; contain the matrix elements of the operator Q
and the coefficients in the canonical transformation.
It is assumed that g, is real in Eq. (5.3).

Since the coefficients can be chosen arbitrarily, the
form of Eq. (5.1) will be simplified if the third term on
the right vanishes. From Eq. (5.3) it can be seent hat
it will vanish if

Re (0] e [0) = 0, (54

which is the same condition as Eq. (3.5) for the
PCDD(ID). 1t will also vanish if g,(k, —k) vanishes,
but this condition gives coefficients that are dependent
on the matrix elements of the operator, which is not
desirable. Equation (5.4) for the coefficients is also

25 D. H. Kobe, Proc. Phys. Soc. London 88, 9 (1966); E. R. Pike,
ibid. 81, 427 (1963); see also D. H. Kobe, Am. J. Phys. 34, 1150
(1966).
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advantageous in that Eq. (5.2) will be “small” since
the number of QP in the state k in the exact ground
state will be minimized by the condition.

Thus the condition of diagonalizing the quadratic
part of the expectation value of an arbitrary operator
also gives the PCDD(II). The criterion (I1.3) which
stipulates that the quadratic part of the reaction
operator should be diagonal gives the PCDD(I). In
this section it is the expectation value of the quadratic
part of an arbitrary operator which is diagonalized,
so that there is no contradiction between these two
criteria.

6. BEST STARTING POINT FOR THE
DRESSING OF THE QUASI-PARTICLE

Because of the QP interactions, the free QP becomes
dressed with a cloud of virtual collective excitations.-#?
The virtual emission and absorption of these collective
excitations causes the energy of the bare QP to
become dressed. This dressed emergy is a better
description of the QP since it takes into account the
effect of QP interactions that are ignored in the free
or bare QP model.

Another criterion that can be applied to determine
the best choice of coefficients in the canonical trans-
formation is that the starting point for the treatment
of the QP dressing is chosen in the most convenient
way.?® This criterion is not unique, but it is shown that
a reasonable choice will lead to the PCDD(II)
obtained from the other criteria.

The concept of dressing can best be described in
terms of Green’s functions for the QP. In a previous
paper! the set of coupled integral equations satisfied
by the Fourier transform of the QP Green’s functions

S, 2, n,n+ 1, ,n+ m)

=00 T{xy " apotyy - alnd 10) (6.1)

were investigated. The creation and annihilation
operators in Eq. (6.1) are in the Heisenberg picture.
The variables are defined as (1) = (k;, 04, 1), (2) =
(k;, 02, 1), etc. The operator T is the time ordering
operator that puts the largest times on the left and
the smallest on the right with a plus sign for an even
and a minus sign for an odd permutation of the
original order.

The equation of motion for the single QP propa-
gator can be obtained and is shown in Fig. 1. The
QP self-energy was obtained in a previous paper?¢
where the vertex in Fig.1(g), h(k, —k), was set equal

2 D, H. Kobe, Ann. Phys. (N.Y.) 28, 400 (1964).

%7 J. R. Schrieffer, Nucl. Phys. 35, 363 (1962).

28 For the independent particle model the criterion of the best
starting point for a subsequent treatment of correlation was proposed
in Ref. 19.
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FiG. 1. The equation of motion for the single quasxupartxcle
propagator.

to zero so that the term vanished. This procedure is
just the PCDD in lowest order which is not adequate.
The self energy was determined from the remaining
terms in Fig. 1. However, higher-order dangerous
diagrams would arise from some of the remaining
terms in Fig. 1. For example, when Fig. 1(f) is
expanded it results in a term that has the same form as
Fig. 1(g) except that the vertex function is a second-
order dangerous diagram and would not vanish if
only hglk, —k) were zero. It is thus desirable to find
another condition which would result in the vanishing
of the sum of all terms involving G,y or Gy in the
expansion of the single quasi-particle propagator.

The concept of dressing the QP is really only an
approximation which could be expected to be valid
in the case of weak QP interaction. The true single
QP propagator has poles at all the excitation energies
of the system as the true spectral representation
shows?

Gu(1,2) = (—217)"15(601 — )
%S (O oy [s)(s] af [0) 4+ ag 1s)(s| oy [0)

s | 0, — w, 4+ i0 w, + w, — i0

}, 6.2)

where |s) is a true eigenstate of the Hamiltonian H’ in
Eq. (2.3) and w, is its excitation energy. The argu-
ments of Gy(l,2) contain the variables (1) =
(ky, 01, @y), etc. The first term in Eq. (6.2) is the
retarded part and the second term is the advanced
part.

In the absence of QP interactions, the true ground
state reduces to the BCS ground state |BCS). The
complete set of states reduce to the zero, one, two,
etc. free QP states. Thus the only state that contrib-
utes to the sum over states in the ﬁrst term in Eq.
(6.1) is the state with one QP |s) = «! |BCS) with an
excitation energy E, = hy,(1, 1). The advanced part
of Eq. (6.2) vanishes because of Eq. (2.10). Thus, in
the absence of QP interactions, Eq. (6.2) reduces to the

# D. H. Kobe, Ann. Phys. (N.Y.) 19, 448 (1962).
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free QP propagator
G'(1) = (=2m)wy — E; +i0)™

after integration (summation) over wy(k,, 0,).

If the QP interaction is turned on very weakly, the
form of Eq. (6.3) would still be expected to be a good
approximation to the retarded part of the single QP
propagator. The predominant contribution to the
sum in Eq. (6.2) for the retarded part would come
from the state with one QP created from the true
ground state |s) = «} [0) with the excitation energy
&, . For the advanced part of Eq. (6.2) the predominant
contribution would come from the state |s) = af, |0}
with the same excitation energy. Thus a good approxi-
mation to Eq. (6.2) would be3®

~1[¢0] ot} [0)0] o] [0)
Gut) = (—amyH{SEB S
IRCEANESC l0>} 64)
wy + & — i0

after integration (summation) over wy(k,, 6,). The
energy £, is the dressed energy and can be determined
in principle from the Dyson equation.® The advanced
part of Eq. (6.4) is inconvenient, so it would be
convenient to choose the coeflicients such that it
vanished. This choice is now shown to lead to the
vanishing of G, also.

After this discussion of the approximations used in
Gy for the dressing of the QP, the same approxi-
mations can be made in Fig. 1(g) for the two QP
creation propagator Gy,. The functions Gy; and Gy,
are coupled to each other and thus the same type of
approximations should be used for both for the sake
of consistency. The spectral representation of Gy, is?®

Gox(1, 2) = (—2m)7' 8w, + wy)
S {<0¢ ol 95l @ 10) | (O] af [s)s] ] }(»}_ 65
s | wy — w, + i0 w; + @, — i0
The state which would be expected to predominate
for weak QP interactions in Eq. (6.5) is |s) = «f, |0)
in the first term and |s) = «] [0) in the second. Both
these states would have the same excitation energy
&, . The propagator G,, would then take the form
Tt t
G02(1) = (__217)—1 <OI XXy 'O><0l a—?m—-l |0>
wy — & + 10
+ (0o [0)0] oo [0)
wy + 51 -
after integration (summation) over wy(k,, o,).

6.3)

} 6.6)

30 See, e.g., P. Nozitres, Theory of Interacting Fermi Systems
(W. A. Benjamin, Inc., New York, 1964), Chap. 3, for a discussion of
the concept of dressmg

1 F. J. Dyson, Phys. Rev. 75, 1736 {(1949),
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The two QP creation propagator Gy, and the ad-
vanced part of the single particle propagator in Eq.
(6.4) will all vanish if the two QP amplitude in the
numerator vanishes. Thus we can use the condition

Re (0] ajal, [0) = 0 6.7

to determine the coefficients in the transformation.
The imaginary part of the two QP amplitude is also
zero because of Eq. (A8). Thus the term in Fig. 1(g)
and other similar terms involving Gy, and Gy, are
zero. From Eq. (6.4) the single-particle propagator is
thus

Gu(l) = (=2m) oy — & +i0)7Z;, (6.8)

where Z, is the numerator of the retarded part in
Eq. (6.4). Equation (6.8) is in exactly the same form as
the bare propagator in Eq. (6.3), and can easily be
determined from the Dyson equation.®! If the ad-
vanced part were not zero, the Dyson equation
would be much more difficult to solve. Thus the
criterion of the most convenient starting point for the
dressing of the QP is also seen to lead to the PCDD(II)
in Eq. (6.7).

7. QUASI-PARTICLE GREEN’S FUNCTION
FORMULATION

In order to obtain an expansion of PCDD(II), it is
convenient to express it in terms of the QP Green’s
functions. Then the QP Green’s functions equations
of motion! can be used to expand the PCDD(I) in
terms of QP interactions. An ordinary perturbation
expansion can be obtained,® but the Green’s function
method enables an infinite subset of graphs to be
summed, and intermediate propagators to be dressed.
Thus by using Green’s functions one can go beyond
the limitations imposed by ordinary perturbation
theory. In the next section the Green’s function method
is used to eliminate the ladder diagrams.

From the spectral representation of the two QP
creation propagator Gy, in Eq. (6.5), it can be shown
that the two QP amplitude is

gu(1,2) = —Rei f f dooy daGoy1, 2)
= Re (0] o} |0). (1.1)
The two QP annihilation propagator G,, has a spectral

representation similar to Eq. (6.5).2° It is related to the
two QP amplitude by an equation similar to Eq. (7.1)

gu(l,2) = —Rei f f oy dwyGug1, 2)

= Re (0] a0, [0). (1.2)
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of dangerous diagrams in diagrammatic 02 =0
form. The dashed lines represent inte- | ~ < | __...
gration over the energies.
From Egs. (7.1) and (7.2) it follows that
8oa(1, 2) = gao(2, 1). (1.3)

Because of the QP anticommutation relations, we also
have the result

goall, 2) = —gaa(2, 1). (74

From the PCDD(I) in Egs. (3.5), (4.7), (5.4), and

(6.7) the condition for the best QP is
gox(l, —1) = 0,

which is shown graphically in Fig. 2.

The Green’s function Gy, satisfies the following
equation of motion!*:

(1.5)

Goll,2) (7.6a)
= 3 4nh{,(11)GY(1)Gyy(12) (7.6b)

+ 37 Amhp(1'2'13)G°(1)G(3, 12'2)  (7.6¢)

+ 3 2wk (23 DG 1)Gey(1'2'32)  (7.6d)

+ 3 —6mhiy(1'12'3)G°(1)Go(2'3, 1'2)  (7.6¢)
+ 37 8mhp(132'1)GN1)G5y(3'2'1, 2).  (7.6f)

This equation is shown graphically in Fig. 3. It
represents an ‘“‘expansion’ of the Green’s function in
terms of the last interaction, the outgoing QP en-
counters. The free QP propagator G%1) is defined in
Eq. (6.3). The prime on the &, functions defined in
Eq. (2.8) means that there is also a delta function for
conservation of energy at each vertex. The prime on
the sum means to sum (integrate) over the primed
momenta and spins (frequencies).

In order to obtain the PCDD(II), it is only necessary
to integrate Eq. (7.6) as shown in Eq. (7.1) and use
Eq. (7.5). The lowest-order term in the PCDD(II)
can be obtained by neglecting all the QP interaction
terms except (b) in Eq. (7.6) and Fig. 3. Then the
PCDD(II) in Eq. (7.5) gives

hoo(k, —k) = 0, 1.7
which is just the lowest-order PCDD(II) obtained by
diagonalizing the quadratic part of the Hamiltonian

- &

Fig. 3. The equation of motion for the Green s
function describing the creation of two quasi-particles from
the vacuum,

,))
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(@) (b) (© (d)

‘FiG. 4. The integral equation which sums the ladder
diagrams. The outgoing lines are dressed.

in Eq. (2.7) and which is equivalent to the BCS theory.
By substituting the equations of motion for the
higher-order Green’s functions in Eq. (7.6), the
PCDD(II) can be obtained to any arbitrary order in
perturbation theory. In particular, the second-order
correction to the PCDD can be obtained from the
term (f) in Eq. (7.6) and Fig. 3 if the three QP going
into the box are annihilated and one is created.

8. ELIMINATION OF LADDER DIAGRAMS

By using the Green’s function method of the last
section, it is possible to show that ladder diagrams do
not contribute to the PCDD(II). Tolmachev and
Tiablikov* first pointed out that it is not necessary to
consider the diagrams that have a ladder part on their
outgoing lines. They used the PCDD(I), but it was
shown that there is still some difficulty with the ladder
diagrams.1®

If the equations of motion for the higher-order
Green’s functions are substituted into Fig. 3 for Gy,
then Fig. 4 is obtained. A similar equation can be
obtained for G,,. The term in Fig. 4(d) is the sum of
all nonladder type diagrams shown in Fig. 5. The
iteration of the two equations for Gy, and Gy, results in
the sum of all ladder diagrams being attached to the
nonladder diagrams.®2

In Fig. 4 the term (b) is obtained when the QP
going into Fig. 3(c) passes through with only self-
interactions. Likewise the term in Fig. 4(c) is obtained
when one of the QP going into Fig. 3(f) passes through
with only self-interactions. In Fig. 5 there would be
some ladder diagrams with self-interactions on the
outgoing lines, but these have been included in Fig.
4(b) and (c) by dressing the outgoing lines. Thus in
Fig. 5 only the pure nonladder diagrams are con-
sidered.

Equation (7.6) can be written in the form of Fig. 4
by substituting the equations of motion for higher-
order Green’s functions™ into it, which gives

Go(1,2) = X' —4mihyy(1'2'12)G1(1)G1(2)Goo(17, 2°)
+ > —247ih;y(122'1)G,(1)G4(2)Goe(2'1")
+ F,(1,2) (8.1)
The dressed single QP propagator G,(1) is defined in

Eq. (6.4). If Eq. (8.1) is substituted into Eq. (7.2) and
assuming the matrix elements of the potential and the

32 A typical ladder diagram is shown in Fig. 1 of D. H. Kobe,
Ann. Phys. (N.Y.) 25, 121 (1963).
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Fig. 5. The sum of all the nonladder diagrams. Ladder
diagrams with self-energy interactions on the outgoing lines are
not included.

two QP amplitude'? are real, the result is

o1, 2) = 3 4mhyy(1'212)g:1(12)g0x(1'2')
+ 2 24mho,(121'2')g1(12)gex(2'1")
+ foe(12). 8.2)

Equations (7.3) and (7.4) have been used to obtain
Eq. (8.2). The function g, is defined as

8(12) = 2m)7(&, + £)7YZ,Z,

+ 831, —1) g3:(2, —2)] (8.3)
and the function fq, is defined as

ful(1,2) = —Rei f f doy dogFe(1,2).  (8.4)

Equation (8.2) shows that if Eq. (7.5) for the PCDD(II)
is satisfied, then f5,(1, —1) = 0 also. Conversely, if

Jfo:(1, =1) =0 (8.5)
then Eq. (7.5) for the PCDD(II) is also satisfied since
the sum of the ladder graphs after the canonical
transformation converges.® Equations (8.4) and (8.5)
can be taken as a reformulation of the PCDD(I). In
order to determine the coefficients in the canonical
transformation the sum of all the nonladder dangerous
diagrams should be set equal to zero.3

9. RELATION BETWEEN THE TWO
CONDITIONS

In two previous papers®1° the criteria (I.1) through
(I.4) in the Introduction were used to obtain the

33 R. Balian and M. L. Mehta, Nucl. Phys. 31, 587 (1962); B.
Johansson (Ref. 13) has shown that the divergence of the ladder
diagrams for the particles in the superconducting phase [D. J.
Thouless, Ann. Phys. (N.Y.) 10, 553 (1960)] is necessary when v in
the source term in Eq. (2.2) goes to zero to obtain a finite two-
particle amplitude in Eq. (3.8).

# For finite systems it is necessary to re-examine the role of ladder
diagrams in the PCDD according to E. M. Henley, R. C. Kennedy,
and L. Wilets, Phys. Rev. 135, A1172 (1964).
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condition for the determination of the coefficients for
the best Bogoliubov QP. These criteria gave what is
called here the PCDD(])

I: Re (0| oal, |BCS) = 0, ©.1)
where |BCS) is the BCS ground state. Especially the
maximum overlap criterion (I.1) gives some physical
insight into the nature of the PCDD. It is this con-
dition that was used by Tolmachev and Tiablikov? in
calculating the second-order term in the PCDD.

The criteria (IL.1) through (II1.4) developed in this
paper give the condition called the PCDD(II)

I: Re (0] afol, |0) =0 9.2)
given in Secs. 3 through 6. These criteria are equally
reasonable, and the PCDD(II) can be used as an
alternative condition for determining the coefficients.
It is especially convenient to use because QP Green’s
functions can be used to obtain an expansion for it.

The PCDD(II) reduces to the PCDD(I) if the true
ground state |0) is replaced with the BCS ground
state on the right side of Eq. (9.2). The difference
between the PCDD(II) and the PCDD(]) can be seen
by expanding the true ground state wave vector |0) in
terms of zero, two, four, etc. QP states

|0) = ¢ |BCS)

+ 3 c,ofal, |BCS)
k

+ 3 et ol ol |BCS)
k>1

+ 2 ckzm“laiko'.:af_,a;aim IBCS) 4 e,

k>i>m
9.3)
where the sums are only over half the total number of
states. The PCDD(I) given in Eq. (9.1) corresponds to

¢ = max,
¢, = O for all &,

because of the maximum overlap criterion (I.1). How-
ever, the PCDD(II) corresponds to
n=23 ol +43 ol +6 3 leunl + -

= min 9.5)
from the minimization of the number of QP in Eq.
(3.1). In order for Eq. (9.5) to be a minimum the
coefficients corresponding to a large number of QP
must be small. Thus the convergence of the expansion
in Eq. (9.3) must be rapid.

From Egs. (9.4) and (9.5) it can be seen that in
general the two criteria are different, but that both are
reasonable. Both the conditions in Egs. (9.1) and (9.2)
can be expanded by perturbation theory and the same
general type of diagrams is obtained. However, in the
perturbation expansion of Eq. (9.1) it is not possible
to eliminate the ladder diagrams exactly.!® For Eq.
(9.2) Green’s functions and their equations of motion™!

(9.4)
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can be used. This method is very convenient and fits
in very nicely with the self-energy of the QP.% In
using Green'’s functions, it is possible to sum an infinite
subset of graphs and easily go beyond ordinary
perturbation theory. This advantage strongly recom-
mends the PCDD(II).

It is not surprising that different criteria give
somewhat different formulations of the PCDD. In
the independent particle model’® different criteria
also give different orbitals. The condition obtained
for orbitals from the maximum overlap principle is
different from the best density criterion, and the two
cannot in general be simultaneously satisfied.

10. CONCLUSION

Of the four criteria developed in this paper for
determining the coefficients in the canonical trans-
formation, the criterion (II.1) of minimizing the
number of QP in the true ground state has the most
appealing physical significance. It is analogous to
reducing the pressure in a container of gas by removing
molecules so that the gas will behave more ideally. If
there are very few QP expected in the true ground
state, the probability of finding many QP is small.
Thus the expansion of the true ground state in terms
of QP states would converge rapidly.

The criterion of best density (IL.2) is a very reason-
able one, since it would give the best approximation
to the expectation values of one- and two-particle
operators. It also sheds some light on the nature of the
Gorkov'® type of factorization of the two-particle
density matrix.

The third criterion of the simplification of the
expectation value of an arbitrary operator (IL.3) is
somewhat arbitrary. On the other hand, it is no more
so than the original choice of coefficients as the ones
diagonalizing the quadratic part of the Hamiltonian.
The Hamiltonian is just one of many operators, so
that it should not be overemphasized. It is significant,
however, that the condition obtained from this
criterion is also the one obtained by the other two
criteria.

The fourth criterion, the best starting point for
the dressing of the QP, is of interest in that all the
terms involving a Gy, or a Gy in the equation of
motion for the single QP propagator are eliminated.
In the original treatment of the QP self-energy,? only
the compensation of the lowest-order dangerous
diagram was used. In higher orders, there would be
Gy or Gy terms with higher-order dangerous dia-
grams attached to them. With the PCDD(II) these
terms would also be zero. The self-energy of the QP
obtained previously does not have to be modified.
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All of the criteria used here give the PCDD(II)
instead of the PCDD(I) obtained previously. These
two conditions for the PCDD were compared in the
last section. The question as to which is best is
probably a matter of taste. If ordinary perturbation
theory is used, the simplest condition is the PCDD(I),
since it involves the true ground state only once.
However, there is some difficulty in removing the
ladder diagrams exactly.

On the other hand, if the QP Green’s functions are
used then it is essential to use the PCDD(II). The
ladder diagrams can easily be removed. A perturbation
expansion can be obtained for the PCDD(II) in which
dressed energies can easily be introduced. Then
PCDD(II) can be used in connection with the QP
self-energy to obtain equations coupling the energy
gap to the single particle energy.®® Thus the advantage
of being able to work with the QP Green’s function
recommends the PCDD(II).

The eight criteria given in this and previous papers®1
have provided some needed physical insight into a
previously abstruse and mathematical principle. The
criterion of minimum number of QP in the true
ground state stands alongside the maximum overlap
criterion as giving an intuitive feeling for obtaining
the best Bogoliubov quasi-particle.
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APPENDIX. COMPLEX COEFFICIENTS

Throughout this paper it has been assumed that the
coeflicients in the canonical transformation in Eq.

3 D. H. Kobe, Ann. Phys. (New York) 35, 42 (1965).
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(2.4) were real. However, this assumption can be made
without loss of generality as is shown here.

The coefficients in Eq. (2.4) are now assumed to be
arbitrary complex numbers

Uy = |uy] e, (AD)

v = € |vg| €1, (A2)
where

6= —e_,=1. (A3)

The condition that the QP be fermions modifies only
Eq. (2.5a) by replacing the coefficients with their
absolute values

[l + Jog* = 1. (Ad)

The two-particle amplitude is in general complex and
can be written as

A4; = (0| a_4a, |0) = €; |4,] . (A5)

If the number of QP in Eq. (3.1) is minimized with
respect to the coefficients in the transformation, the
condition for the best QP is obtained. This means that
Eq. (3.1) with the constraint in Eq. (A4) must be
minimized with respect to |uy|, [v1], 2, and ¢,. The
minimization with respect to x; and ¢, gives the
condition
(A6)

where m = 0, 41, £2, - - - . This condition can also
be shown to give a minimum by calculating the
second derivatives.

The minimization with respect to the absolute value
of the coefficients [4;| and ¢, [v;] gives the condition

%1 — @1+ 0 = 2am,

51 = (ll? — [v1[Dey |4y] — €2 luyo,| By = 0.
(A7)

However, if the two QP amplitude is calculated and
use is made of Eq. (A6) the result is

O] afaly [0) = syeilortan), (A8)

Therefore the condition in Eq. (A7) can be expressed
as

(0] afect; |0) = 0. (A9)

Thus the phases ¢, and y, cannot be determined by
the minimum principle.
A transformation on the single-particle orbitals,

(A10)

a, = a;e/?,

can be made in Eq. (A5) and in the Hamiltonian, so
that real two-particle amplitudes 4, can be used
throughout. The condition in Eq. (A6) is satisfied if
both ¥, and ¢, are zero. Therefore real coefficients can
be used in the canonical transformation without loss
of generality.
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This paper deals with the theory of deformation of Lie algebras. A connection is established with the
usual contraction theory, which leads to some “more singular” contractions. As a consequence it is
shown that the only groups which can be contracted in the Poincaré group are SO(4, 1) and SO(3, 2).

INTRODUCTION

HIS paper is divided into two parts. The first part

- deals with the deformation of Lie algebras as it
has been described in Gerstenhaber’s paper. We
follow this paper very closely, just establishing in a
more precise way the geometrical interpretation of
the cohomology groups B¥ 4, 4) and Z*%(4, A) which
naturally appear in the study of the deformations of
an algebra 4. We thus recover simply a sufficient
condition of “rigidity”” for an algebra 4, which is
H*A, A) = 0. We illustrate these results by an
application to the three-dimensional real Lie algebras,
for which we determine all the possible deformations.

In a second part, we show the connection between
the theory of deformation and the usual concept of
contractions, defined in a general way by Segal and
then by Inonii, Wigner, and Saletan. We are thus led
to a slightly different notation of contraction, It is
then possible to partially answer the question: “What
are all the algebras which can be contracted into
a given algebra A7, because these algebras have to
be searched for among the deformations of A4.

From the viewpoint of physical applications, we
show that the only Lie algebras which can give the
Poincaré algebra by contraction are the semisimple
Lie algebras of the de Sitter groups SO(4, 1) and
S0(3, 2).

1. DEFORMATION OF LIE ALGEBRAS
A. Some Remarks About the Deformation Theory

1. Definitions

We recall here briefly the main definitions and
results given in a paper by Gerstenhaber.! Let 4 be
a finite-dimensional Lie algebra over a field k, which
we restrict to be R or C, and let ¥ be the underlying
vector space of A. The product law in 4 is a mapping
VAV— Vdenoted by [ ]. Let Vg = V, ® k((¢)) be
the vector space obtained by extending the field &
to the field K = k((#)), where K is the quotient field of

1 M. Gerstenhaber, Ann. Math. 79, No. 1 (1964).

the power series ring k{[]]. A deformation® of A is a
Lie algebra A4, over the underlying vector space Vg,
which is given by a mapping fi:Vg A Vg — Vg
expressible in the following form:

fia, b) = [a, b] + tF\(a, b) + t*Fy(a, b) + - -+ . (L.1)

The F; are bilinear functions of ¥ A ¥V into V and are
defined over k.

We also impose on the series (1.1) in ¢ that it be
convergent in the neighborhood of the origin.
Conversely, a given set of functions F,(a, b) does not
necessarily correspond to a deformation of A4, because
the mapping f; thus defined does not necessarily obey
the Jacobi conditions.

By writing that

J{f(a, b), ¢) + f{f{b, c),a) + f{fdc,a),b) =0, (1.2)

one obtains the “integrability conditions’® connecting
the F;:

s> 2 FF(a b)o) + F(Fa,b),0 =0,
Fa,b,¢) prv=n
(1.3)

n=0,1,2
where we use the following notations: Fy(a, b) = [a, b],
i.e., the original Lie law on 4, and ¥(a, b, c) is the
circular permutation of a, b, ¢. For n =0, the
condition (1.3) is trivially satisfied: It is the Jacobi
condition for 4. For n = 1, one gets

> Fy(a, bl, ¢) + [Fy(a, b), c] = 0 = 6Fy(a, b, ¢).
F(a,b,c) (14)

This relation expresses that F, is a 2-cocycle for the
Lie algebra A4:
F,eZ¥%A4, 4)

(A being an A module for the adjoint representation).
Conversely, an element of Z%*(4, A) will give rise to a
deformation only if it is integrable, that is, if it can
be the first element F; of a sequence {F;} which
satisfies the set of conditions (1.3). For n = 2, the

2 Words being defined are given in italic.
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conditions (1.3) give

> Fy(Fy(a, b), ©) = —06Fy(a, b, c).
Fla,b,¢)

When F, € Z%(A, A), the first member of (1.5) is an
element of Z%(4, A). By the preceding condition, this
element has to belong also to B3(4, 4), which means
that its 3-cohomology class must be the null class.
So the integrability conditions involve H3(4, 4). In
fact, as is shown in Gerstenhaber’s paper, if H3(4, 4)
is zero, each F, € Z*(A, A) is integrable.

For the following, we adopt the viewpoint of
Gerstenhaber (Chap. II) by taking as a parameter
space for the deformation theory the algebraic
manifold C formed by the set of the structure con-
stants of the n-dimensjonal Lie algebra over K. In
fact, by using the canonical isomorphism (4, B) ~
A* ® B, we identify the structure constants to the
corresponding elements of (4 A 4A)* ® 4.

A point of C represents an algebra with a fixed
basis. Now the previous deformation, with the
condition of convergence, corresponds exactly to an
analytic curve on C, starting for ¢+ =0 from the
representative point of the Lie algebra 4. It is clear
that the infinitesimal deformation given by the element
Fi(a, b) corresponds to a tangent vector at this curve.
Let us call Z*"%(A4, 4) the manifold formed by the
integrable elements of Z%(4, 4). On the manifold C,
each element of Z"(4, A) is a tangent vector to C at
the point p representative of the algebra A. Let T,
be the linear tangent manifold attached to C at the
point p. When p is a simple point® of C (i.e., a non-
singular point), Z#"(4, 4) which corresponds to the
tangent cone at p and the tangent space T, are
identical. Then, as raised by Gerstenhaber (p. 86),
we are faced with the problem of comparing the
vector space Z%(A4, A) with the linear tangent mani-
fold T,.

(1.5)

2. Geometrical Discussion

(a) The tangent manifold T, . A point of C is defined
by #n*(n — 1) parameters &, -, &4,2(, ;) Which
are the structure constants C}. The manifold C is
defined by the Jacobi equation,

VLG (1.6)

where the f; are homogeneous polynomials of degree
two:

T E[in’(n—l)]) = 0, 1 S ls n,

(e = 3

T, 3,k);m

m
iJ ka'

(1.6

3 W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry
(Cambridge University Press, New York, 1964), Vol. II.
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Algebraically, the linear tangent manifold to C at the
point p is defined by the equation

(-1

Uy —
igl Ei af, (P) - Os

which leads to
> ChCha+CiChy =0,

m;§ 5,5,k

(.7

where C¥ are the coordinates of p. But (1.7) is
nothing other than Eq. (1.4) expressed in terms of
the coordinates. The elements C% solution of (1.7)
are then the components of the 2-cocycles Z2(4, A),
where A4 is the Lie algebra defined by the structure
constants CF .

But it must be noticed that this linear tangent
manifold is not necessarily identical to the geo-
metrical tangent manifold. It is larger in general. A
sufficient condition for this being true is that the ideal
generated by the polynomials be equal to its radical.
This is a conjecture of Gerstenhaber for the Jacobi
ideal,* and has not yet been proved. This equality of
the ideal with its radical has been shown in simpler but
similar cases such as that of idempotent matrices.4

(b) The orbits of GL(V). The group GL(V) of
regular linear mapping from ¥ onto ¥ acts on C. We
choose the following way: The algebra A:a A b—
[a, b] is transformed in 4':a A b — @(a, b) such that
(for example, one can take the inverse definition)

o(a, b) = glg'a, g7'b].

The transformed structure constants are

Cl, = (gL (g™)iCk o,

where the C% are the structure constants of 4.

A’ and A differ only by a change of basis and are
isomorphic.

Thus the orbits of GL(V) on C are the class of
isomorphic algebras. When g has the form

(1.8)

g € GL(V),

=1+1g5+%+-
& BT e g: € EndV,

(1.8) gives a deformation of 4 which stays in the
orbit of A and so can be said ‘“‘trivial”.! Let us
examine the infinitesimal part. To the first order one
obtains

@(a,b) = [a,b] + t(¢la, b] — [ga, b] — [a, @b] + - - )
= [a, b] — td¢p(a, b), 1.9

4 M. Raynaud, Compt. Rend. 258, 2457 (1964); 260, 4391 (1965).
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which means that each tangent vector to a curve in the
orbit corresponds to an element of B*(A, A). Con-
versely, a coboundary € B¥ A4, A) is always integrable,
and gives rise to a deformation of A starting in a
tangent direction at the orbit of 4. Therefore, the
dimension of the orbit of 4 is equal to the dimension
of B¥ A, A). This result can be found in another way
by noticing that the stabilizer of the point P is Aut 4
and that the orbit can be identified with GL(V)/Aut A.
Now the infinitesimal automorphisms (derivations
of A) are just the elements of Z(4, A) and are al-
ways integrable. Then dim Z(4, 4) = dim (Aut 4)
and dim (orbit) = dim GL(V) — dim (Aut 4) = n? —
dim ZY(A, 4) = dim B A, A).

Application. In general for a Lie algebra of dimen-
sion n, one has

dim B*(A, A) = n* — n + dim (center of A)
— dim HY(4, A),

which gives in the case of a semisimple Lie algebra,
dim B%A, A) = n® — n.

But this is also the dimension of Z%(4, 4), hence the
dimension of the irreducible component C; of C to
which belongs the representative point of the semi-
simple algebra.

It is now known that the manifold C can have
another irreducible component of higher dimension.®

(c) A Rigidity Theorem.»® Definition: an algebra is
rigid if it cannot be deformed into an inequivalent
algebra.

As already remarked by Gerstenhaber, a sufficient
condition of rigidity for 4 is that H%4, A) =0.
Geometrically this means that the tangent plane to
the orbit at the point 4, and the geometrical tangent
plane to the manifold at the same point coincide.

In particular, a semisimple algebra is rigid. (We
use this fact in the following.) But there can exist rigid
algebras of an other type; for example, in dimension
2, the only non-Abelian Lie algebra is rigid.

Remark: 1t is clear that a necessary condition of
rigidity for algebra A is
Z¥"(4, A) = B¥(A, A), (1.10)

so that the tangent cone Z™ (4, 4) is a linear space
in that case. Now, if one can prove the conjecture of

5 Recently, Michéle Vergne has found an example of an irreducible
set of dimension greater than 21%/27. [Thése de 3éme cycle, Paris,
LH.P. Mai 1966].

8 A. Nijenhuis and R. W. Richardson, Bull. Am. Math. Soc.

January (1966), p. 1.
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Gerstenhaber [see the paragraph following Eq. (1.7)],
then, at a simple point, Z2 = Z*"* and (1.10) would
give H¥4, A) = 0 as a necessary condition of rigidity
for A.

3. Classification of the Deformations

We do not know how to solve this problem under
its more general form, but only for the infinitesimal
deformations. First, in order to have a classification,
we have to define an equivalence relation between the
deformations.

We say that two deformations of the same algebra 4
(with a given basis) are equivalent, if the deformed
algebras are for each value of ¢ in the same orbit (i.e.,
they correspond to isomorphic algebras).

It must be observed that this definition does not
imply that the deformations are in a well-deter-
mined orbit.

In a more explicit way, it means that, for each value
of ¢, there exists an element of the group GL(V), ®,,
such that

ga, b) = O7f(D,a, d,b), (1.11)

where g, and f;, are two deformations of the same
algebra 4. Now, considering only the case where @,
admits a development of the following form,

@, = Dy + 1@, + 120y + - -,

we see from (1.11) that @, must be an element of the
stabilizer I'(4) of 4 (= an automorphism of A). (For
®, =1, it is the equivalence definition given by
Gerstenhaber.)

Through the relation (1.11), there are conditions
at each order, i.e., on all the components F; and G, of
/i and g;. At the first order, one gets, by noting

Fo(a, b) = Go(a, b) = [a, b]’
@y Gy(a, b) — Fy(Doa, Opb)
= [(Doa, (le] + [(Dla’ (Dob] - (Dl[aa b]
= (Qy > Gy — F, ° Dy)(a, b).
Let ®o4 be the 4 module given by

(1.12)

acA

me®A4 w> g m = [Oya, m]
[this is a structure of 4 module because @, € ['(4)].
The relation (1.12) can also be written

®, 0 G, — F; o ®y € BY4, ®4).  (1.12)

In particular, for ®, = 1, G, and F, differ only by a
coboundary € B%(4, 4).

Therefore, at the first order, the classification
problem can be solved conveniently by the two
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following steps. (1) The equivalence relation (1.11)
when using transformations @, =1 + 1@, + 1*@, + -- -
implies that the infinitesimal deformations F, and Gy
belong to the same cohomology class. Let us call
H¥%(A4, A) the manifold obtained by considering
Z%nt( 4 4) modulo the coboundaries. (2) Then we
have to determine in H*™(4, A) the equivalent classes
due to the action of the stabilizer I'(4) of 4, i.e., to
determine the orbits in H?%%(4, 4) of I'(4) in the
sense of Sec. 2B. To each of these orbits corresponds a
class of deformations equivalent to the first order.

Note: One should stress that this equivalence to the
first order is very poor since two nonequivalent
deformations (F,), (F;) may nevertheless implement
the same element F, = F, € Z* 4, A) and therefore
be equivalent to the first order.

B. An Example. The Three-Dimensional Real
Lie Algebras

Although the classification of the three-dimensional
Lie algebras is already known (for example, see
Jacobson” for the complex case, or the thesis of
Sharp?® for the real case), we present here a description
of the orbits which happens to be very convenient for
the study of the deformations.

1. The Orbits®

The following description is due to L. Michel.
The action of the group GL(¥) == GL(3, R) on the
manifold C was described in Sec. I2. The structure
constants are transformed by

Cl, = (g (g™h)iCkgl. (1.13)

Now, in the case of dimension 3, it is possible to
associate a matrix to the system of the structure
constants by writing

C:f = Plkeijfn 1<4Lj,kL3.

€5 is the usual completely antisymmetric tensor.
From (1.13) we obtain

P = 4 CH = 1M Y P(E ) I i ()
(1.14)

It is easy to transform (1.14) by using the definition of
det G, where G is the matrix (g)i:

det G = (g™ Mg Y gL ;

? N. Jacobson, Lie Algebras (Interscience Publishers Inc., New
York, 1962), p. 11.

& W. T. Sharp, thesis, Princeton University (1960).

® Let us notice that the orbits are not connected; they are made
of two connected pieces.
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then one gets

1k, -3l . mup, k VR 1
P = det G %e €Cnn8sP  Er
or

-

'™ = det G gl p ¥ gk. (1.14a)

Then, denoting by R the matrix p¥, one finally obtains

R’ = (det G)"'GRG". (1.15)

Now the Jacobi condition can be described in terms
of the matrix R. First we decompose R in a sum of a
symmetric and an antisymmetric part: R =S + 4,
ie., p = ¢ + €%, , where o¥ is the (ij) element of
S, and €7%&, is the (if) element of 4. Then the Jacobi
condition
10 =
ﬂ'(ij'zk);l Ci:iClk 0

can be written

an . im ——
PP i = Oa

and by using the previous decomposition,

o8, = Q.

(1.16)

Pab&b fa— O ,

or equivalently,

Now the rank of the matrix R is preserved by (1.15),
and this rank is equal to the dimension of the derived
algebra G'. We are thus led to a classification of the
orbits following the dimension of G'.”

(a) dim G’ = 3. Det R # 0, the condition (1.16)
can only be satisfied with & = 0, which means that
R is symmetric.

It is shown in Jacobson that condition (1.15) is
equivalent to

R’ = pGRG', (1.15"
in which p is an arbitrary real number.

Then, by using the decomposition G = SO with O
orthogonal and S symmetric, we see that it is always
possible to diagonalize R by means of 0, and by (1.15")
to fix an eigenvalue to 1. Now, one easily sees that
the action of S cannot change the sign of the other
eigenvalues. We thus obtain two orbits, called 4,
and A4, which can be respectively characterized by
the elements

1 1

and AR = -1 .
1 1
A, and A4y are the three-dimensional semisimple
algebras. A4, is the algebra of the three-dimensional
rotation group and A4, is its noncompact form. It is

obvious that the dimension of these orbits is 6
(= dim of the symmetric 3 X 3 matrices space).
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(b) dim G’ = 2. Any matrix of rank 2 can be
written by means of a suitable orthogonal transfor-
mation

(271 0 o3 — %y
.R = Oy + — g 0 24}
0 Ao — 0y 0

When o, and o, # 0, condition (1.16) implies «, =
a; = 0. Under the action of a symmetric matrix,
which can be taken diagonal

A
S= Ag ,
A3
the matrix R is transformed into
6 A3 aghd, O
R = | —agdidy, 0,45 0},
0 0 O

and we see that the quantity 6,0,/e? is an invariant 4,
which can be used to classify the orbits.

Finally, one obtains the following orbits, which we
describe by giving a representative element:

1 \
AR = 1 .
0
1
A¢g:R = -1 ,
0
110
As(A):R=|-1 42 0
a#—1
000
For the case 0, = 0, =0,
010
Ai:R=|-1 0 0
000

The dimensions of these orbits can be computed in a
straightforward way, by determining the stabilizer of
the elements R. The results are

dim A7’ Asa AS()') = 5a

(antisymmetric 3 X 3 matrices).
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(c) dim G’ = 1. There are only two kinds of orbits:

110
Az correspondingtoR=| -1 1 0
000

[A4; can be integrated in the family 4,(4).]

1
A, corresponding to R = 0
0

the dimensions of which are, respectively, 5 and 3.

(d) dim G’ = 0. There is the orbit of the Abelian
algebra A,, which is reduced to a point on C (dimen-
sion zero).

2. Deformations

From I, we know that the dimensions of B%* 4, 4)
and of Z*(A4, A) are, respectively, the dimensions of the
orbit of 4 and of the tangent linear manifold to C in
A. A straightforward computation gives the results
shown in Table L.

It can be seen directly from the equations of the
manifold € that the singular points belong to A4,,
Ay, 4g, and A,. For the simple points the dimension
of Cis 6. For the other points, we have to determine
the manifold Z*"%(4, 4) and see that its maximum
dimension is also 6. We now discuss the deformations
corresponding to each case.

(a) Deformation of the Simple Points. We know that
Ag and A, are rigid, which means that all their
deformations are trivial. Then we have only to
consider 4, and the complete family Ay (1) (with
A = —1 included).

Now, all the nontrivial deformations of an algebra
belonging to an A4(A) or to A4, are of the following
form: they must cross over all the orbits A45(4). For
example, let us consider the following first-order

TABLE 1.
A dim B%A4, A) dim Z%(A4, A)

Ay 0 9
As 3 8
A; 5 6
Ay 3 6
A (D) 5 6
AFE—1

A 5 7
A, 5 7
Ay 6 6
Ay 6 6
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deformation of A4(2).

[ely e2] = 0’
At [eS’ e2] = —€ — €,
[es, e] = —ey + e + tes.

For each value of ¢, this algebra belongs to a different
orbit A(A + ¢). (In fact, it is impossible to deform a
nonsymmetric matrix into a symmetric one, so there
are certainly no deformations of the preceding algebras
into Ag or A,.)

Let us notice also that the dimension of H2"(A4, A)
[here = H?(A, A)] measures the codimension of the
orbit of the algebra which is deformed in the manifold
formed by the deformed algebras. [The set of A5(2) is
a manifold of dimension 6.] However, we do not
know if this result can be established generally.

(b) Deformation of the Singular Algebras. We now
describe in more detail the case of 44 and A4,, and
especially of A4,. First we associate to the element
Fy(a, b), which characterizes the infinitesimal defor-
mation (see Sec. A), a matrix R, as in Sec. Bl.

We use the following notations:

Yy q u
Ri=|s z r].
v w X

We note the deformation in term of matrices:
Ri=Ry+tR + -,

where R, is the matrix associated to the nondeformed

algebra.

Deformations of Ag (A; can be treated in the same
way). We choose in 4, the algebra corresponding to

1
R= —1
0

F, must be a cocycle: F; € Z%(A,, Ag). This imposes
the conditions

r=w,

® e

The coboundaries are defined by
y=0

and the integrability condition (1.5) is simply
x(q — s5) = O(c). The manifold defined by (c) is the
union of two components:

ciq =5,

Cco:x =0,

MONIQUE LEVY-NAHAS

which already yields the (maximum) dimension of
Z% a5 6. Let us examine first the deformations
which are linear in ¢: R, = R, + tR,. Then the
preceding integrability condition involves two other
equations:

() ug—9)=0,

() wg—s)=0.

F, € Cy: (') and (c") are satisfied. The matrix R, is
symmetric with a nonvanishing determinant for x 5 0.
Then there exists a deformation only into 4. For
A; two possibilities exist: into Ag for x < 0, and
into A4, for x > 0.

F, € Gy In general in that case we have g  s.
Therefore from (¢’) and (c”) we must have v = w = 0.

1+ yt tq O
R, = ts -1 412z 0);
0 0 0

it is a deformation which crosses over the family A4;(4).

For F, € C; N C,, the linear transformations are
trivial. One stays in the orbit of 4¢. For deformations
at higher orders, the conditions (¢") and (c") are no
longer valid.

F, € G, We always have a deformation into Ay
or A,.

F, € C,: The deformation starts in a transverse
direction to all the A;|A| and then can (1) go by
means of the higher-order terms completely inside one
orbit A4(4), or (2) stay always transverse to the family.

FieC; N Cy: All the cases are possible. The
deformation starts tangent to the orbit, and then
takes one of the previous ways.

Deformations of A,: Let us consider the algebra

ler, e] = 5,
Ayl e, €3] =0,
[es, e,] = 0.
With the same notations, one easily finds that the

spaces of the cocycles and of the coboundaries are
determined by
Z¥A,, Ay):s = q,
BYAy, Ay):s =q=0, y=2z=0; u=v;, w=r.
The condition of integrability to the first order (1.4) is
su—v)+yw—1r)=0,
zZu—v)+s(w—r)=0;

—vr + wu = a,

G

(d’)
where a is an arbitrary number (depending on F,); if
F, =0, then ¢ = 0.
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The linear deformations. The manifold Z#*(4,, 4,)
is defined by the equations (d) and (d"). We distinguish
the following submanifolds. [The distinction is based
on the equation (d), in order to be able to consider the
more general deformations.]

Vi:A=4s*—yz#0, therefore u=v, w=r.
VytA =52 —yz=0 andin general u#v

and ws#r.
One can verify that the manifolds are invariant under
the action of the stabilizer G, of 4,.

F, € V;: The matrix R, is symmetric, with a non-
vanishing determinant in a neighborhood of r =0
(because the lowest-order term is A). Thus there is a
deformation into Ag for A > 0 and 4, for A < 0.

Example: deformation into 4,:

fe1, e] = &5,
[eZ’ ea] = tel:
[es, ;] = te,.
F, € V,: We have to consider the equation (d") with
a = 0. Then one can see that the matrix R, has a null
determinant. Moreover, it is necessarily a non-
symmetric matrix, because u % v and r # w; so it

gives a deformation into the family AgA), which
crosses over all the family. Example:

[eI’ ez] = €3 + tels
A, {les, &3] = —tey + Kte,,

[el > €] = 0.
For each value of ¢, 4, belongs to A;(Kt).

FeVonV, A=0, u=v; w=r). R, is sym-
metric; its determinant is zero, so there is a defor-
mation into Ag or 4;. Example:

[el s e2] = €3,

les, es] = tey,

ey, es] = 0.
One also has dim Z%(4,, 4,) = dim V, = dim V; =
6, dim V, = 5.

The general deformations. F, € V,: Due to the rigidity
of semisimple Lie algebras, there are always the two
kinds of deformations into 4, or 4,, and nothing more.

F, e V,: Exactly as for A4, the deformation can
stay always transverse to the family A4 (4), or can
go more precisely in an orbit 44(4) well determined
(and then stay in it). Example:

[e1, €] = €5 + tey,
[eza es] = “tea + Kt2el9

[el » ea] = 0.
A, belongs to the orbit A4(K).
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FoeVy NV, All the cases are possible. For
example, to study the second-order deformations,
one has to classify the deformations following the
values of F, which is also a cocycle in that case
[F, € ¥, = deformation into A4g or A, etc.]. '

Finally we sec that the study of the first-order
(linear) deformations produces a rough classification
of the equivalent deformations in well-determined
families of orbits. Then the next-order deformations
can go only in a more precise direction inside one of
these families.

Remark: 1t is very easy to obtain the corresponding
results in the complex case. Then 4, and A, are in the
same orbit, like 4y and A4, or 44(1) and A;(—2). The
dimension over C of the cohomology groups are
respectively the same, and the deformations can be
immediately deduced from the previous ones.

II. CONTRACTION

The concept of contraction for Lie groups and
algebras was introduced by Segal and by Inonii and
Wigner in 1953.2° It was later examined in a paper of
Saletan! in which in particular a general condition for
contraction is stated precisely. Our aim in this part,
is to establish a connection between the process of
contraction and deformation as it can be expected
from a geometrical point of view. In doing this, we
are led to add some slight refinements to Saletan’s
paper; it is therefore necessary to recall briefly the
part of this paper that we need in the following,

A. The Saletan’s Contraction

g is a Lie algebra over the underlaying vector space
V, with the law: a A b — [a, b]. Let ®, be a linear
mapping of Vg = Vi into itself (see Sec. IA),
nonsingular for 7 # 0 and singular for ¢ = 0, of the
following form:

O, =u+t, 2.1)
where u and v are linear mappings from ¥V into V
defined over k and u is a singular mapping.

The contracted algebra g, is then defined by the
limit law:

lim ®;[®,a, ®,b] = [a, b]™.
[2ad ]
Let us assume also that v is a regular mapping; then
there is no loss of generality by taking for example
v=112

Now V is a finite-dimensional vector space, and the

(2.2)

10 E. Inonii and E. P. Wigner, Proc. Natl. Acad. Sci. U.S. 39, 510
(1953).

11 E, J. Saletan, J. Math. Phys. 2, 1 (1961).

12 This is not the convention of Saletan who chooses v =1 — u,
in order to have @, = 1.
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method of Saletan consists in using the fitting de-
composition of'* V' under the form Vi ® V,, where
Vg and Vy are wu-invariant subspaces defined in a
canonical way with respect to u, such that u is
surjective on V' and nilpotent on V.

Then, if it exists, the law of the limit algebra g, is
given by!3

[a, b]V = u=ua, ubly + [ua, bly
+ [a, ubly — ula, bly. (2.3)

The indices N and R denote the components with
respect to the decomposition V=V5p® Vy. A
necessary and sufficient condition for the existence of
g is

u([ua, bly + la, ubly — ula, bly) = [ua, ubly. (2.4)

Let us notice that it is equivalent to write this condition
(2.4) under the form

ula, b1V = [ua, ub). (2.4a)

And the condition (2.4a) simply expresses that u is an
homomorphism of the algebra g, into the algebra g.
But conversely, the mere existence of such homo-
morphism between two algebras g, and g is not a
sufficient condition for g to be contracted in g;
because in (2.4a) the law of g, depends on u.

B. First Connection with the Deformation Problem

Let us define f(a, b) = ®;1[D,q, ,b] with O, =
u + t. Then we have on ¥V, by considering only
the values of f; belonging to Vy,

fiM(a, b) = [a, bIY + t[a, bly;
and on Vg,

f{B(a, b) = [a, b]R + t[a, blg + v 2t(1 + tu~Y)?
x [udu(a, b) — [ua, ub]ly,

where (1 + )7 is a formal series in ¢,

It is clear that, in a neighborhood of the origin, the
preceding development is convergent. Therefore
fia, b) is a deformation of the contracted algebra g,
lying in the orbit of g. (For ¢ # 0, one obtains an
algebra isomorphic to g.) Geometrically, by con-
sidering the structure constants manifold C (defined
in A), it means that the algebra g;, and in fact all its
orbit belongs to the edge of the orbit of g (see Fig. 1).

Remark: Instead of (1), we can consider the more
general mapping of Vy into itself, defined in a

neighborhood of the origin:
O,=ut+ttv+2w+t3x+4---. 2.5)

13 Which can also be written [a, bJ'Y) = u~*{ua, ub]g + Su(a, b)x .
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Fig. 1. Deformation of g,
into the orbit of g.

Let us assume that p,=v + tw+123x 4 --- is a
regular mapping for each ¢, and u is always a singular
mapping. Then it is easy to see that this development
does not give any new results.} It leads to a contracted
algebra g, and to a deformation exactly as before.

Now, conversely, it would seem natural to require
that any Lie algebra that can be deformed in a well-
determined orbit can also be obtained by contraction
of an element of this orbit. But with the previous
definition of contraction, we obviously have a
counterexample.

C. The Example of the Three-Dimensional
Rotation Algebra

We have seen in Sec. IB that the three-dimensional
Lie algebra A,, defined by

les, €] = €3,
[82, e3] = 09
[e3’ el] = 0)

can be deformed in the orbit of A, the rotation
algebra. But it is easy to see that there is no homo-
morphism of A4, into A4,, except the trivial one. The
condition (2.4a) can only be satisfied with ¥ = 0, but,
by (2.3), it then leads to an Abelian Lie algebra, so
that A4, cannot be contracted into A,. Besides,
Saletan has proved that the only nontrivial con-
traction of 4, defined by (2.3) and (2.4) leads to the
Euclidean algebra 4,.

D. ‘““More Singular’’ Contractions

Thus it is necessary to look at the case u = 0, that
is, to take for the mapping @, a more singular mapping
at the limit 7 = 0 of the form

D,=tv+2w+ x4+,
which can also be written

®, = tv + 1V). (2.6)

We suppose'® that v + #yp, is a nonsingular mapping

4 Indeed by writing @, = (up;* + 1)y,, we see that is sufficient
to consider w = ur~! instead of 4, and then the contracted algebra by
®, is isomorphic to the contracted algebra by w <+ ¢, the isomorph-
ism being w.

15 We suppose also y, always nonsingular (even for ¢ = 0).
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when ¢ is different from zero, but v alone is a singular
mapping. Now, exactly as in Sec. IA, we do not
restrict the generality by taking ¢, = 1. Let us then
study the limit (2.2) by using the same decomposition
of the vector space V in Vz @ Vy with respect to the
mapping v. We obtain for

fda, b) = O'[0a, ,b],
with the same notations,
fa, b) = fa, b)g + fla, b)y, a,beV,
fa, b)g =t (™ + 1) [*a, blg 2.7
+ t([ua, blg + [a, ub]g) + [ua, ub]g),
and, by using the nilpotence of v, we have on ¥V
11 A = ) i
t l==(14+-) ==3 ——-
(t+70) t ( t) trgo "
q is the smallest number such that v? = 0, so

1 v 0
, b =t~ - - —_— “ee

fla by =i(; =g+ 5+

X [vz[as b]N - U([Ua, b]N + [a5 vb]N)

+ [va, vb]y] + t(t[a, b]y + [ua, bly

+ [a, ubly — ula, bly). (27a)
Therefore, if f(a, b) has a limit for ¢ = 0, it gives a
Lie algebra g® corresponding to
la, 5]® = v?la, b]y — v([va, by + [a, vb]N)

+ [va, vbly. (2.8)
Only the ¥V component gives a contribution at the
limit; the Vg part gives zero.
Equation (2.8) can also be written

la, b]® = [va, vbly — v(8v(a, D))y (29)

and a necessary and sufficient condition for the
existence of this limit is, from (2.7a),

vja, b]® = 0. (2.10)
Let us remark that, introducing
[a, 5]V = v[va, vblg + dv(a, b)y,
expression (2.9) takes the following form:
[a, B]*® = [va, vb] — v[a, b]V. .11

By comparing this with (2.4a), we see that if the
initial algebra g can be contracted by v (i.e., by taking
®, =0v + 1), then the algebra g obtained by
contracting with t®, is the Abelian algebra. Con-
versely, the existence of a non-Abelian Lie algebra g®
“measures’ the lack of verification of (2.4a).

Now, if it is impossible to obtain a contracted
algebra by (2.6), the previous process obviously can be
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extended by taking for ®, more and more singular
mappings at ¢ = 0. For example, with ®, = ¢¥(w + ?),
one obtains an algebra g®:

[a’ b](3) = —w[a,.b]‘z’, (212)
[we define [a, b]® in function of w by means of the
expression (2.9)], and the necessary and sufficient
condition of existence for g is still

wla, b1 = 0. (2.13)
It follows from expression (2.7a) that it is possible to
go on in this way: the contraction by ®, = t"(u + 1)
gives an algebra g"t* (n > 1) defined by
[a, 61" = —u[a, B]'™
= (_)n—-lun-l[a, b](z)’ (214)
where [q, b]'® is defined by (2.9) with respect to w.
The necessary and sufficient condition of contraction
is
ufa, b]"tV = 0. (2.15)
If this condition is satisfied at order n, the next
algebras (of higher order) are Abelian. Otherwise, we
can continue until the algebra g?% corresponding to
= tYu + 1), is reached
[a, b)) = (=)-usa, b]»
= (_)q—luq—l[ua, ub].\f’
and there is no condition because u[a, b]'? is always
zero.

Remark: [a, b]'eD) = 0, so that it is always possible
to contract into the Abelian algebra.

It is convenient to put these results into a diagram:

(a, b) LN (ua, ub)

I

[a, 6] ——> [ua, ub] 4, 5] ——> [a,b]@ - - -,

where A(a, b) = [a, b]'® = [ua, ub] — ula, b]'. The
condition (2.4a) of existence of g! is just the com-
mutativity of the diagram. If A # 0 and u- A =0,
one can contract g into g®, etc. In general, ifu’- A = 0
and w*le A # 0, algebra g can be contracted into
g%tV by using the mapping @, = ti(u + 1).

E. Example

Let us return to the rotation case of Sec. IIC. The
rotation algebra A, can be contracted into A, by
using an application

D, =t(v + (1 —v)).

Here we normalize differently!! in order to have
®, = 1. We only have to take for v, in the basis e,
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Ag or bit

Fi1G. 2. Orbits of algebras
A;, Ay, and A,.

Ay orbit

Az

e,, e, used in Sec. IIC, the following application:
1

which gives

Then one can immediately verify that

[e1, €]'® = eg,
[ez, e5]® =0,
[es, e]® =0,

and that v[e;, ¢,V = 0.

Here one recognizes a contraction already pointed
out by Inoni.®

From the geometric viewpoint, it corresponds to the
following situation: The orbit of A, belongs to the edge
of the “stratum’ of the rotations algebra A,, but also
to the edge of the A4;’s stratum. (Let us recall that
the dimensions of the orbits are, respectively, 6 for 4,,
5 for A, and 3 for A,.) It means that the situation of
A, is more singular on C, for example, as it can be
suggested by Fig. 2, where the orbit of A4, is repre-
sented by a point. As is already known,¢ it is possible
to reach A, from Ay by means of two successive I-W
contractions (and that is very clear geometrically).
However, we do not know if this corresponds to a
general situation; the solution of this problem seems
to be related to a best knowledge of the structure
constants manifold for an arbitrary dimension.

To sum up, through the more singular way of
contracting, it is possible to obtain some Lie algebras,
the orbits of which have themselves some more
singular positions on the structure constants manifold.
At the limit, it is always possible to reach the Abelian
Lie algebra which belongs to the edge of all the orbits.

F. Deformation and Contraction

By (2.7) and (2.7a), we see that a deformation of
the contracted algebra in a well-determined orbit

18 E. Inonil, in Group Theoretical Concepts and Methods in Ele-
mentary Particle Physics, F. Girsey, Ed. (Gordon and Breach
Science Publishers, Inc., New York, 1965), p. 391.
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corresponds exactly to a more singular contraction,
as in Sec. IIB.. Now we are interested in the converse
of this property.

Let us suppose that an algebra g, can be deformed
in a well-determined orbit (an element of which being
g, with the law: [a, b]). For each value of # (¢ # 0), the
deformation fy(a, b) is isomorphic to [a, b]. Then there
must exist an element of the group GL(V) v, such
that, for each ¢ # 0,

fda, b) = y;'[y.a, y,b]. (2.16)

We know by assumption that the previous expression
has a limit for ¢ =0, which corresponds to the
algebra g, . Now, to prove the reciprocity completely,
the problem is to show that between the y, (not
uniquely) defined by (2.16), there is at least one which
has an analytic expression in the neighborhood of
t = 0 of the form (2.5), (or even with a first term in
t",) the first element of this development being in
general a nonregular application. Though this
result seems extremely likely, we have not been able
to prove it. Then it is not sure that the more general
way of contracting is obtained by the previous
Secs. ITA and IID contractions.

However, we have the partial result: all the algebras
which can be contracted in a given one g; in the sense
of Secs. IIA or IID have to be searched for among
the deformations of g,. The advantage is that the
research of the deformations can be made in a more
systematic way.

III. APPLICATION TO THE POINCARE’S
GROUP

The knowledge of all the group or Lie algebras which
can be contracted into the inhomogeneous Lorentz
group ¥ may present some interest in physics [for
example, from the viewpoint of general relativity,'’
or from the viewpoint of dynamical groups of Barut
and Bohm.!®] We already know that, between the
semisimple Lie algebras, only the de Sitter’s algebras
can give & by contraction, as it was proved by Sharp.?
Now, by studying the deformations of the Poincaré
Lie algebra, we can prove that they are the only
possible algebras which can be contracted in 7.

The Deformations of the Poincaré Lie Algebra

Let us consider the first-order deformations.
Applying the results of Sec. I3, we have to compute
H*P, P)and H3(P, P). This is done in the Appendix.
The result says that H*P, P) is a one-dimensional
space and that H%P, P) is zero. It proves there are no

17 F. Girsey, in Ref. 16, p. 365.
18 A. O. Barut and A. Bohm, Phys. Rev. 139, B1107 (1965).
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SO(‘,“ F1G. 3. Deformations of

$0(3,2) .
Poincare’s algebra.

orbit
Ry
N/
o

Q

obstructions to the deformation (which means that
every cocycle is integrable), and moreover there is
only one “direction” of deformation (modulo the
displacements in the § orbit). This unique type of
first-order deformations is easily obtained by taking,
for example [see Ref. 17, p. 373},

—(l/h)[']k). ’ Juv] = 6kv"}.u - 6kuJ).v + 6lquv - 6).ka;1 s
_(l/h)[nla Jyv] = 6}.qu - alvnu’
"'(l/h)[nna H).] = t"nv .

This corresponds to two classes of algebras following
the sign of ¢ (we have t = —1/R?, where R is the
radius of curvature of the universe!?):

t > 0: it is the algebra of S0(3, 2),
t < 0: it is the algebra of S0(4, 1).

It comes from the rigidity of the semisimple Lie
algebras that the higher-order deformations give
nothing more.

Now this situation can be geometrically understood
on the structure constants manifold corresponding
to the 10-dimensional Lie algebras. Let us recall that
the dimension of a semisimple Lie algebra’s orbit is
n? — n, which gives 90 for the de Sitter’s orbits. The
dimension of the Poincaré orbit is given by

dim B*P, P) = n> — n — dim HYP, P),

which is 89 because HY(P, P) is a one-dimensional
space.’® So the situation can be illustrated by Fig. 3.
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APPENDIX. COMPUTATION OF H?*P, P)
AND H¥P, P)

We use the following formula of Serre and Hochs-
child®

H"(g, M) = 3 H'(g/K, F) ® H(K, MYy,

i+i=n

(A1)

where M is a finite dimensional g module, K is an ideal
of g such that g/K is semisimple, and F is the field.

The meaning of the symbol g on the right is defined
later.

A. H¥P, P)

By taking for K the translation ideal, P, we get

directly from (Al):
HXP, P) = HXT, P)*
and the problem is reduced to the computation of
H¥T, P).
1. Coboundaries BT, P)

Let g be an element of B¥(T, P); i.e., g is a bilinear
function T A T— P such that there exists a one-
cochain @:T — P verifying
glxs, x;) = 0D(x;, x;) = [x;, D(x;)]

— [x;, )] x; € T. (A2)
® can be taken with its values in L ~ P|T
O(x) =2 di'M (A3)
pv

By

where M, is the usual basis of L.
Now use the decomposition, g = g; + g, where

gr(xi, x;) = g(x;, X))/
and
gr(xi, x;) = glx, x;)[r -
We see from (A2) that the component g, is zero.
So a coboundary is a function gp: TA T — T,

gr(x;, X;) = opx;
satisfying (A2), which means, explicitly,
oy = 2dg; — di*g;y). (A4)
But, given any «f, = —af,, it is always possible to
find a function @, such that (A2) [or (A4)] is verified.
In fact this function is uniquely determined by

d;;j = i(“fjg ”giigkk + alijg 7 aijkgii)
and we have the result B¥T, P) = C¥T, T), where

C¥T, T) is the space of all the bilinear functions:
TAT—T.

2. Cocycles ZXT, P)
feZ¥T, P)if

Of(x1 Xa, X3) =5]'(122 3)[x1 f(x2,x3)] = 0. (A5)

20 G. Hochschild and J. P. Serre, Ann. Math. 57, 603 (1953).
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Using f = fp + f1, as before, we see that (AS) is only
a condition on f7,.
3. HY(T, P)¥
There is a canonical structure of P module on
C¥(T, P) which defined by

feCT,P)w>g  fe CYT,P); geP,
(g - f)(x15 x2) = g * flx1, x3) — flg " x1, x5)
— J(x1, & " %)
HX(T, P)Y is the set of elements of H*7, P) invariant
by g, that is such that g - f'is in the same cohomology

class as f. This is always verified if g € T, because in
this case

(g )15 x2) = [g, f(x1, x)] € T,
g+f€ CXT, T) = BXT, P).

A representative element in the class of f is given by
an fp:T A T— L. Now taking g in L, one sees that
g-fr is also a function TAT—L. Then the
condition of invariance implies g-f; =0, and is
equivalent to the following proposition:

fLeB(T AT, L)L, (A6)

where B is the space of functions TA T'— L, and T,
L being considered as L module (for the adjoint
representation). As L modules,

T ~ D¥3,

L~ DY® 4 Do,
So that we get from (A6), using canonical identi-
fications,

fre@tta Dbt Dog DL (AT)

The only L invariant part is the trivial one: now D?°
appears twice in the decomposition, which means that
B(T A T, L)X is a two-dimensional space. It is easy to

find two independent elements. We know the only
invariant combinations of X s> Yoo M, are

(©) M, X"Y°gg;,
B) M,X°Ye,,
but only one of these elements («) is a cocycle, so we
have the final result that H¥T, P)Y = H%P,P) is a
one-dimensional space.
B. H¥P, P)
From HYL, K)= H*L, K) =0 and also

HYT, P)? = 0,

MONIQUE LEVY-NAHAS

Eq. (Al) yields
H3P, P) = HXT, P)*.

1. Coboundaries BT, P)

g = g1 + gr [see (Al)] belongs to BX(T, P) if there
exists a function ®:7 A T — P such that

8(xy, X3, X3) = (0D)(xy, X2, X3)
= z [X1 ’ (D(xz ’ xs)],

(A8)
§(1,2,3)

the component gy, is zero.
Let us define
(I)(xi’ xj) = C#ivMuv’
gr(Xss X5 Xi) = & 0%, -
The condition (A8) is equivalent to
ot = 2[Cligw + Chi8is + Ciigsil. (A9)
Now it is always possible to find a set of coefficients

C* verifying (A9) (which is not uniquely determined
in this case). For example,
Cii = ldoing”’ + 3oliug"'e" 81
+ dolg"8ug” + alughl

so that B%(T, P) is the set of all the 3-cochains CX(T, T).

Cocycles ZXT, P): The condition f& Z3T, P) only
concerns the part f; which characterizes the coho-
mology class.

2. HXT, P)?

Exactly in the same way as for H¥(T, P)?, there is
only one condition of invariance: (g « f)(x;, X5, X3) = 0
with

gel
f=fr:TAT—L,
which means that
4 L
fuet(® T, L),
=1
or equivalently

fre(d¥ @ D g ptig plog ponyt

Antisym

fue(dtt @ Do D) =0,

because the trivial component D0 is not contained in
the previous product.
This proves that H¥(P, P) = HXT, P)Y = 0.
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A general method is presented for obtaining successiveterms in short wavelength asymptotic expansions
of the diffracted field produced by plane acoustic and electromagnetic waves incident on an arbitrary
smooth convex surface. By introducing the geodesic coordinate system on arbitrary surfaces of non-
constant curvature, both scalar and vector integral equations governing the surface fields are solved
directly. The expressions for leading and second-order terms in the asymptotic expansion of the diffracted
fields are obtained explicitly and the differences between acoustic and electromagnetic creeping waves are

shown.

1. INTRODUCTION

SHADOW is formed when a wave is incident
upon a smooth convex body which is large com-
pared to the incident wavelength. In the neighborhood
of the shadow boundary the surface field does not
abruptly vanish and a penumbra region exists. Some
waves penetrate into the shadow region and account
for the nonzero fields there. These phenomena are
due to diffraction of the incident wave by the object.
The mathematical problem of analyzing diffraction
of waves involves finding the short-wavelength
asymptotic form of a solution of the wave equation
satisfying an appropriate boundary condition of the
diffracting surface and the radiation condition at
infinity. Detailed studies of the surface field on a
circular cylinder and a sphere,! for which the exact
solutions are available, indicate that the incident wave
is diffracted near the shadow boundary and the
diffracted waves proceed along the geodesic into the
shadow region, spilling off energy as they travel. Their
phases are determined primarily by the distance
traveled from the shadow boundary. The waves
diffracted by a smooth convex surface are frequently
called creeping waves.

In obtaining a description of the waves diffracted
by an arbitrary smooth convex surface of variable
curvature, two techniques can be used:

(1) finding the asymptotic form of an exact solution
for a canonical body and generalizing the results;

(2) solving the boundary value problem directly
by an asymptotic method for a general surface but in
restricted regions.

The difficulty with the first method is that very few
canonical problems can be solved exactly. Thus, in
the well-known geometrical theory of diffraction,? a

1 W, Franz, Z. Naturforsch. 9A, 705 (1954).
2 B. R. Levy and J. B. Keller, Commun. Pure Appl. Math. 12,
159 (1959).

locally cylindrical body is chosen as the canonical
body in analyzing diffraction of waves by arbitrary
smooth surfaces. While this theory gives the correct
leading term in the asymptotic expansion of the
diffracted fields, it does not yield higher-order terms.

The purpose of this paper is to discuss an integral
equation approach based on the second technique. It
can yield not only the leading term but also higher-
order terms in the asymptotic expansion of the fields
diffracted by an arbitrary shape with a smooth convex
surface. The method to be used is the following. The
geodesic coordinate system is introduced to describe
the geometry of the diffracting surface (Sec. 2). In
terms of this coordinate system, the short-wavelength
asymptotic form of the integral equation governing
the surface fields is derived (Sec. 3.1) for the acoustic
case, and its solutions are derived for the penumbra
(Sec. 3.2) and shadow (Sec. 3.3) regions. The same
procedure is repeated for the electromagnetic case
(Sec. 4).

2. GEODESIC COORDINATE SYSTEM

From the analysis of the sphere solution,! it is
observed that the creeping waves propagate along
the geodesic. Thus, we propose to use the geodesic
coordinate system to describe the diffracting surface.
An important advantage of this coordinate system is
that it can be defined on any smooth surface. For the
sake of simplicity, it is assumed that the diffracting
surface is symmetric with respect to the shadow
boundary and that the torsion of the geodesic is zero.
(See Fig. 1.)

Let us define the geodesic coordinate system as
follows. The curve u = 0 is taken to represent the
shadow boundary with v denoting arc length along it.
At each point of u = 0 the incident wave is tangent
in a given direction, and this defines a geodesic through
each point of u = 0; these geodesics are taken as the
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Geodesic w

F1G. 1. Geodesic co-
ordinate system.

shadow
boundary

u = constant

coordinate curves v = const, with u taken as arc
length along the geodesic measured positively from the
shadow boundary. The geodesic coordinate system is
orthogonal and the linear element is given as

ds® =du® + Gdv®, with Gu=0=1 (2.1)
Because of the assumption that the geodesics are
planar, G is independent of v.

The diffracting surface may be described by the
Gauss—Weingarten equations?:

0t/ou = —«,n,
0t{Ov = Ob[Ou = b,

, @2
ob/ov = —Gli,t + x,n] with «, = (k3 + «3,)%,
onjou = x,t, On[ov = Kb,
where
Or/du = t, Or/[dv = b with r the position vector.

(2.3)

Here n, t, and b/Gé are unit normal, tangent, and
binormal vectors along the geodesic, respectively. «,
is the curvature of the geodesic. «,, and «,, are,
respectively, the tangential and the normal components
of the curvature of the ¥ = const curves. Thus, the
two principal curvatures are «, and «,, and their
product is

Kok = —(1/GH)(P*GH/ou?), (2.4)
while «,, is related to the function G by
;= (0G/0u)]2G. 2.5)

In addition to Eq. (2.2), the Codazzi equation must
be satisfied:
Ok yn/Ou = KK,

Ox,/0v = 0.

- Ktn)’

(2.6)

3 D. J. Struik, Differential Geometry (Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1950).
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A more detailed analysis of the geodesic coordinate
system can be found in most books on differential
geometry.?

3. DIFFRACTION OF A PLANE ACOUSTIC
(SCALAR) WAVE
The first problem to be considered is the diffraction
of a plane acoustic (scalar) wave by an acoustically
hard surface; i.e., a Neumann boundary condition is
imposed.

3.1. Integral Equation Governing the Surface Field

We suppose that a plane acoustic wave is incident
upon a smooth convex surface and that the normal
derivative of the total field on the surface vanishes.
Then the integral equation governing the surface field
can be derived easily by Green’s theorem?:

U(l') = 2Uinc(r)
- f f aU@) R ) Rje
3.0

where R=1r' —r, and U, is the incident field.
Without loss of generality, we consider the surface
field on a geodesic which is called the curve v = 0. In
terms of the geodesic coordinate system, the incident
wave on the geodesic v = 0 is

lkR

in (u’ V= 0) = eikt(u=0,1;=0)-r(u.v=0)
¢ .

(3.2)

In the two equations above, the time dependence
factor e~ is omitted. As observed in the study of a
circular cylinder and a sphere, the phase of the dif-
fracted (creeping) wave is determined mainly by the
distance traveled from the shadow boundary; thus
we set

U(r) = e**I(r), (3.3)

and for a large k (= 2n/A, the wavenumber), I(r) is
assumed to be varying slowly in comparison with
e™**, Substitution of this expression into Eq. (3.1)
gives

I(u, 0) = 2 exp {ikt(0, 0) - r(u, 0) —
— -21: ffG*(u’) du’ dv'I(u’, v")

ik(u — u’)}.
(3.9

Since we are interested in the short-w.velength
behavior of the solution, we replace the second term
in Eq. (3.4) by its asymptotic form. For large %, the

iku}
1 — ikR
3

X {n(u’, v') + R} exp {ikR —

4 H. H6nl, A. W. Maue, and K. Westpfahl, in Handbuch der
Physik (Springer-Verlag, Berlin, 1961), Vol. XXV/1 pp. 218-544.
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integrand has a saddle point where the derivative of
the function R — (¢ — u’) vanishes. The Taylor series
expansion of the vector R near r = r’ is derived easily
by means of Eq. (2.2) and is given by
R=r,v)—ru 0~ u — utu) + v'bu)

— 3 — wlk,(n(u) — 20w’ — u)v'we, (w)b(u)

+ v*Gu){r, (Wtu) + x,,(n()}]

~ 3l — w){k (m() + wkg)tw)}

+ 3(" — u)'v'sey () ()b(u)

+ 3(u’ — w Gy w){ (u)t(u) + rcp,(uIn()}

+ v"°G(u)ki(u)b(u)] + - (3.5)

Gin/4)

— ikul - &
iku} p )%

I(4, 0) = 2 exp {ikt(0, 0) - r(u, 0)

ki3

w
J\ du IeikRo—ik(‘u“u')
00

{n(u’, 0) - RJ}@*R[Ov*)(v' = 0)
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Above, and in following pages, the curvatures («,,
etc), t, b, and n without the argument for the v
coordinate represents their values at v = 0. The dots
denote the derivative with respect to the argument
of the function. Using the above expression, the solu-
tion of the equation

(@/o)(R - Rt ~ (u — )]
= ('[RG)[u — u)k(u) + -] =0 (3.6)

yields the saddle point at o’ = 0 for the v’ integration.
Applying the method of steepest descents® to the v’
integration in Eq. (3.4), we obtain an asymptotic
expression of the integral equation for large k.

(Gt
[k(@*R/0v D0 = O)F

. n(u,5 0) ° RO ’ ’
—ik == 201y’ 0) — I(w', 0
8 [ e 10 = @ Raryw = o 0
Kln(u,) ' {n(u,9 O) ° RO} 0%l -
——— J(u', 0 . ,0 o™, 3.7
IO e 2w )] + oy, 37
where R, = (', 0) — r(y, 0) (3.8) Now the integral equation governing the surface
0 ’ T field is thus reduced to a one-dimensional Volterra
Ry (u — u) — xﬁ(u).(u WY 4 xg(uz):g(u) I equation.
. 24 3.2. The Surface Field in the Penumbra Region
.2 ..
L [ka(“) _ ) "v(“)"a(“)](u — )%, (39) In this section, the asymptotic integral Eq. (3.7)
1920 90 80 governing the surface field is solved for the penumbra
region. It is assumed that the curvatures are slowly
6 2 (U =0) varying and that p,/p,, is of order one or less. In order
) to obtain an appropriate form of Eq. (3.7) in the
GI(: ) [1 = Ro{ku(@)t(W) + kpu(uIn(w)}], (3.10) neighborhood of the shadow boundary, we set
and Mo = [kp,0, O (p, = 1/x,),
ku = M3 3.12)
&R 3G’ Nt Y
=== R ) k' = M,
0
RicXu')] R and further assume that [kp,(u, )]} > 1. Near the
+ i (u)m(u)} + 3 ] 7 —— @ =0). (3.11) shadow boundary (u=0), the phase function,

In Eq. (3.7), the contribution from the «’ integration
between u and infinity is neglected. The reason is the
following. From Eq. (3.5) it can be shown that R,
near u = u' is

R():(u_u’)-*-.“s

~@ —-wy+--,

Thus, exp [ik{R, — (u — u')}] in Eq. (3.7) has a saddle

pointatu = ' only if u = u'; therefore, by integrating

by parts, one can show that the contribution from

the region u < u’ < oo is asymptotically negligible
for large k.

for u>u,
for u<u.

t(0, 0) - r(w, 0) — u, of the incident wave term in Eq.
(3.7) can be expanded in Taylor series by means of
Eq. (2.2):

10, 0) - r(u, 0)—u
~ - ; (0, 0) + 2 14(0, 0){1 + 4p,(0, 0)5,(0, 0)}

120
(3.13)

[p,(0,0) = 0 by assumption of symmetry of the
diffracting surface with respect to the shadow
boundary].

5 L. M. Brekhovskikh, Waves in Layered Media (Academic Press
Inc., New York, 1960), pp. 245-250.



1226

Substitution of Eq. (3.12) into the above expression
yields the asymptotic form of the incident wave:

eikt(o,O)-r(u,o)—iku

{1 + 4p,(0, 0)5,(0, 0)}
120M2

= e““ﬁa/‘”[l +i 55} + O(M?).

(3.14)
Similarly, an appropriate asymptotic form of the
second term in the right-hand side of Eq. (3.7) can
be derived easily by expanding the integrand near

u = u’ and by substituting the relationships of (3.12)
along with

po(tt; 0) =~ p,(0, 0) + %uzﬁg(O, 0) near u=0.

The high-frequency asymptotic form of the integral
equation governing the surface field in the penumbra
region is then

I(5,0) = 2e-“5”/6’[1 +

i {1 + 4p,(0, 0)5,(0, 0)} 55]
120M2

_ L y dri(r, O)e”i[(f_’)s/ 4]
@mt ) |
— 0t | K1)
X e—’i(ﬂ/‘l) (E T) + 2\5, T :| + O(M_a),
{ 2 M} ’

(3.15)
where

Kull7) = 10 — o -

=7 (=7
o6 T a0

L, 20.050.0
% {192 + 8 }
+ £,(0,0),0, 0){f—2 - % G = o, 51(548— 7 }
p/0,0) o o . {fs+1p,(0,0)/2p,,(0,0]}
——— (& —-1)+ .
o000 ! - ]
(3.16)

Since there is no term of order Mjy! in the above
equation, we take the asymptotic expansion of I as

1(,0) = I(§, 0) + [I(&, O)/M3] + O(MG®). (3.17)

Substitution of this expression into Eq. (3.15) simpli-
fies the integral equation and the following equations
for I and I, are obtained:

Ii(%, 0) = 2¢7670

—i(n/8) ;b pé .
e (z) f drly(r, O)§ — rle T2
™ —o0
(3.18)
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and
11(5 0) =i {1 + 4py(0’ O)ﬁg(o’ O)} §5e—i(§3/6)
’ 60
S : drl(+, 0)K,(&, T)e""[‘g")a/ ]
(277)% —o
—i(n/4) ;9 \} P&
_¢ 7 (%) f drI(r, 0)(& — T)%e—i[(g—r)’/24]_
v —o

(3.19)

We observe, from the above two equations, that the
kernel functions are the same and that substitution
of the solution for the leading term I, yields the
solution for the second-order term. Similarly, integral
equations governing higher-order terms in the high-
frequency expansion of the field can be derived by
including further terms in the asymptotic expansion
of Egs. (3.7) and (3.15).

Since Eq. (3.18) is a Volterra type and its kernel is
a function of £ — 7 only, the use of Fourier transform
is suggested. We set

I = f " 18, 0)e et dt,

Application of the Fourier transform to both sides
of Eq. (3.18) and use of the convolution theorem
yields

o ® s (3
Io(t) = zf dfe——zft—z(i 18)

t —ilr/1) poo g -1
y I:l " (g) e : f degt . it /24)] . (321
[}

v

(3.20)

The numerator of the above equation is an Airy
function®

f deel—#1E01 = oY Aj (Y. (3.22)

—0
The denominator and other integrals for 7; can be
evaluated by means of the functions’

hd qonE 3
F,,(p) ___J‘ dxxn—i‘e—z(lz) par—iz (323)
[
for various n. In particular,
F, = 723340 Aj (DAL (p) — i Bi ()], (3.24)

F; = 783788012 Ai (p){Ai (p) — i Bi ()} + (i/m)]
(3.25)

Fy = 208372 4SO {AL ()P + plAi (p))?
— i{p Ai (p) Bi (p) + Ai (p) Bi (p)}]. (3.26)

¢ J. C. P. Miller, The Airy Integral (Cambridge University Press,
New York, 1946).

7 V. H. Weston, “Pressure Pulse Received Due to an Explosion
in the Atmosphere at an Arbitrary Altitude, Part 1,” The University
of Michigan Radiation Laboratory Technical Report 2886-1-T,
C. 1-C. 4 (1960).
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TasLE I. The function F,.

n C, D, E,

3 2 4p 0

4 0 6 4p

5 8p 16p? 10

6 28 80p 16p*

7 32p? 108 + 64p® 112p

8 288p 672p* 220 + 64p°
9 2912 + 512p° 10048p + 1024p* 3456p*

The remaining F, may be expressed in terms of the
above three functions by the relation

F(p) = C,(12)"Bi*Fy(p) + D,(12)~"-1/3
X i(”-l)Fl(P) + E,(12)~(-2/3j(n-2) F2(P)s

(3.27)
where C,,, D,, and E, are given in Table L.
Using the F, function, Eq. (3.21) reduces to

I(t) = 2xt) W (12h), (3.28)
where

wy = in¥[Al — i Bi].
The inverse Fourier transform of Eq. (3.28) yields
the solution for the leading term:

e1p§2 3

WEv=0== [ B— o=} 09

- Wy(p)

U(u O)N eiku _];Jvoo dp ew(u/d) + zku f
’ A LT T ka0, 0 A
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Similarly, the application of the Fourier transform
to the integral equation governing the second-order
term (3.19) gives

~

o N
() =—F"—— (@=102h, (330
27 A (pyin(p)
where " !
N" =fw dé'e"“g[i {1 + 4'00((6)60)#‘7(0, 0)} §5e—i(§3/8)

~ o f drly(r, K y(&, r)e L6121 (331)
ks

Using the convolution theorem, the functions F, of
Table I and Eq. (3. 28), one can show that

5 L 20,0
—_— = p| — — 0,0)5.(0,0
A L [ s + #4008 ) T o, 0)}

W1(P) 3 .
-7 _+ 1%_% gO’O 90:0
+W1(p)[ 5+30 (2 — 3695,(0, 0)j( )]

— (20 s,0,08,0,0 + 223

+ £,(0,0)5,(0, 0) 2 {“’E‘"ﬁ o (332)

Substitution of this expression into Eq. (3.30) and
inverse Fourier transformation gives the solution for
I, . Combining I, with Egs. (3.3) and (3.29), we obtain
the desired expression for the surface field in the
penumbra region:

2
i) [ <_ 2 4 p0,00%20,017
wl(p) 15 dut 15

P40, 0) wi(p) 3 pwi(p)*
+ (0,0 0, 0)({ — il
Pink0; 0)} {Wl(l’)}2 { 5 + + Pl ) ( s = )} { Wi(p) }
% Pg Pg(()’ O) ép{pwl(p)} 0,0 d & Py 0,0 3.33
8 { P00 52 COF ) 0)} 3 e POV € )] 339

whered = [4p%(9,0)/ 7]t and Aistheincident wavelength.
When u/d is positive and sufficiently large (far away
from the shadow boundary into the shadow region),
Eq. (3.33) can be expressed as a rapidly convergent
series in terms of the residues at the poles wy(p) = 0.
This residue series represents the creeping waves.
When u/d goes to negative infinity (illuminated region),
Eq. (3.33) reduces to 2¢™@.0r.0 which is the geo-
metrical optics term.® The width of the penumbra
region is of order d.

33. The Surface Field in the Shadow Region
The incident plane wave cannot reach the shadow
region directly (otherwise the shadow does not exist),

8 N, A. Logan, “General Research in Diffraction Theory Vol. 1,”
Lockheed Missiles and Space Division Technical Report No.
L MSD-288087 (1959).

and only the waves diffracted near the shadow
boundary proceed into the shadow region. An expres-
sion for the surface field in this region may be obtained
by following two steps*:

(1) Obtain the initial values of the diffracted
(creeping) waves from the solution for the penumbra
region at the shadow boundary.

(2) Solve the homogeneous integral equation [with-
out the plane wave term in Eq. (3.7) and the limit of
the integration only over the surface in the shadow
region] and match the initial values at the shadow
boundary.

The initial values of the diffracted waves may be
obtained from Eq. (3.33). When u is positive, the
integrals of this equation can be expressed in terms
of the residues at the poles w,(p) =0, and each
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residue represents a creeping wave.? The values of
these residues at the shadow boundary (u = 0) yield
the necessary initial values of the creeping waves. The
residue series of Eq. (3.33) at the shadow boundary is

1

U, 0) ~ 2 +

i lglpzwﬁpz)[ 2{3kp, 0, 0)}§
p,0,0) d”pg

{p'( 15 T 2pa0,0) T P07

L+ 288 a0z
(3.34)

where p, is the /th root of wy(p,) = 0. In the above
expression, each term in the series represents the
initial value (birth weight) of the /th mode of the
creeping waves.

The short-wavelength asymptotic form of the
homogeneous integral equation governing the surface
field in the shadow region is the same as Eq. (3.7),
except for the incident field term which now vanishes.
Before attempting to solve the integral equation, we
can observe that the common factor

[Gu)H[o2R/ov1
in the kernel of Eq. (3.7) behaves near the saddle point

% (0, 0))

a0+ it )=

1
i + 3 [yl(u)f

SOONSUNG HONG

u = yu’ as follows

o [R 2R w =0

= (GGl = Ry {it) + T

~ [—-——G(“ )] : (3.35)
G(u)

[Refer to Egs. (2.2), (2.4), (2.5), and (3.10).] The

above relation indicates that the solution of the

homogeneous integral equation has a factor [G(u)]"*.

In view of the phase factor for the solution in the

penumbra region, Eq. (3.33), we set the solution of
the homogeneous integral equation in the form

-4
I{(u,0) = A[G(w)}"i exp [zkf ds YR

2 OS2 O
{yo<s)+ B+ T+ }} (3.36)

where the constant A4 is the initial value, and
M@) = [kp,(u, O,

The propagation factors y,, v,, and y, are yet to be
determined. On setting

k(u — u') = M*u)r,

(3.37)

we obtain the following expression under the assump-
tion that the curvatures are varying slowly:

{py(ll, O)Po(u) - %py(us 0)}'0(“)}:}

7_3
o [yz(u)v T (P, O050(w) — S, OB (1, O)polu) — £, O, O)fw)

M*(u)

2450 Oa)} — 5 {pulw, 0) — 4w, om(u)}] +O(M™). (3.38)

Now combine Eq. (3.7), without the incident plane wave term, with Eq. (3.36) and expand the integrand
near the saddle point ¥ = #’ by Taylor series [using (Eq. 2.2)]. After these algebraic manipulations and
making use of Eq. (3.37) and (3.38), we can obtain the following asymptotic homogeneous equation: for
the propagation factors y,,

e o Af w0 § 72 1, piw,0)  p,(u, 0)5,(u, 0)
= drr®jl — =" ) g o B\ Vil
202m)t Jo 7[ M(u) { i 24} +M2(u){ 48+ 2 4 ;
AR I SR oot 0B, 0  _ 7* {2 + [po(u, 0)/ pynlu, 01}
LAY {1920 &0, 0) + ) } 1152M%() pol, 0) + Mu)r ]

—% .
[1 3 05 700+ (PR, 014() — By OB, O17ls) — 0 0., 03 + 3, )

- —<p,(u O)yx(w) — Byl O)yl(u»}] exp [—r-z— + ipg2te 4 2 M( )

x {yl(u)r -z " (o, O, 0) + O(M—®) — 24, (u O)yo(u»}]. (3.39)

¢ R. F. Goodrich, Trans, IRE-PGAP, AP-7, 528 (1959).
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Upon comparing coefficients of the leading term in
the expansion in powers of 1/M, we obtain

-] 3
drit ex {—iT— — 2‘*}.
2(27r)*fo T exp | iy T

(3.40)

Comparing with Eq. (3.23), it can be shown that the
right-hand side is related to the function F, of Eq.
(3.25). Substitution of Eq. (3.23) and (3.25) into Eq.
(3.40) yields the following:

Ai (po)s(ye) = 0.

The solution of this equation determines y,. To be
consistent with the initial values [Eq. (3.34)] of the
creeping waves, the roots of wy(y,) =0 must be
chosen, In terms of the definition

e—i(fr/4)

(3.41)

Yo = ei(ﬂla)ﬂz >

the various roots are given by Table II.
Since v, is constant, comparison of the coefficients
of 1/M in Eq. (3.39) yields

—i(n/4)

4 @ . . P (u, 0) 4
0= — d’r’rél: W, Or —i——+
202 Jo 8 2
- if{h(u) + 24 0)7}2-*}
% 3
X exp {—iy02 r — 152} (3.45)

Various integrals in Eq. (3.45) can be identified with
Eq. (3.23). Thus, after substitution of F, from Table

b o
U, 0) = [g((%r[—ﬁ%%] o gm[l RER I

M%) {ﬁ’( 30
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TaBLE II. The values of f; and Ai (—8,).

l ﬁz Ai ("ﬁx)
1 1.01879 +0.53566
2 3.24820 —0.41902
3 4.82010 +0.38041

I, we can evaluate y, from Eq. (3.45), and the result is

7)) = i28[4p,(u, 0)]. (3.46)
From the coefficients of M~2 in Eq. (3.39), one finds
P2 ) = 427 5 + 5’;—(%%
_ P, 05,0 | i, 0)]
30 45
+ VoFs(voldo — Zp,(u, 0)p,(u,0) + rizp;(u. 0)].
(3.47)

Upon substituting the values of F, and F, given
by Eqgs. (3.24) and (3.26), we obtain y,, namely,

_ 1ri1 u,0

O

Yo L10  4p,,(u, 0)
. Py(us O)ﬁy(u’ 0) Pﬁ(u, 0)]

60 90
— Fpy(u, 0)p,(u, 0) + t35p5(u, 0)].
(3.48)

Combining Egs. (3.36), (3.46), and (3.48) and matching
the initial values given by Eq. (3.34) by letting u = 0,
we obtain the desired solution for the surface field in
the shadow region'
z(ﬂ/3)

+ yoldo

Py(O 0) + 1235400, 0) d’p,
4Pm(0, 0)

20 0))

/;2 (10 * 42Zf.(()003) —enO 0% e e O 0)) ” P [‘e_wﬁ f pés 5 Moz

py(s’ 0)

_ P38 0)B,(s, 0)

M)f 7%3)1;;) {; (_

where M(u) = [kp,(u, O)]¥ and various values of g,
and A,(—p,;) are given in Table II. In deriving Eq.
(3.49), the following relationships are used:

Yo = i(n/a)ﬂl and wy(p) = ei(w/e)zﬂj Ai (Pei(211/3)).
(3.50)

4, DIFFRACTION OF A PLANE ELECTRO-
MAGNETIC (VECTOR) WAVE

The second problem investigated is the diffraction
of a plane electromagnetic wave by a perfectly con-

4ptn(s5 0)
+ Bi(d — &p,(s, 05,(s, 0) + 135525, 0))}],

4+ B, 0))

60 90

(3.49)

ducting smooth convex surface of nonconstant
curvature. Since much of the analysis is similar to
that which we have already discussed for the acoustic
case, the details are omitted wherever possible.

4.1. Integral Equation Governing the Induced
Currents on the Conducting Surface
If a plane electromagnetic wave is incident upon a
smooth convex conducting surface, the integral equa-
tion governing the induced currents on the conductor
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ist
J(r) = 2n(r) x H"(r) —

ol

Here HI™ is the incident field and the time dependence
factor e—** is omitted. Again, without loss of gener-
ality, we consider the induced current along the
geodesic v = 0. The expression for the incident field is

H"(u, 0) = [—cos 6,b(0, 0) + sin 6,n(0, 0)]
X eik‘(o.o)-r(u.o)’

i n(r)

—‘@ (3(r) x ReB}. (4.1)

4.2)
where 6, = sin™ {n(0, 0) x H,/|H,|} is the polarization
angle of the incident wave. With the substitution

J(@) = [t)I(r) + b, (r)]e™, (4.3)
the vector integral Eq. (4.1) is reduced to two coupled

SOONSUNG HONG

scalar equations:

I(u, 0) = 2™y, 0) — - f f du' dv'[Gu ')]?f1

X t(u) « [n(u) x {It(u ,0OHu’, v') x R
+ L', o), ) x RYEHE-Hw) (4.4)

ikR

and
I(u, 0) = 21"y, 0) — - f f du’ dv'[G(u ,)];,1 IkR
x b(u) - [n(u) x {It(u , U, v) x R
+ Lu', v)b(’, v') x R}]e*RE-*u—ud  (45)

The two equations above are similar to that of
acoustic case, Eq. (3.4). They also have saddle points
at v’ = 0 for the v’ integration and at u = u’ for the
' integration along the v" = 0 curve. Performing the
v’ integration by the method of steepest descents, we
obtain

—ikIu’, 0)

3
Iu, 0) = 21" (4, 0)—— f du'[G(u ')1*(2"')
(6‘R/61:'4)(v = 0)

- — t(u) - {n(u) x (t(u") x R)}(u', 0) —

8RY(*RJ2v™)(0’ = 0))?

|
[(8°R/3v)(v" = 0)]F R

t(u) - {n(u) x (t(u’) x Ro)}

* {(n(w) « Rory(u) — m(u) « t(u))re(u)N(') + (tu') — . )Ro)x,(u")n(u) - N(u")}

@1/, 0)
2RY(@R[ov( = 0)}

+

and

I, 0) = 21}"(u, v = 0) — i f_ " awieant (?f’)*
{(64R/3v'4)(u' = 0)}{n(u) . Ro}{b(u) . b(u’)}

€u) - {n(u) x (W) x R} +
« {Ry(aw) - N@))ro’) — e (u'YN@')nu) Ro)}] + oY)

1w, 0) Gw')
2R§ {(azR/aU'Z)(v’ = 0)} t(u)
(0I,/ov")w’, 0) ’
{(@®R[v'H)(v' = 0)}R} G(u)t(u)
(4.6)

1
[(@*R/vH)( = )]

« [~k {n) - Ro}{b(w) - b(u)} _
R
G (', 0)

x I(u', 0) —

{(@Rjov)(v
(0%,/ov'®)(u’', 0)
2RY(@R[ov0 = 0))
{bw) - b(u")}
RY@R[ov(v' = 0)}

+

where
< (WN@) = rey(Wt() + x,(W0)n(u).

4.2, Induced Currents in the Penumbra and
the Shadow Regions
In this section, Eqs. (4.6) and (4.7) are solved by
the same technique used in the acoustic case. In the
penumbra region, substitution of Eq. (3.12) into Eq.
(4.2) gives the asymptotic form of the incident field:

IP(u, v = 0) = t(u) + [n(u) X Fincle ™"

= —~i(£3/8) {1 + 4Pa(0)Ps(0)} 5 3
cosB,e [1 ri ] + O(MY)
4.8

—OR;
{bGu) - B}a) R} + 2 = 0,u)

{kauI0(u) - Ry — n(u) - t(u')}] + ok,

8R2{(2°R[v")(v’ = 0))*

{b(u) - b} {3 )n(u) - Ry — r,(u"n(u) - N(u")}

4.7

and
L4, v = 0) = b(u) - [0() x Hincle ™

= —sin 8,5 O 4 oMY, (49)
0

Combining Eqs. (3.12), (4.6), and (4.8), we have
{1 + 4Pv(O)P9(0)} EE:,
120M3

f dTI,(:f 0) —i[(£~-)%/24]

I(&,0) = 2 cos Ooe"(f /‘”[1 + i

T ent

X {e—i(r/n (¢ —27)2 + Kz;ff; T)} + O(M3®),
0 (4.10)
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where

Kull, ) = et — oy

x[- ¢ ;6’)2 +i¢ ;07)5 {1_;_2 ol =80)i5q(0)}
+ m«»m«»{g (G - e
+ :((00))( SERICESICLIEC) Ry

Now, the above asymptotic form of the integral
equation governing I, is independent of I, and thus
the original coupled vector integral Eq. (4.1) is de-
coupled in the asymptotic sense for large k.

Upon comparing Eq. (4.10) with acoustic Eq. (3.15),
we can easily observe that the only difference between
the two equations is the sign of the term p,(0, 0)/
2p.,(0, 0)(& — 7) in K,, and K,. Thus, we can obtain
immediately the solution for I, from the acoustic
solution given by Eq. (3.33).

The asymptotic form of the integral equation
governing [, in the penumbra region is

I(&,0) = —25sin 6, Mi (it

0

1 ¢ ; 3
— drl , 0 e—t[(§—-r) 124]
+ (277)5 J;w I(7, 0)

e-i(v/ll) % s _3
x [T € =t + 0049 + 0015,
(4.12)
On setting
L(§,0) = [T, O/M,] + OMG?),  (4.13)
application of the Fourier transform and the F,
function [Eq. (3.23)] yields:

o = —i sin 0,428 Ai (p) + T,
x [—1 + i27 Ai (p){Ai (p) — i Bi (p)}].

J(u, 0) = t(u, 0) cos Bo[ggoﬂ [ZZS, g;]% S

ez(vls) ﬂ
x |14 (
[ 2- %MZ(O){ "%

Lyl _
ﬂ?(lo

(4.14)

4P tn(o 0)

4Ptn(0, 0)

_r
i=1 .31 Ai( ﬁl)
4200 L, 0 4pe £, 0))

p0,0) 2040, 0) d’p, (0 0)):] exp [_e—i(ﬂle)ﬁlﬁu;;(dfsiz-%M(s)
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Substituting the Wronskian relation

AiBi — BiAi = 1/
into Eq. (4.14), the inverse Fourier transform gives
the solution for I,,:

I b(fa 0) =

i sin 0, etz hy
2**M0w* L )

Thus, combining solutions for I and I, we obtain
the expression for the induced currents in the
penumbra region as

J(u, 0) = t(u, 0) cos O™ % f dp
m

(4.15)

ein(uld)

wi(p)
f d p ew(uld)

il
+ t(u, 0) cos G,¢ 5 §M2

Y4 Pv
— 0,0 0,0
X [wl(p){ 15+ pil0.0) 7 ( )

P £a_(9’_9)_

30 Ptn(o’ 0)

{ew@)¥

{w(p)}®
. d’p, 20,9

X lipa(o: 0) du® ©,0) + Pen(0; 0)}

$pom@) o o) os
3 oy PO ae @ O)J

isin 0 @ eiz)(u/d)
+ b(u, 0 °f dp + O(M3®), (4.16)
B )2_§Mow% o) oMy, (
where

4 20 0>}
T o0, 0)

wy(p) { _ _1_
{wl(l’)}z 5
x L £ 0,008 - %p“)] _

+ p,(0,0)

d = [ApX(0, 0)/n1%.

Due to the similarity of asymptotic forms of electro-
magnetic and acoustic integral equations, solutions
for the shadow region can be obtained by the same
method used in the acoustic case. The induced
current in the shadow region is

_ei(ﬂ/‘i)f ds {l (_1_
o (s, 0)2"}‘M(s, 0) |8, \10

_ 250
4p,.(s, 0) 60 90

_ pufs, 0)(d®p,[ds")(s, 0) + [(dpy/ds)Gs, 0)]2)

(- an 000 + (o v o [T 20T

eiku+;(11/6) ©

X _ ex [_e—i(ﬂls) lf
2-tM(0) 51 Ai (—a) b

Py(s

ds 2-*M(s)] + O(M™). (4.17)
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Here B, and Ai (—p,) are given in Table II, and «; is
the /th root of Ai (—«;) = 0 (see Table III).

TabLe I11. The values of «; and Ai (— ;).

! «, Ai (=)
1 2.33811 +0.70121
2 4.08795 —0.80311
3 5.52056 +0.86520

5. DISCUSSION

In both the acoustic and the electromagnetic dif-
fraction problems considered, the short-wavelength
asymptotic expressions for the surface fields have
been obtained for the penumbra and the shadow
regions. The second-order terms in the asymptotic
expansion of the surface fields are new results. The
leading terms are the same as those of Fock® and
Levy and Keller.?

In the solutions for the shadow region, the factor
[G(0)/G(u)]t is of interest. By definition of the func-
tion G [Eq. (2.1)], Gt dv represents the width between
the two adjacent geodesics. Thus, referring to the
geometrical theory of diffraction,? [G(0)/G(u)} repre-
sents the so-called ray convergence factor for the
creeping waves. In the geometrical theory of diffrac-
tion, this factor was obtained by physical reasoning
(conservation of energy), and in the present paper,
this factor is justified mathematically. The leading
term for the acoustic and electromagnetic creeping
waves is the same as that predicted by the geometrical
theory of diffraction. This leading term, except the
factor [G(0)/GW)], is independent of curvature in
the direction transverse to the geodesic.

In the solution of -electromagnetic dlﬁ'ractlon
problems, it is shown that up to the terms of order
[kp,J* in the asymptotic expansion, there is no
coupling between tangential and binormal components
of the creeping waves. However, identity between the
acoustic creeping waves under Neumann boundary
condition and the tangential component of the
electromagnetic creeping waves is true only in the

10 V. Fock, J. Phys. 10, 130 (1949).
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leading term. The transverse curvature appears in
the second-order term. The effect of transverse curva-
ture on the electromagnetic creeping waves differs from
that on the acoustic creeping waves. This is one of
the new results of the present investigation.

When the radius of curvature p, in the transverse
direction is infinite, the diffracting surface becomes
cylindrical. In this case, the propagation factors of the
creeping waves in the shadow region agree with those
obtained by Franz and Klante,’* and by Keller and
Levy.'? When the principal radii of curvature (p, and
p:n) are the same and constant, the diffracting surface
is spherical. In this case, the solutions of the creeping
waves reduce to the results of Senior,'®* who obtained
the creeping wave solution (including the second-
order terms) for the sphere by means of a Watson
transformation of the Mie series (exact) solution.

The solutions for the shadow regions are not valid
near a caustic where the radius of curvature (p,) in
the direction transverse to the geodesic is no longer
large compared to the incident wavelength. The
author feels that the integral equation method used
here will still be applicable in investigating the surface
fields near the caustic, provided that the saddle point
integration for the v’ coordinate (Secs. 3.1 and 4.1)
is modified by some suitable means.

ACKNOWLEDGMENTS

The author is grateful to Dr. V. H. Weston and
Dr. R. F. Goodrich for their many valuable sug-
gestions, and to L. P. Zukowski for checking the
algebra. He is also indebted to many members of
The University of Michigan Radiation Laboratory
for comments which were of value in preparing the
manuscript.

The research reported in this paper was sponsored
by the USAF Ballistic Systems Division, Norton
AFB, California, under Contract AF 04(694)-834.
This work was done while the author was with the
University of Michigan Radiation Laboratory.

11 W, Franz and K. Klante, Trans. IRE-PGAP AP-7, 568 (1959).

12 J, B. Keller and B. R. Levy, IRE Trans. Antennas Propagation
AP-7, 552 (1959).

13T, B. A. Senior, The University of Michigan Radiation Labora-
tory Note (1966).



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 8, NUMBER 6 JUNE 1967

Lowering and Raising Operators for the Orthogonal Group in the Chain
O(n) > O(n — 1) > ..., and their Graphs*

SiNG CHIN PANG AND K. T. HECHT
Physics Department, University of Michigan, Ann Arbor, Michigan

(Received 4 August 1966)

Normalized lowering and raising operators are constructed for the orthogonal group in the canonical

group chain O(n) > O(n — 1) > -+

> 0(2) with the aid of graphs which simplify their construction.

By successive application of such lowering operators for O(n), O(n — 1), - - - on the highest weight states
for each step of the chain, an explicit construction is given for the normalized basis vectors. To illustrate
the usefulness of the construction, a derivation is given of the Gel'fand—Zetlin matrix elements of the

infinitesimal generators of O(n).

1. INTRODUCTION

HE semisimple Lie groups have recently found
many new applications in physics. The unitary

groups in particular have received wide attention as a
result of this renewed importance, and the irreducible
representations of U(n) (arbitrary n), have been
studied in considerable detail.l-2 Although the orthog-
onal group O(n) has received less attention, it
recently also found some new applications to physical
problems. In particular, the groups O(5) and O(8)
have become of interest in nuclear spectroscopy in
connection with the quasi-spin formalism for neutron
and proton configurations.®* The group chain O(r) >
O(n — 1) > - -- has also been found of interest in
general many-body theory in the construction of
n-body states of definite permutational symmetry.®

The basis vectors of an arbitrary irreducible
representation of O(n) are completely characterized
by the chain of canonical subgroups O(n — 1) ©
O(n —2)>-:-0(@2). This canonical group chain
has been studied many years ago by Gel'fand and
Zetlin,® who give the matrix elements of the infinitesi-
mal operators of O(n), for arbitrary n, in this basis.”
Since the mathematically natural chain of subgroups,

* Supported by the U.S. Office of Naval Research, Contract
NONR 1224(59).

1J. G. Nagel and M. Moshinsky, J. Math. Phys. 6, 682 (1965).

? M. Moshinsky, J. Math. Phys. 4, 1128 (1963); G. E. Baird and
L. C. Biedenharn, ibid. 4, 1449 (1963). For earlier references
consult these references.

3 B. H. Flowers and S. Szpikowski, Proc. Phys. Soc. (London) 84,
193 (1964); J. C. Parikh, Nucl. Phys. 63,214 (1965). J. N. Ginocchio,
ibid. 74, 321 (1965); M. Ichimura, Progr. Theoret. Phys. (Kyoto)

32, 757 (1964); 33, 215 (1965). K. T. Hecht, Phys. Rev. 139, B794
(1965).

* B. H. Flowers and S. Szpikowski, Proc. Phys. Soc. (London) 84,
673 (1964).

5 P. Kramer and M. Moshinsky, Nucl. Phys. 82, 241 (1966).

¢ I. M. Gel'fand and M. L. Zetlin, Dokl. Akad. Nauk. USSR 71,,
1017 (1950). I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro
Representations of the Rotation and Lorentz Groups and Their
Application (The Macmillan Company, New York, 1963), p. 353.

7 The Gel'fand-Zetlin result has also been derived by algebraic
techniques by J. D. Louck, Los Alamos Scientific Laboratory
Reports LA 2451 (1960).

such as O(n)> O(n — 1) > ---, often does not
include the subgroups of actual physical interest,4
the application to physical problems, in general,
involves a transformation from the mathematically
natural to a physically relevant scheme. To effect
such a transformation, it becomes important to have
an explicit construction of the basis vectors of an
arbitrary irreducible representation of the group.

It is the purpose of this paper to give an explicit
construction of the basis vectors of the irreducible
representations of O(n) in the Gel’fand scheme through
the successive application of lowering operators acting
on the highest weight state. The concept of lowering
(or raising) operators was employed by Nagel and
Moshinsky! to construct the full set of basis vectors
of U(n) in the canonical group chain U(n) =
Umn — 1) > ---. Although the present work has
set itself the analogous task for the group chain
O(m) > O(n — 1)+ -- and thus forms a parallel to
the work of Nagel and Moshinsky, the techniques
employed are somewhat different. In particular, since
the lowering (or raising) operators for O(n) are
complicated polynomial functions of the infinitesimal
generators of the group, a graphical technique has been
found useful in the construction of these operators.

In Sec. 2 a review is given of some of the properties
of the group O(n) and the canonical chain of subgroups
employed in the Gel'fand basis. In Sec. 3 the raising
and lowering operators are constructed with the aid
of graphs. Section 4 presents the calculation of the
normalization coefficients of the lowering operators.
These are the fundamental numbers of the construc-
tion since the successive application of lowering
operators must yield a normalized basis vector for
easy application in actual problems. Finally, in Sec.
5, a brief derivation is given of the Gel'fand and
Zetlin results for the matrix elements of the infini-
tesimal operators to illustrate the usefulness of the
present construction.
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2. SOME PROPERTIES OF O(n)
A. Generators of O(n)

The natural infinitesimal generators of O(n) are
the set of skew-symmetric, Hermitian operators J;
with the commutation relations

[Jm;i’Jkl] = i(akan + 651Jmk
- 6}kJml - 6ml"ik)s

where m, j, k, and / run from 1 to n. The number of
independent generators of O(n) is therefore n(n — 1).

The infinitesimal generators of a Lie group are
best expressed in standard form® in which they are
organized into one set of ¥ commuting operators
(H type), where k is the rank of the group, and a set
of raising and lowering generators® (E type). In O(3),
for example, H, E,, E_, correspond to Jy, J13 + iy,
Jig — iJy3, respectively. For both O(2k + 1) and
O(2k) it is convenient to choose the £ commuting
operators as Jig, Jag, J5g, ¢ * * 5 Jop_1,2- It is useful to
further classify the raising and lowering generators
into two types, those which connect the group O(n)
to its subgroups, to be denoted by 0, and those which
operate within the space of the subgroups only, to
be denoted by p, so that there are three types of
operators in all. In O(7), for example, operators of
type Q are linear combinations of the J;, while
operators of type p involve only J;; with both i, j < 7.

The three types of operators are defined as follows:

(@) 02k + 1)
Type (1) H, =Jsq 1,0,, x=1,2,--4,k,
(2) Qo400 = Jou-1,9%41 £ Wy o011 »
=12,k (22

(3) Pap = [Q2k+1.a’ Q2k+1,ﬁ]’
“sﬂ= ::i:l,"’,:l:k, ﬁ# —a,

2.1

(b) 0(2k)
Type (1) H, = Jos 1,25
a=12-,k—1,
¥)] sz.k = Jzk—l.zlc (=Hk)’
QZk.:!:a = J2¢—1,2k + iJ2a.2k’
e=1,2,--",k—1,
3) Papg = [Qa.a» Qz::.p],
“,/3 = :l:ls :l:2" Ty :I:(k - 1)’k’
ﬂ 7 -,

2.3)

8 G, Racah, CERN reprint 61-8 (1961).

? The raising and lowering generators are not to be confused with
the raising and lowering operators which are the subject of this
paper. Except for O(3) the lowering and raising dperators are
complicated polynomial functions of the lowering and raising
generators.,

S. C. PANG AND K. T. HECHT

(Note that H, is now included among the type 2
operators, and that p, _, is not of type 3 but, from
its definition, is merely equal to 2J,, ; 4,.) The basic
commutators of these operators are then

[Jﬂa—l.Za’ sz—l,zp] =0, 2.4)

[J2a—1.2a: Pﬂy] - (601# + 6ay - 6a.—ﬂ - 6«.—y)Pﬁy,

@.5)
[J2a—1.2u’ Qnﬁ] = (‘5ap - 5u,—ﬂ)Qnﬂ, (2-6)
[paﬂ’ Qny] = 2(6ﬁ,—ana - 6a,~7Qnﬂ)’ (27)

[Puﬁa pyd] = 2(a¢.—-apﬂ1 + 6ﬁ-—7pa"
— OcyPps — Op—sPey). (2.8)

The p,; can also be represented as Q-type operators
of the subgroups of O(n)

Paﬁ = i[Q2ﬂ-—1,a + iQ2ﬁ,a]9
Pa—p = i[Q2p1,0 — iQ2p.0l, 0< < B,
P—a,ﬂ = i[Q2ﬂ—1,—a - inﬁ.——a], 2ﬂ < n,

Pv—p = i[Q2p 1, + iQ2p, ]

(2.9)

B. The Gel’fand Basis

Gel'fand and Zetlin® have provided a way to com-
pletely specify the basis vectors of the irreducible
representations of O(n) according to the canonical

chain of subgroups O(n) > O(n — 1) = - - - 2 0(2).
For the case n = 2k + 1
Mogr1,1 Mopya,2 Mopr1,e—1 Mogy1x
Mag,1 Mog,2 Mog k-1 Mg,k
Mor_1,1 Mag_y,2 Moy_1,x-1
Mop_9,k—1
|‘M’np> =
L Mg
my, mysy
Mgy
my,
(2.10)
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For the case n = 2k

Mag,1 Moy, 2 Mg, k1 Moo
Mop1,1 Magg—1,2 Moy 1,51
Map—2,1 Mayg2,2
|(/K)"u> =
my LT
mgy
Mgy
2.11)

The k numbers in the top row characterize the
irreducible representations of O(n). The numbers in
the next row characterize one of the possible irreduc-
ible representations of O(n — 1) contained in the
specific irreducible representation of O(n), and so
forth for successive subgroups of the chain. The
numbers in each row thus characterize one of the
possible irreducible representations of a specific
subgroup. The numbers mg, , mg,, my,, for example,
characterize one of the irreducible representations of
0(6).1

The Gel’fand basis vectors are not eigenvectors of
the & commuting operators J,,_, »,. The basis differs
in this respect from the corresponding Gel'fand-
Zetlin basis for the unitary groups.! Although the
full set of m,; are thus not simply related to the com-
ponents of the weights, they are nevertheless related
to the highest weights of the irreducible representa-
tions, since the highest weight state of O(n) is an
eigenvector of the set of J,, ; »,. The significance of
the m,, ; is therefore the following:

(a) Forn=2k + 1,

Myi1,1 IS the maximum possible eigenvalue of J;, in
o2k + 1),

Mgy11,5 18 the maximum possible eigenvalue of J;, when
the eigenvalue of Jy, is my,, ; in 02k + 1),

10 A slight change has been made in the Gel’fand-Zetlin notation.
The first index has been shifted up by one unit so that m,,, m,,, - - -
characterize the irreducible representation of O(). The chain of
numbers thus ends with my, [irreducible representation of 0(2)],
rather than with m,, .
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Myy.1,; is the maximum possible eigenvalue of Jy;_; »;
when the eigenvalues of J, are equal to my, ,
forall « < iin Ok + 1),

a—1,2a

Mg, is the maximum possible eigenvalue of Jy,_; 4
when the eigenvalues of J,,_, ., are equal to my,,, ,
for all « < k in O(Q2k + 1);

(b) For n = 2k,

my, , is the maximum possible eigenvalue of Jy, in
0(2k),

My, ; is the maximum possible eigenvalue of Jy;_; 5,
when the eigenvalues of J,, , ,, are equal to m,, ,
for all « < iin O(2k),

My 1 is the maximum possible eigenvalue of Jy;_3 9;_»
when the eigenvalues of Jy,_; ,, are equal to my, .
for all « < k¥ — 1 in O(2k),

mgy, ;. is the eigenvalue of Jy, ; o When the eigenvalues
of Jau_1,9, are equal to my, , for all « <k — 1 in
O(2k).

The irreducible representations of the subgroups in
the chain are characterized in the same way.

The numbers m;; are simultaneously either integral
or half integral with restrictions which have been
given by Gel'fand and Zetlin®:

Mopir,s = Myp s 2 Mypis s ((=1,2,-++,p),

My 2 May 3,5 2 Map iy

(i=1,2,"',P—1),

Mapir,p 2 (Mol (2.12)
These properties are clear once the lowering and
raising operators are derived in this paper.
Since the type-1 operators Jy,_; o, are not diagonal
in the general Gel'fand basis, it is convenient to
define a whole hierarchy of subbases of decreasing
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complexity:
[Moga] = [Hop,),
[‘M’sns;l] = ['M’nu; Mg = mBl];

[*MJ;‘;Z] = [Mop,; My = Mg = my],

Mg = My = My = My,
(8] = [mc,,,.; :
Mge = Myo

(2.13)

"

[‘M’ilz‘.)] = ["K’mt; m2i,¢ = mﬂa

o=1,2,---,1i T
f=2a20+1,---,2i
[H2] = [Jcn“; Massre = Mge
a=1,2-,i 7
B=2¢20+1,--,2i

The base vectors of [M{0] withg = 2i org = 2i + 1
have the special property that they .are eigenvectors
of the set of commuting operators J,, ; 4, With
«=1,---,i Any vector of [M!2] is specified by
(n — g + 1) rows of numbers.

The particular subbasis [A{% "], made up of the
base vectors of highest weight in the immediate sub-
group O(n — 1) of O(n), is of greatest importance in
the present discussion. Its states are specified by only
two rows of numbers and it has the following special
properties.

(1) All of the type-1 operators, Jy, ; 5, (With o« =
l,---,kforn=2k+1,anda=1,---,k —1 for
n = 2k), are diagonal in this basis.

(2) All of the type-3 raising generators p,s, p, 4
(0 < a < p) give zero when operating on any vector
of the basis [.M,;"‘f”]. This condition is necessary and
sufficient to define the basis [{%1]. (Note that the
generators pjs, py,_2, P13s P1,-3> P23 P23, " are
naturally considered as raising generators, whereas

P—2,3 pP—g,-3,° " are

P-1,25 P-1,-2> P-1,35 P-1,-3>
lowering generators.)

The raising and lowering operators which are the
subject of this paper are best defined in terms of the
subbasis [A{:]. They are the operators which raise
or lower by one integer one of the quantum numbers
m,_; , of the second row without leaving the subbasis
[A{n~D], that is the space of base vectors of highest
weight in the immediate subgroup. In particular, the
full set of states of [AG{"] can be constructed by
repeated operation with the various lowering opera-
tors of O(n) on the highest weight state of a specific
irreducible representation, namely [A(*']. The set of

states of [A0{""#"] can then be constructed by successive
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operation with lowering operators of O(n — 1) on the
states of [AL{»"1)] which are highest weight states of
irreducible representations of O(n — 1), and so forth,
until the full set of Gel’fand states has been reached
by successive stepdown operations with the lowering
operators of O(n), O(n — 1), -+ -, O(3).

3. THE RAISING AND LOWERING
OPERATORS AND THEIR GRAPHS

In O(3) the raising (and lowering) generators
Jia & iJys = Q5 ., are themselves raising (and lower-
ing) operators; that is, Q, ., operating on a state
|1, m) converts it into a state |/, m + 1). In O(n), with
n > 3, the raising and lowering generators Q, ; have
matrix elements connecting very many different states
of the general Gel’fand basis, and when operating on
a state of [A{»"1] do not give states belonging solely
to [M{e1)],

By forming polynomial functions of the raising
and lowering generators, it is possible to construct
raising and lowering operators, to be denoted by
O,..i, which have the simple property that they
raise (or lower) by one integer one of the quantum
numbers m,_,; of the subbasis [M{7] without
leaving this subbasis, that is, the space of base vectors of
highest weight in the immediate subgroup O(n — 1).1*
Specifically O, is defined by

0 m'nl mye et mm‘ mnk>
n,xtt
Mp_1,1 Mpy_1,2 My 1,4 :
— NI mnl mys ot mni mnk
b
My 11 My g2 My 4+ 1 :

3.1
where N’ is a normalization factor and | ) denotes a
normalized state. To save writing, only the column
that suffers change is indicated:

m. . m. .
O » ni —_ Nl ne
e mn—l,i> m, ;% 1>’
i=12--,k, n=2%+1,
{i=l,2,"-,k—1, n = 2k. (3.2)

For n = 2k it is also convenient to introduce the
zero-step operator, Oy,

Ouir Mok,1 Moy ¢ Mo, k—1 m2k.k>
Mop—1,1 Mog_1,: Moy 1,51
=N Mag,1 Mop,; Moy k-1 m2k.k>
Mg 1,1 Mog—1,1 Moy 3,51

(3.3)

11 For the specific cases n =5 and 6 explicit expressions for
raising and lowering operators have been given previously. J.
Flores, E. Chacon, P. A. Mello, and M. de Llano, Nucl. Phys. 72,
352 (1965), and (n = 5) K. T. Hecht, ibid. 63, 177 (1965).
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or
Moy, ¢ s |Mgx,¢
o =N . (4
ek mak—l.i> m2k—l.n'> )
Since
mg; > and my; > e [J‘.:i::;—l) ,
My m,1:+1
0, .; and Oy, , must satisfy
(1) [Jh—l.zu Oni] = 6“'0"“
[Jh—l.&v On—i] = —6¢i0n.—i ’
[Vor1,20: Ol =0, 0<a <k, (3.5)
My
@ o, Onsd [ S =0,
m,,;
[Pcb | " > =0,
mn—l.'
" (3.6)
[parps Ond [ >=o,
Pa,—p +i Moy
mm‘
[Pe~p> Oz.x) > =0, 0<a<ifl
mn—l.i

Equations (3.5) and (3.6) are necessary and sufficient
conditions that O, .; be raising (lowering) operators.
Equations (3.6) apply to all of the raising generators
of the subgroup O(n — 1) and ensure that the state
0, .ilmy, m, ;) is a highest weight state of the
subgroup O(n — 1) since the state |m,,, m,_; ;) has
this property. Since the raising and lowering opera-
tors are complicated functions of the generators they
are best described in terms of graphs, and manipula-
tions involving these operators are also best performed
with the aid of these graphs.

A. Raising Operators and Their Associated Graphs
Contents of R; graphs

Graphs associated with the raising operator O, ;
are to be denoted by R;; these graphs consist of the
following (see Table I).

(1) A single row of i ordered points numbered
from 1 to i with order increasing from right to left.

(2) A connected chain of arrows always pointing
from right to left, with (a) any point 1 < j < i as
starting point, to be indicated by a circle, (b) end
point always at i, (c) the arrows which form the links
of the connected chain may connect some (possibly
all) of the points between the starting point j and the
end point i but may skip around others (possibly none).

Operator Representations of the R; Graphs

Each of the many possible graphs of type R,
represents one of the terms of the raising operator
0,
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TasLE I. The graphs of R,, for any n > 8.

GRAPHS OPERATOR REPRESENTATION OF THE GRAPHS
4 3 2 |
o ¢ o o Onq 93-4 02-4 %4
“o o o Cra-3} O3 02-4 014
o . Crg-21%2 93-4 9-4
o0 o Upg3)iPy.2) Qpp 9
o oo Upg) O 3.4 92-4
st 231025} Oy 92-4
-0 (-’4’2, (-’Z'I) Q) 03-4
—tt—se—O (‘p4_3)('p3_2) Cag ) Q)
9 = 9-9; u.IZ(Jz._,_z.ﬂ-a)
n=2k or 2k+I

(1) The circle around the starting point j represents
the operator Q,, ;.

(2) An arrow link of the chain connecting points
« and 8, with a < B, represents the operator (—pg__,).
[Note that the operator (—pg,_,) = p_, 5 With a < f
is a lowering generator of one of the subgroups of
O(n).]

(3) A free point, not connected by one of the arrow
links of the chain, is associated in the operator
representation of the graph by a; _, = a;, — q,, a, =
2(Jyy—1,24 + k — o) for n = 2k or n = 2k + 1. (Note
that a; _;,=a_,,, and the vectors of [M{%™"] are
eigenvectors of a,.)

(4) The full operator represented by one of the
R; graphs is the product of all the factors of type
(—pp.—o) and Q,, ; implied by the various links of the
graph. The order of the Q and p operators in the prod-
uct reading from right to left is the same as the order
of the links of the chain again reading from right to
left, with —p; _, on the extreme left and @, ; on the
right followed on the right by all the commuting
operator functions a_; ;.

The Raising Operators

Theorem: O, is equal to the sum of the operators
represented by all possible graphs R,;.

Proof: Since all raising generators p,;, p.—g
(0 < a < |Bl) can be expressed in terms of commuta-
tors of generators of the type p; ., and p; (1), Egs.
(3.5) and (3.6) follow from

[JZa—l.Za’ Om'] = 6aiom‘ 4 (3'7)

m. .
(Ma N g, 3.8
P3,i+10n; m”_“> (3.8
j=1,2, k= 1),

m. .
™ =0. 3.9
P}.—(:ﬁ+1)0m mn—l,i> ( )
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Equation (3.7) follows at once from the commutators
of Jy, 4.0, With the p’s and Q’s [Eqs (2.4)-(2.6)].
Equation (3.8) follows from the fact that a p with two
positive indices, when commuted through to the right
of all factors ps_, and Q; of O,,;, leaves one p with
two positive indices (which in turn has one such
surviving term when commuted to the right), and a p
with two positive indices gives zero when operating
on a state of [A{7"]. Equation (3.9) follows since
all the p; _(;,1) commute through to the right side of
all factors p and Q of O, ; except for the types which
involve the indices j and j + 1, and p;, _(;,,, operating
on terms including these satisfy the relations written in
terms of graphs:

, N
00 e A
t ™ e . " (20
el
-
*’@T r\@’m +1@‘\I:I r—@ 20 )
; v
L
‘o—————a"
Wi

+ +l@a\‘/—.\@m Pi-en :’

(3.10)
And also
b ) (O e
Py { O~ :’““> =L@ o) g :. >=0.
T D o ta gy
3.11)
Special examples
0(6)
Os1 = Qe,1
Og2 = Qg,2012 + (—p2-1)Qs.1
© o 4+ 0
o)
011= 0

02 = Q7901 2 + (—pa_1)07.1
0,5 = Qr,501 30 3 + (—p3_2) Q7,901 3
+ ("‘Pa—1)Q7.1az—s + (_Par-z)(‘_Pz—l)Q7,1

O ¢ s+se—0Q * 4+ ¢ TP 4 ee—ee—0
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B. Lowering Operators and Their Associated Graphs

The graphs for the raising operators O,, are
identical for all £ > i. The graphs for the lowering
operators O,, _;, however, are not only dependent on
the specific value of » but have a slightly different
character for the odd- and even-dimensional rotation
groups, n = 2k + 1 and n = 2k, so that the two cases
must be discussed separately. Graphs associated with
the lowering operators Oy, _; are to be denoted by
£2k+l.i

(1) Lopp1,; Graphs

The £,,,,, graphs consist of the following (see

Table II).

(a) Two rows of ordered points, kK points in the
bottom row numbered from 1 to k with order in-
creasing from right to left, and k — i 4+ 1 points in

TasLE II. The graphs of £,,5.

GRAPHS OPERATOR REPRESENTATION OF THE GRAPHS
*3 02
o3 62 ol 9, 2 92.3 %3 %2 92

(-p_ 3) Q

7-3 %23 %22 %2
) a

2

r_3.3) 973 %3 %22 2

Crop3t(03.3) 075 053 0y

AN

Urp318p5.5) Ogp 0.3 93

Ceay) 9

) %2-3 %23 %22

P Crp3?23-) Oy 023 0y
<o Copg)Pany) Oy 053 9p,
o g3 0h.35)0005)) Oy 033
o Cpog-3) Py ) 0ry ) Oy 0y

07040, 0.2 0;-0;

) I ) )

9 ® 2“21-l.2a+3.°)

the top row with order decreasing from left to right
starting with k at the left and ending with i so that
the point, j (i < j < k), in the top row sits above the
point j of the bottom row.

(b) A connected chain of arrows forming a clock-
wise path, the arrows always pointing from right to
left in the bottom row and from left to right in the
top row, with (i) any point of either the top or bottom
row as starting point, to be indicated by a circle, (ii)
end point always at i of the top row, (iii) no vertical
arrows (that is, no connections from point / in the
bottom row to point / in the top row), (iv) no arrows
pointing downward [that is, no arrows with starting
points (tails) in the top row and end points (arrow-
heads) in the bottom row], (v) the arrows which form
the links of the connected chain may then be directed
from point « in the botton row to point 8 in the
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bottom row with (8 > «), from point x in the top
row to point » in the top row with (v < u), or from
point « in the bottom row to any point ¢ in the top
row ¢ $ «, but o # a.

(2) Operator Representations of the Loy, ; Graphs

(a) The circle around the starting point, say j,
represents the operator Qg4 ; when it is in the bottom
row and Q. _; when in the top row.

(b) An arrow link of the chain connecting point
« to point B represents the operator

@) (—pp,—) Wwhen « < B, both points in
bottom row,
(i) (—p_p) When a > f,bothpointsintop row,

« in the bottom row, f in
top row.

(c) A free point not connected by one of the arrow
links of the chain is represented by the operator
function a; _, = a; — a, when « is in the top row and
a,, = a; + a, when « is in the bottom row, where
a, = 2(Jy, 1.0 + k — ), as before.

(d) The full operator, represented by one of the
graphs £, ;, is again the product of all factors of
type p and Q implied by the links of the graph. The
order of the Q and p operators in the product reading
from right to left is the same as the order of the links
of the chain starting with the encircled point and ending
at point i of the top row, with Q followed on the right
by all the factors a,,, implied by the free points of the
graph.

(i) (—p_y) Wwith

(3) Lo.; Graphs

Graphs associated with the lowering operators
Oy, of the orthogonal group in an even number
of dimensions are to be denoted by £, , (see Table III).
The graphs £, ; have the same structure as the graphs
L2141, With the exception that the two points k are
replaced by a single point to be placed halfway
between the top and bottom rows but to the left of the
two points (k — 1). The rules for the construction of
the operators represented by the graphs £, ; are the
same as those for the graphs £y, ; except for the
following.

(2) A free point, not connected by one of the arrow
links of the chains and if placed in the ath position
of the bottom row, is to be denoted by b,, = a,, — 2.
If the kth point is a free point it is to be denoted by
¢; = ¥(a; — 2). (Free points of the top row are
associated with a, _,, as for £4;,, ;.)

(b) For the special case i =k, required for the
zero-step operator, the free points of the bottom row
(say in position ) are now to be denoted merely by
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Taste III. The graphs of €,,,.

GRAPHS OPERATOR REPRESENTATION OF THE GRAPHS
o o f Qg-1 9-2 ¢ b by

.« T (-p-12) Qg-2 & P12 By

o Cr3) %3 92 b by

el Urip)le-3) Og.3 bip by

o Leg-2) % a2 &1 bir

4‘2 oz r3p) Qg 9-p by
T Crp P p3)e3.2) G2 By

. :'_\“0 Coyp) byt Qg ¢ By

~% Cegdrg) % 9z B2
% Cpo ) Crpz)Ce-3-) Qg b2

¢ e Crg-p! CPa-t Qg1 912

< )32 301 Cpat) gy 91y
<% T N LY
%igj " G20 bij=aij-2 ¢j=l/200;-5)
9,3 %%;,3 P Pa 3 0,2 22g- (2430

a, . (The points of the top row play no role whatsoever
in this special case.)

Theorem: Oy q,_;, Oy _; is equal to the sum of the
operators represented by all the possible graphs of
L9511, and £, ; respectively.

PI‘OOf.’ (a) [J2a—1,2aa On,—i] = _On.—iaai
This again follows at once from the commutators of
Eqgs. (2.4)~2.6).

(b) For the relation

mm‘ > _ 0
- b
My 1,

the proof is essentially the same as that for the raising
operator except that there are two sets of terms like
those of Eqgs. (3.10)—(3.11). One set arises when j and
j + 1 are both in the bottom row, the other when j
and j + 1 are both in the top row. Both sets of terms
sum to zero independently of each other. [The points
m and / of Eqs. (3.10)~(3.11) can now be in either top
or bottom row.]
The proof of the relation

Pi—+1) O —i

mni > . O
My_1,i

is much more complicated since more summations of
graphs are involved. However, the method is identical'*
to that illustrated by Eqs. (3.10)-(3.11).

Ps.i+10n,—;

12§, C. Pang, University of Michigan dissertation (to be pub-
lished).
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(4) Special Examples of Lowering Operators'®

0 (e)
O L4l AT AT e S

A REAN

* +/’

O, +7,  +4

A

t
0‘;.- -+\ o+ .‘-\o+.\o—o :

N S g O

07"?.. o o + :\' - + o\o + .\--..

Not all the graphs give independent operators.
In 0, _,, for example, only 15 out of the 21 graphs are
independent. The remaining six give operators which
can be written as linear combinations of the 15
independent ones. Terms 16 and 18, for example, are
related by

. +ve e} 0.0 o ot . 8 e

() KOs (0 R (s
It is most convenient, however, to treat all graphs on
an equal footing to preserve both the over-all symmetry
of the expression for O, _; and the uniform and
simple factoring of the operators associated with an
individual graph. The operator representations of the
various graphs all have the same structure, differing
only in the number of factors of type p and a. The total
number of operator factors for each graph of £,; is
equal to n — i

15T Note that Ogy is an example of a neutral or zero-step operator
of type Ogy, -

S. C. PANG AND K. T. HECHT

C. Some Properties of the Raising and
Lowering Operators

The raising and lowering operators which have been
constructed have meaning only when they operate on
the basis [M{7~V]. It is interesting to note that the
operators O, ., together with the J,,_; ,, form a Lie
algebra with respect to [A{>"']. The raising and lower-
ing operators have not yet been normalized. However,
the unnormalized operators O, , have the simple
property

[Opis Oy IMEY =0, P52 —j.  (3.12)
With respect to the basis [M.{%'], the set of operators
Ores On_as J2a1,2. thus commutes with any other
set Opp, On_p, Jop-1,98 (B 7% @), so that the Lie
algebras mentioned above breaks up into a set of k,
(k — 1), commuting algebras of order three for
dimension n = 2k + 1 (n = 2k), respectively. Equa-
tion (3.12) can be verified by direct computation or
obtained from the following considerations.

From the uniqueness of the base vector

K Mys >

My 1, + 1 My .4 + 1
the states 0,0, |ME), 0,,0,, |A) can differ
by at most a constant:

000y |G = €4,0,,0 | M), (3.13)

The constant ¢, can be shown to be unity by comparing
the coefficients of the terms with the largest number
of factors of type p on each side of Eq. (3.13). The
term with the largest number of factors p for a single
operator O, arises from a single graph and has the
coefficient unity in all cases except i < 0, n = 2k + 1.
In the latter case it arises from two graphs (e.g.,
graphs Nos. 9 and 10 of Table II) whose summed
coefficient (on the right) is equal to a;;. This has the
same eigenvalue when operating on the state [ A1)
oron O, |M{=1). Thus c;; = 1.

4. THE NORMALIZATION

The raising and lowering operators O, ; do not
yield normalized basis vectors. It is therefore impor-
tant to define normalized raising and lowering opera-
tors, to be denoted by U, ;, which differ from the
0,,; merely by a normalization factor. The calculation
of these normalization factors is presented in this
section. ‘

The results for the even- and odd-dimensional orthog-
onal group are somewhat different. For n = 2k + 1
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the normalized raising and lowering operators are'¢
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i—1 k
Ugeyr = Gia a; —p%:p 2 2
2%+1, (E (@a + 2)(0(_2'? Doy 2)a,,°)( I:L a(2k+1)(a(2k+l) )) (2k+1) (aiz.k—t” +2) Opi1,is 4.1
1] 2 2 1 @i +2) k 1 i
U L= 0 - —ia
W1, Betl, al G (@B 4 9yasi g (o 4 2)g Y pmiia 4, a1pa(2k+1)(a(2k+1) )| ,» (42)
where
. i h . . .
Grpe = 2Wnirs + K — ) & 20nnan + K — ) eigenvalue of the corresponding J,,_, ,, is to take its

@.3)

with eigenvalue 2(mg, + k — i) & 2(my, + k — @)
in the restricted basis [AZX), |]. The superscript zero
on a subscript of g;, has the following meaning: the

highest possible value in O(2k + 1). For example, the
eigenvalue of a{%+? is
2(ma; + k — i) + 2(Myyr,, + k — ).
For n = 2k the normalized raising and lowering
operators are

U lb“C |& ( bza )( k= l~—ﬁbiﬂ ) 2 2 2 2 i
2ki = T ey {am - i s
=1 (a(—zlk,io + D@+ 2)p28 ) \s=ita (a(zm _ 2)b(2k) b (a:Zk_)' +2) (a(zk)0 — 2) by 2ki
(4.4)
111 2 2 2 2 it (a_;y + 2) k=1 1 3
U, = Oei— | — ) (zk) ) T (2%) = e (2) (2K
21byc; by (a; 50 — 2) (a9, + 2) byd” #=1(a g0 + 2)bypb;,0 B=i+1a; _gh,g(a; ~ g0 — 2)bypo.
(4.5)
where a,_, a2% are defined as before, and b,, = a,, — 2, ¢; = ¥(a; — 2).

The general basis vector for the orthogonal group can then be generated by successive applications of

these operators. Taking the case n =

2k + 1 as an example,

k
—
(2k) 2k+1,1~M3k, 17 T Mak+1,2—M2k,8 , . . T M2k+1,k—Mak,k (2k+1)\ __ Mgki1,d— Mo (2k+1)
l‘A(’Zk+lﬂ> = U2k+l— U2k+l,—2 U2k+1,— I'M)zk‘f'l,ll) - H U2k+1.-a l"M’zk'f'l,n ’
(2k—1) Mgk, 1-M3k—1,17 7 M2k, a—M2k—1,2 | _ , yMek.k-1—"M2k—1,k—1 (2%) Mgk, g—Mak—1,8 (2k)
I‘M’2k+l,p> = ng U 2k,—2 Uzk,-—(k—-l) I"M’)zk+1,u> - H U2k —ﬂ I‘M’2k+1,u>’

(3) Mm3z1—MmeL (3)
|‘M’2k+1, ) = Usji |‘/Kj2k+1 u)

Therefore
2+1 [i—1]
T TT 7 miamiena) g (2EFD)
[Moggi1,n) = H 11 UlZamve Mogeitw)s (4.7)
= j=
where
tmn — 1), nodd,
[n] =
in, n even.

The symbol ﬁ with an arrow means that terms
are to be arranged in increasing order from left to
right. Note that the eigenvalues of the a;, depend
upon the exact position of these factors in the ordered
product.

A. Normalization Factor for the Case n = 2k + 1

Since the lowering operators Og.,,—, form a
commuting set of operators in the restricted basis

14 The superscript (2k + 1) will be omitted whenever it is obvious.

(4.6)

(MG, ), it is sufficient to consider the special vector
|#) in the calculation of the normalization factor associ-
ated with Oy, _;, where |i) is defined by

1) = Mo, ]s Mo = Myeyae for o). (4.8)

Before calculating the normalization factors, a
number of preparatory steps are taken.
(1) The Quadratic Casimir Invariant

It is well known that 324! J2 is a quadratic invari-
ant of 02k + 1),

2k+1

sz ?j |‘/K"i.(’7c)+1,u> = Copq1 I‘M’;‘;c)-i—l,p> foralla. (4.9)
i<

Expressing J;, in terms of the @ operators of both
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Eqgs. (2.2) and (2.3) the invariant takes the form

2k+1 9 k k
z Jti 21Q2k+1,—iQ2k+1,11 + z Q2J’,—iQ21,i
i=

i<j

+ 2 Q2]~1 —1Q2.1—1 i + z Jzz——l 27

0<z<7

+ Z 2k —2i + DJgi1,2-
i=1
By applying (4.10) to

(4.10)

lv./KJ(2k+1,>

2%+1, 4

and using the fact that the raising generators Q, give
zero when operating on the highest-weight state, the
invariant can be evaluated:

k k
Corp1 = Zlm§k+l,a + 21(216 — 20+ Dmy 4, (4.11)
(2) Some Preparatory Lemmas
Lemma 1:
Q,;l=0 for 0<j<i, 4.12)

where the vector [i) is defined by Eq. (4.8).
Proof:

a

2 aﬂ(P)Qnﬂ >

oﬂd

Qup = glhaﬁ(P)onﬂ’
since
Oupl) =0 B#EI (Myp=my,,, B#i),
it follows that
Q,;1)=0 0<j<i

Lemma 2;

k
il jZ.sz+1,—jQ2k+l,f i)
= (i] (Mags1,6 — J2ic1,20)
X (Mapi1, + Jaines + 2k — 2i + 1) |i).  (4.13)

This is a consequence of Lemma 1 and Egs. (4.10)
and (4.11).

Lemma 3:
-1
2 E.Qn,—lgnl
<i| Qn,—lin ll) = <’I e |l>
i—1
L, 2 B a;_,+ 2 .
={|— [I =—0,-0.1D,
A;_ja=itl a; ,

I>i (414

This follows from the relations .
(1) (ll Qn.—ﬂonﬂ [l>=01 i < ﬂ’
(i) <l p_,, =0, 0< e< |4,

S. C. PANG AND K. T. HECHT

and a process of mathematical induction. Note that
(i) follows from (i| p_c; = (—pe,_; i)1 and the fact
that —p._, with 0 < € < |4 is a raising generator
of a subgroup of O(n). Set § = i + 1 in relation (i).
As a consequence of Lemma 1 only two terms of
O, (corresponding to the first two graphs of Table
I) survive. Commuting Q, _(;,.1) through the factor
Pis1,—; and using relation (ii), the term arising through
the second graph reduces to

i—1
—2(@| Qp—iQun Haa.-—(i+1) [8).
a=1

Together with the first term this leads to the special
case of Eq. (4.14), with / =i + 1. By similar tech-
niques the case with arbitrary / can be related to that
with / — 1.

Lemma 4.
(l' Q2k+l —1Q2k+1 i ll>

= Joi 13
@l —I;I—I(a,_z+2) 2i-1,20)

X (Moppa,s + Joi1,e: + 2k — 2i + 1) [i).  (4.15)

(m2k+1 i

This is a direct consequence of Lemma 3 and Lemma 2.

(3) Evaluation of (i| Ogpy1,{O041,—¢ 1)

All terms in the raising operator Og,, ;, except
the one term containing Q,..;,,, have at least one
factor p_.; (0 < € < |4]) on the left-hand side. Since
{i] p—e; = 0, the basic matrix element reduces to

(ll 02k+1,i02k+1,—i Il>
i—1

= (i] Qar41,i00k41,—: 1) :!1;(" (@i + 2)1i). (4.16)
The matrix element (i| Qgyq,,0241,—; i) is evaluated
by commuting all of the factors p_., of Oy,
through to the left-hand side where they give zero
when operating on (i|. After this process only matrix
elements of the type (il Quey1,—;Qara.; 10), (j 2 i),
survive. Their coefficients are evaluated in Appendix
A by a process of summing of graphs. The matrix
elements themselves are given by Lemmas 3 and 4.
Combining these results (Appendix A), the basic
matrix element is

<il 02k+l 02k+1 —% |i>
-1
= (il (H 010 TT @4y = 2) Tl oy + 2))

a=1 y=1i+1
X (Maygya,s + J2i—1,2i + 2k — 2i) [i).
(m2k+1.i ~J 2i-1,2¢ T 1) 4.17)
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In the state |{) all J,,_; o, except that with o = i yield
their highest-weight value

(il Jagm1,2¢ |8) = Magey1 05

(i Jgi1,0: 10) = Mog,i+

(i)  (4.18)

Thus

(i Osxt1,i00141,4 |1
<-/K>2k+1 ul (m2k+l i— Jaine + 2k — 2i) M(ch]i)lu}

(2%) (2k+1)
X %("M’2k+l ul H 1—_[

y=i+1

+ 2) | Mogon,)- (4.19)

(2k+1)

X ( —zﬁ

(

Yy (
B=1

The superscript zero on a subscript of a,, has been

defined in connection with Eq. (4.19). For example,

(2k) (2k+1) (2k)

(M1, @ p— | Mogres, W = 2(May,; — Mg,y +y - i).

(4.20)
B. Normalization Factor for the Case n = 2k

(1) The Quadratic Casimir Invariant

EJ B 1MED Y = Cop |M52 )y for all .

i<j

(4.21)

Expressing the J;; in terms of Q operators as before

2k k—1 k—1
ZjJ ?j = lezk,—inki + Z Q2i.—iQ2:ii
i< i=

k
+ z Qza—l —zQ2J—1 i + z J21.—1 24
0<z<J
—1

+ 2(2k - 2i)“’2’i—1,2i' (4.22)
i=1
3 #-1
Co= 2 mgk,——i + 3 2k — 2i)my,,.  (4.23)
i=1 i=1

As before, it is convenient to define the special vector
; (2k—1).
[1) = (Moo s Magq = Mg 1,4

w# i) (4.24)

Since the raising operators for O(2k) and O(2k + 1)
have the same form, Eqs. (4.12) and (4.14) hold, and

k-1 k=1 (g, +2
Gl .;sz,—ink:i liy = (i |¢El(al a+ )Q2k,~zQ2k i D).

(4.25)

Putting this relation back into the expression for the
quadratic Casimir invariant gives

k-1 (g 9
Gl [ il ("—““—t—)]gzk,_igzk,i +

a=i+1 ;o
+ Jgi—l,zi + (2k - 2i)J2i-1,2i ll>

= my,; + 2k — 2i)my, ; + mgk,k° (4.26)
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Unlike the corresponding equation for the case of the
odd-dimensional orthogonal group, this relation is
not sufficient to evaluate the matrix element
(| Qa,—;Qor.: 1), since the matrix element

(ll J2k—1.2kJ2k——1,2k |l>

is not known. However, there is now one more invariant
at our disposal.

(2) The Quadratic Invariant in the Restricted
Basis [M@E1]

Since the (zero-step) neutral operator O, , com-
mutes with all raising and lowering operators when
applied to the basis [AE¥ 1], it is an invariant in this
restricted basis. To get a relation between the matrix
elements of the quadratic factors JZ2 and

2k—1,2%
Qox,—iQsx,; consider (if Oy ;,Ogy 1), Where

k-1

Ql 01,1021 x [i) = il 1:_! anZk—l,ZkOZk,k [i)

x—1
= (il I_]; a, | 21,060,111 (4.27)

through the relation (| p_;c =0, 0 <j < |e¢|. Sum-
ming up of the matrix elements from all the possible
graphs in Oy, with techniques similar to those
illustrated in Appendix A leads to

(il O, Osp e |1)
k-1
= (il [T az 19)

a=1
. k1 (ai—az + 2) .
x (] J:k—l,zk - HIT_ Qore,—iOQsr,: i), (4.28)

On the other hand, since Q,, ; is an invariant

(i 02k k02k % |iy = <‘M’(221ck:4| 02k k02k x | (2213) (4-29)
Also
(i} a2]i) = (MogD] al | Mogeay  fora i, (4.30)

By applying (4.28), (4.29), and (4.30), the quartic
invariant leads to the relation

1 (0, +2)

a=it+1 a

Q2k,—iQ2k,i |l>

P 2
(| Jop-1,268; — Gy

+ k — iy
(3) Evaluation of (il 0,0_; i)

Since we have two equations and two unknowns

we candetermine both (il Quy_; Qg ;1Y and (i|JZ,_; 5. 10).

The technique for the summing up of the graphs is
similar to the case of O(2k + 1)illustrated in Appendix

(4.31)

2
= 4m2k,k(m2k,i
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A (and Sec. 4A3.) and leads to
(i} Ogy, Oz, Ii>
= HAET TT @ -

a=i41

2) }"I (a%p + 2)
=1

b
X b(zk) (2%—1) .M)(Zk—l) Vil
H Mgy N Mogie | —— b,
The superscript zero on a subscript of a;, has the same
meaning as before. For example,
<‘M);:I’c;1)| b(zk) IJ(’;:’,‘;D>
= 2(m3k_1,, + mzk,.’ + 2k - i - y - 1). (4.33)
C. The Normalization Coefficients
Let the normalized lowering (raising) operators be
denoted by U, ,;. If the state | M%) is normalized
<.M)('n—1)’ n—l,tl UmU n,—1 I‘M’("—l)a n—l i>
= (J();r;‘—l)’ -1 I ..M:("_l), My

(Zk—l)
I 2k, >

(4.32)

—1)=1
(4.34)

n—l,i

But

(MEDm, o o— 1] = (M m, (U, iy

(4.35)

The normalized lowering (raising) operators should
thus have the property

Upi = (U, )" (4.36)
The lowering (raising) operators of type O, ., do

not satisfy this relation. However, if O,,; is a lowering
(raising) operator of [AC{»], so is

fnz(J129J34’ )00,
where f,; is a function of J,,_; g, only (x =1, -,k
forn=2k+1,a=1---,k —1 for n = 2k), and
where f,, ,; can be chosen such that

fm’om' = (On,—ifn,—i)T- (437)
Since any arbitrary function g(Q, p,J)p,s, With
0 < a<1|gl, is a null operator when acting on
[M(1] and can be added to a raising or lowering
operator without changing its raising or lowering
property, the functions f,;, f,,_; must be evaluated by
comparing the p independent terms on each side of
Eq. (4.37). This leads to

Jorsr,e = H ;g H g, (4.38)
a=i+1

i—-1

Joerr—i = I_Il (a_sy +2), (4.39)
y=
i—1

f2k,——i = 1;]1.' (a—i,a + 2), (440)

i—1 k—1
f2k,| = biz I_Il. bzﬁ ].-1 a:,-—a ta* (441)

S. C. PANG AND K. T. HECHT

Thus
Um = (f'ni/Nni)oni’ (442)
Un,—-i = Oﬂ‘—l(fn.--i/Nm')a (443)
where N, is a factor which is defined to be real. With
(Mo Uy Uy [ M) = 1,
(n—l)l fmomo ——1fn »—1 I‘M’(n—l)> = Nfﬂ"
Note that the U,,, unlike the O,;, do not form a
commuting set of lowering (raising) operators,
[Una> Ungl # 0, since [ [, O,5] # 0. However,
[Om'on.—i ’fna] =0, for any o.
Therefore,

an' (n—l)l fmf'n,—z M(’("_I)Xil Om'ofn,—t’ |l>’ (446)
With Eqs. (4.19), (4.32), and (4.38)—(4.41)

(2k+1)
1—_[ az,—aataaia
a=i+1

(4.44)

(4.45)

2k+1
(2%+1) g _ gy

Nop1,s = a3 di—a

-1

. 1—_1 a(a_,p + 2)a (2% ';1’ + 2)ay; (2k+1)

, (447)

(2k)

e 30089, + 2% — 2t |

111
b
4

NZk,i = l

—1

x| aa + 2)b,,bid (a%hhe + 2)

n—1
(2k) (2k)
X TT a:-pbis(as=p> — 2)byg0

p=i+1

¥
. (4.48)

5. MATRIX ELEMENTS OF J,_, ,

In the evaluation of the matrix elements of the
infinitesimal generators, the matrix elements of J,_,
play the fundamental role since the matrix elements of
all other J;; can be simply related to these. Matrix
elements of J,_, , have been given by Gel’fand and
Zetlin.®7 A derivation of the Gel’fand—Zetlin result
is given here to illustrate the usefulness of the lowering
(raising) operators

Since J,,_; , commutes with all J;; with both 7, j <

-1, Jn_lm is a scalar operator with respect to
O(n — 2). The matrix elements of J, ; , are thus
diagonal in m,,_, , and independent of m, ,,» < n — 3.
With respect to O(n), J,,_, , transforms according to
the regular representation [11000 - --]. With respect
to O(n — 1) its irreducible tensor character is that of
the vector representation [1000 - - -]. It thus connects
states in which any one of the m,_, , differ by +1
only. (For n — 1 odd, it also has a diagonal matrix
element.)

(Momul T, [ Mon) = (M=) Ty [ G

m,; my;
= <m;z—1,¢" 'In—ln Imn—l,i>' (51)

My2,i My a,{
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For convenience, only the relevant m,; in the one col-
umn subject to change are written out. The matrix ele-
ments in the [A{"~?] basis could be evaluated through
a construction involving successive application of
lowering operators of type U, ; followed by U, _, ;.
It is more convenient to factor the matrix element of
Jp-1,n into two parts by using the Wigner—Eckart
theorem. The reduced matrix element, independent
of the m,_,,, can be chosen as the matrix element
of J,_;,, in the restricted basis [M{% ], while the
m,_, .dependent factor can be expressed as the
matrix element of a vector operator in (n — 1)-

dimensional space
LN
Mp1,¢

my

m

‘M);‘“i Jﬂ‘l.‘n |‘M’np> = <m,

ni

n—1,{ Jn—l,n

my 1,

x <m;—1,¢

My_2¢

where ¥ has irreducible tensor character [1000 - - ]

with respect to O(r — 1) and [000 - - -] with respect

to O(n — 2), and its matrix element is normalized to

unity when m,_,;,=m,_; ; (all ). The first factor

imposes the restriction mﬂ_1 ;=m,_, . However,

the matrix element with m,, i =m, ., — 1 can be

obtained from that with m,,_, , = m,_, , + 1 through
the Hermiticity of J, ;..

my 14
mn—-a.

vV

» (5.2)

Mp;

My
A. Evaluation of ( m,_; A J,_1i 0 |may
n—1,1 My_1,i
() n=2k

O, . is a linear combination of Jy, ; o and @y ,.
Re-expressing Oy, instead as a linear combination
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of Jo_1,3¢ and Oy,

w1
{OZk.k = I:Jzk—l.zk 1:[1 "

k-1 m .
+> ozk.l.-.ozk.,h.-]} ’ > =0, (53)
a=1 Moy 1,5

where h, are functions of Jy,_, »,, (i < k), which are
to be determined from the conditions required for

Oy 1
(@) {Ps1s Os el m,,',> =0,
mn—l,f
0<j<I<k—1, (54
(b) [Q2k-1,15 Oga] Mmd > =0. (5.5)
m,_1,;

Condition (a) is automatically satisfied. In order to
satisfy condition (b):

= (2k)
{[sz——l,i » Jap—1,2x] 1'! a, *
a=

k-1 m
+ E[sz—l.n Oak—l.—ulozkaha} s > =0. (5.6)
a=1 My 1,1

From the coefficients of @y, ;, however, the A, follow
directly

-1 a'2e) k-1 (ﬁk) 1
P . )
] (g (a(zm 2)0-(—21’2: pH*—l a(jzf)p(a(zk) ) (Ik)

(5.7)

My > - 1 ﬁ a;%k) Mok, s > (5.8)
My, 2ix Mak-1,;
Re-expressing the Oy, ;,_, and Oy, of Eq. (5.3) in

terms of Uy._; _, and U, ,, the matrix element of
Jai_1.2¢ can be read off from Eq. (5.3):

Also

02k,k

mgk j mzk i (2k) k (2k)
J Mo, s a,c a,o Mar,s 59
Mop_1,5| Jar—1,9% [Mar—1,5 o , 5.9
Moy 1.5 My 5 Moy1,5 °‘=1 a; " |Mgp_q;
Moy, i Moy, 5
Map—1,5 + 1) Jox—1,26 [Mai—1,;
Mop_1,5 Mop1,5
, @) (2k) ) GRG0 G0 @ (00
Mapy | =20 ﬁa 135" X1 a;”goa;ge 00 Ay ayd |F M, >
Ma1,i| ¥ (a; + 1)* =1 a%a®® =ii1 aFlalie 2 2 2 2 Mor,5
(j=1,2, s k—1) (5.10)

(2) Then = 2k + 1 Case
The procedure is similar to that for n = 2k. First, since Jy o,; has no diagonal matrix elements, in

place of the neutral operator there is now the relation

1
{J 2%,2%+1 — [zlozlc,—aozk+l,aha + Ogpvxhz + 02k+1,—kh—k:|}

(5.11)

m2k+1;i> =0
=0,
Moy,;
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where the h, are evaluated as before through From the coefficients of Qy.y 5,
Q') g
- hy = [2(1;‘*"’ + 4)( sr )

[ uss Jawsers = 2 Out-sOnesshe = Ominihy
a=1 ],
x T aa 1 aihaly) . 619
Mapiri \ o B=ir1
. ‘> 0. (312) Similarly, e-expressm g the O operators in terms of U.
2k,4 operators, the matrix element of Jy or4; can be read

off from Eq. (5.11).
M1, @R£D) (2D (2k+1) |3
m i Mopiy,s] —118-5° (@0 + 2)a; m2k+1,i>
2k,
’ Mog,s Mag,s

(2k+1)(a(2k+1} + 2)

- O2k+1,~kk—k]

-1

Jz}'c 2k+1
i~k

Makt1,5
Mgz s+ 1

Moy, ;
1| ,(2kt+1) <2k+1) Y (2k+1) (2k+l)
xc (M T7 | o 2 11 |2l +2)fH o, j=1,2,k (514
, s . .
Myp 5 | a2t a(2k+1)( (2k+1) + 2)| g2 a‘ff‘,;"”(a(z"“) +2)| Ima,;
LA, My,
B. Evaluation of< T pte-D ¢
. . Mpg.i LR
Y1) has the transformation properties of
10.--
00 --
and is to be normalized such that
LY ? - . LI I
My 11 My1e Mpygs My1,s My 1,401 yin-D M, a1 Myge my_ 1, >= 1.
My 31 Mpaa Muyaa "0 My My g0 00 Mya1 My, °°° My a,y "7

(5.15)

It is convenient to introduce the following shorthand notation. Change m,; —> o; M,_3 ;—> i My g ;> 7: <
f; and define

B;>___ B Ba -t Bia Bi Bir Bire >, (5.16)
Vi Bi Bttt By Vi Vi1 Vi )

g+ 1 B > 1B B o B+l B Bae ot Bix B Ba B '>, (5.17)
B; Vi fr B2 - B; Bivn Birs =0 Bea Vi Vi Virz T

lﬂi Bi+1 > _ B B 0 Bia B Bin rr Bia B+l B '>, (5.18)

Vi Vi By Ba t Ba Vi Ve Tt Vi Vs Vier "7

1 1006 -

{0> =b oo - > (5.19)

(1) The n = 2k Case

where the I';; are generalized Wigner coefficients for

Define coefficients I';; by the relation the Kronecker product [100---] X [Byafs - -] of
ﬂ B\ B 1 B O(2k — 1). Note that I'y,, the coefficient with all

I > > g ‘) i D y: < B, starting with y, , is equal to the matrix element
' ‘8 s v LBy v of V@1 provided I',_,;, the coefficient with al/

+ ZF B B\ 1B B+ 1> y: = B, satisfies the normalization condition I',_,; =

£ "(% y,-) Ve, 1 required by Eq. (5.15). The coefficients I, can be

1 B related to the coefficients I';,,; by recursion tech-

+3T; (ﬂ 0 A ) b B 1> niques, leading after repeated recursion to a relation

=t Vi Vs Vi Vi between I'y; and I'_, ;. Since the recursion is to be

r. (P .-> | ) (5.20) established through the raising generator Q,, it is
€0 % ’ ) necessary to define further coefficients, €,;, by the
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relation N

S R
+§%@i)£uﬁﬁ“
+29 "(ﬂ: ﬁ) y,f-l l>
oyl
+30) gfj:i " e

The operators A(p) of the last term of the equation,
when acting on states (5.16), create states outside the
basis [AC$2)]. These are orthogonal to the states of
present interest so that the last term of Eq. (5.21)
plays no further role in the discussion.

Applying Qg , ; again to Eq. (5.21), a set of recur-
sion relations is established for the coefficients Q;;

oy 2 af;)

= , (5.22)
Q”(Vﬁl ﬁ:) qi(%-liil ﬂj; 1)
Qo(g) = (g) , (5.23)
Q'°( +1) qi(yiil)
where
ClonslD-afly o

Applying Q. , ; also to Eq. (5.20), another set of
recursion relations is established,

el ")

il 2, 2 vl ) e
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Ca((i)a5) =ao)ral, 1) + 0o(3)
(5.26)

The recursion process for I';; can be started if the
coefficients I';;, Q,; can be related for a particular
value of ;. The cases I';; and I';, are somewhat
different.

a. The Case I';;. From Eqgs. (4.1)

i D) == et ot 2 =21

g, (a0 +2)
- ’ 5.27
xlgl (a;,2 + 2)(a;,-; + 2) (27
Form;=§,—j+i+1
g B;+1 Bi
0=gq, # g, 5.28
1 (mi Vi ) 4 (mi) ( )
and Eq. (5.25) reduces to
) :Bi . Ba ﬁj B ﬂi ﬂi =0 529
q'(m,.) } (m : %) (m %_) . (529

With this starting relation and the recursion relations

(5.22) and (5.25),
) -
Vi Bi—Bi+i—i—1

r,(*
Vi
B:
P2 % (Vi + ;li)

x 11 4
NG

where I';; has been related to

o [= ()]

In the same way the relationship I'y; — I'y; —
Iy;~— - -+ —T';; can be established, leading to

Yz_131+]_l—1

bi ﬁ’) (5.30)

Ty (131 Be B; 5k—1) — (131 Be B B Bira - )
Y1 Ve Vi Ve P Br Pe Bi Vi Vise ’
|l bt —i= Dok B2k —imj= DI gy
’l(ﬁz_ﬂj J—l'—l)(ﬂ1+ﬂa+2k—l—1_1)

So far the recursive chain stops at i = j since Egs.
plete the recursive chain, the relationship I'y; —» T, —---

(5.22) and (5.25) are valid only if i < j. To com-
—I'y_,,; must be established. For this
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purpose consider
1> B ﬁ',+i>
Bs Vin

2/

(@

B, + 1 131+1>+ e, (532)
B; Vi+

Bin >
®) ' > B; Vint+1 . o
- Bs B \|Bi+1 B +
y“(ﬁ; Vi + 1) B; Vit + 1>

(5.33)

[The omitted states are similar to those of Eq. (5.21).
They are orthogonal to the states of present interest.]

Operating with Qg ; ;0on (b),and with Qg3 ;,.1Qae-1.5
on (a) and comparing the two equations

Tl )
(g ; ijljzl' 1)

sy )’ )
P Pt )

(5.34)

S. C. PANG AND K. T. HECHT

Then

Cunify 7)

= T (B ﬂm)"’(ﬂj )

B; B

Birr Vi (ﬂ; +1 195+1)

B; Vi1

qﬂ_l(ﬁi Bis1 )

Ao tiar—1 B; Vint A

(5.35)
Aj41=0 q (ﬂ,+1

" ﬂ i+1 )
Bi+1 yia+ A
By repeated application of Eq. (5.35), finally

O R
R P R )

O RGN

(5.36)
Combining Eqs. (5.31) and (5.36) with the restriction

Plo—-l.j =1,

B B, Bi+1 Bra Bia ﬂk—1’ pae-n [fr Bs By B ﬁk~:>
i Y2 T Vs Yitn Vi+a Vi1 V1 V2 Vi Vit Vi~
HG =t =i+ DB+ v+ 2% —i—j— D]
11 (5.37)
=1 = fi+i—j+ DB+ B +2%—i—j—1)
b. The Case I';,. From (5.23) and (5.26)
Appendix B) as
( p: ) 8
r(f) - (g) + =7 ————‘3'}9 G Tog) = —Gek=i-D
2 € 4, i
(ﬁ,- - 1) x Qp f" B\, (5.40)
ﬂ' ﬂz -1
In order to start the recursion process, the relation 1
B: B: B: r, (’3 1) = ”"—+—’—‘L’—:—1 r (ﬂ"—l) (5.41)
between Iy, (ﬂ.) and Q, ( 8, — l)/q,.(ﬂi - 1) must \,, gt k—i—1 g )
be known. The technique used for the case I';; cannot  so that
be applied here. However, by applying the quadratic
invariant to both sides of <ﬁ1 Po - B Bra
Y1 Y2 Vi Ve
{Q%_lﬂ. 1>} Pi > = Qio( Bi ) ’E> + e, x k-1 fr B2 - B ﬂk-—:>
0/} 16 —1 B — 17 1; 539) nove Vi
= H ks =1 4

the desired relation is obtained (details are given in

_15+k""1—1
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(@) The Casen =2k + 1

The procedure is exactly the same, except that the term I';, does not exist (¥*® has no diagonal matrix
element). The result is

B ﬂz ﬂ5~1 5;"*‘1 iB:i+1 B ﬂk
Yi Y2 T Vi Vi Vi1 V-1

V(zk)

Br B - B B+l B o B 51:>

Y1 Ve Vi1 Vi Vier "7 Ve

=|’°~‘(ﬂ,—y,~+i—j+1)(ﬂ,+y,-+2k—i—j)*
=1, — B+ i—j+ DB+ B +2k—i—)

. My ; 5
C. Evaluation of { m;_, , M, 1.4
LA

n—2.5
Combining the results of subsections A and B above, Egs. (5.2), (5.9), (5.10), (5.14), (5.37), (5.42), and
(5.43), the Gel’fand-Zetlin matrix elements are obtained. With

(5.43)

Jn—-l.n

lzk,a = Moy, + k — a,
by 10=My 3, +k—a

k-1 k 3
Mgy, ; Moy, ; 11 (lgk—Z,a - l:k—l,i) 11 (l:k,ﬂ - lgk—-l,;‘)
<m2k—-1,1 + 1 Jopa,0 mzk—m> = —i = = ,
Mae2,i Mae-2,{ I, (Al 1,; — 1) I;I_(lgk—l,a = B, Mai,a = 1) = s,
a¥Fy
(5.49)
k-1
Mok, Moy, s n; Lyp—2,0 H log,p
<m2k—l,j Jok-1,9% |Mop-1,5 ) = k«:r_ s (5.45)
Mae-2,5 Ma-2,i IT berellair,e — 1)
a=1
Mar+1,5 Mg+,
<m2k,i + 1} Jax,on41 Mo, s >
Mo-1,5 Map 1,
E-1 3
H (aemr,a = oy — Dllaea,e + Iz, s) H (Tarrrp = s — Dlarrnp + o)
= — | =t . (5.46)
2
].;.[_ (lzka - ngi)[lgku - (lzkf + 1)2]
aFy
APPENDIX A. EVALUATION OF
; Ounr il
G| Q2k+1.a' akit—i | D Z {_.1, (—p_y, ,) H Giys
There are many graphs in Oy, ;. For some types I=it
of calculation certain ways of grouping them are {—i, I} = {], —-j}=1
more convenient than others. The following example i, »-1
demonstrates one way. B, =,,§1{J’ —P}0ei1,0 g Qiv s
A o k (A2)
. C; =y£{laa,
% %
O ’ A =3 {—i, }Qusrs TT iy
€ i F=i y=i+1
3 k k
Oge1,~i =?.‘,1 21 E;F {—1i, }(—p_1,-)J> —P}Caks10 = H Qiy» )
= =
k
k ’
Oy s =2A,B,C; + A'B; A3
?1:[ ; 7},11;1""" H a,, 2041, 21 BiC; + (A3)

+
where {—a, 8} means summation of all possible
{=1 /) Qa1 H iy, H i (A} graphs, which have a chain away from the |8|th point
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on the top when § is positive and on the bottom when
B is negative; and a chain ending at the |«|th point
on the top when « is positive and on the bottom when «
is negative.

Example:
{—1, 5} includes the following graphs in the top row:

.

(With one arrow link of the chain and three points.)

+ =N

(All the possible distinct graphs generated by re-
moving any one free point from the first graph, with
the appropriate chains.)

e e T - u/:_-\.—au

o e o e e +

=y -

e Te—a—une

o e

(All the possible distinct graphs generated by
removing any two free points from the first graph,
with the appropriate chains.)

+ B e gt el

(All the possible distinct graphs generated by
removing three free points from the first graph.)

Since the distribution of free points uniquely
determines the graph, it is sometimes more convenient
to define the graph by its free points.

With

Gl Q2k+1,a(”"P—¢p) = (i (_2)Q2k+1,ﬁ 0<a< |ﬁ|

(A4)

each chain contraction gives a factor (—2), and

il Q2k+1 z{—i l}

S. C. PANG AND K. T. HECHT

The second term in the parenthesis comes from
the removal of one free point from the first graph
which is

-1

(—p_i) H Qi —a>

a=i+1

and the last term in the parenthesis comes from the
removal of all free points from the first graph. A
similar removal of free points gives the intermediate
terms. By summing up all the terms,

1-1

di Q2k+l,i{_i7 l} — 2| Q2k+1 1]1 (a i—a T
(Aé)
Sirnilarly
k
(1] Quesradd; = il (——2)st+1,“,[ 1 @iy = 2)
+210 @y =) I a _,] (A7)
y=i+1 y=7+1

The first term is the summation of the contribution
of all possible graphs with any number of free points
from i 4+ 1 to k in the 4;; but it has included the
graphs

k
{—1,i}(—=p-i-) II ia>
a=j+1
which should be zero, since p_; ; = 0. The second

term is therefore needed to take away the improper
contribution of

x
{—i’ f}(‘P—3,~1) H Aipa+
a=j+1

-1 -1 Similarly
= =2l @ a1+ 3> — . L
et la—z p=i+ld; i—B (ll Q2k+1,—ij = (l' Z ("2)Q2k+1,—pQ2k+1,ﬂ
-1 1 i 1 -1 =1
+ (—2)2 z + o (_2)1 ! -1 " X H (au 2) H Ay + Q2k+1 -jQ2k+1 i H azu
Bay=it1a; _gl; o a=p+1 ’
B#y ’ ’ H Aipa i
A . 9y
(AS) With Eq. (4.12) and Eq. (A2)
i1 -1
2 q Qin IIlata Hl(ai —~% + 2)
(il Qarsr,~iB 18 = il Qupyr,— Qo ——— - 7 =t 2 (A9)
H ai —a
a=i41
By combining with (A7), (A2), and (A9)
-1 x
2 x Qorr1,-iQoesni H (@i, —4) H a«.[H @.—2)+21] “e,-«]
0l Quers,i 2 ABLC; i) = 3 — 4l = = =) (A10)

@y H L

a={-+1
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Similarly, with Eq. (4.12), Eq. (A2) and Eq. (A6)
(i| Qag41,:A'B’ |i) = z — Kil Jaj_1,25 H @« —2) H a; g H Ay )

j=1i a=i+ a==j+1
-1
H(a —1_4)Ha—a]._[aza (All)

+ 2 — & Qop1,—Qarra, = p— 1.

J=i 1—[ i s
a=i+1

By summing up Eq. (A10) and (A11), finally

a=]1 a=i+1

k k
(il Qort1,i0241,—4 |1 = (il [H a, I1 (@, — 2)i|(m2k+l,i — Jair,2 + D(Magpa,s + Joi1,0 + 2k — 20) |i).

A similar process works for O(2k), and gives

(A12)

Gl sz,iozk,—i [i) = il (mZk,i + Jaize t+ 2k — 2i — 1)(m2k,'i ~ Joi 1,2 + 1)

APPENDIX B. DERIVATION OF EQ. (5.40)
To derive Eq. (5.40),

)=t

X Q(ﬂﬂ—l)/ {5, 1) 60

the quadratic Casimir invariant C,,_; is applied to
Eq. (5.39). In order to simplify the evaluation of these

terms, the following points are useful:

1) Q,,-ﬂ">=0 i>0, a<2k—1 (B1)
Vi

§’> belongs to [ 2]

1 , ,
(2a. Qoir1,/Q2x1,i 0> =0, i# —j.

The net result of the two Q operations in succession
would either have to change one of the m,, ,, by
two or two of the my,_, , by one each. Both cases are
impossible since my;,_; , is [1000 - - -].

1 1
b. — —1,4 =2 s
sz—l, Q2k 1, 0> 0>

a direct consequence of Eq. (4.14) and Eq. (4.15).

since

(B2)

(B3)

2k—1

B) Cy= z Jzzy

i<j3

k-1
= ZQ2k——1,—jQ2k—1,i + Z QZz,—jQZa,J’
=1 i<es<ik—1

x (i H(a i—a

a=i+1

— D T] buliXil bi liy. (Al13)

(1)

+ z QZa—l JQ2a—1 ki + 2']21—1 2a

i<a<k—1
k-1

+ 2.2k = 200 — 1)Jze 1,8, (B4
Proof: Operating on Eq. (5.39):
AN >= B E>+,,,
{Qz"‘“ o>} fi—1 (/3 ) p:
(5.39)

with Cy,_, in the form of Eq. (B4), bearing in mind

(B1), (B2), L
(1>>}{Q“’°’1”' B: 2 1>

[N
é>}[292k—1 Lo+ 2
)
|

+ 2k — 2i + 26, — 2){9%_1,,- .
ﬁ’> (BS
8, )

The second term on the left-hand side cancels the
term on the right-hand side, and with Eqgs. (B3), (5.20),
and (5.24) the derivation of Eq. (5.40) is attained.

+ {Qz,,_l,i

k—1
+3Qk — 22 — 1)120,_1,24
a=1
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The unitary irreducible representations of the group SL(2C) belonging to the principal series restricted
to the subgroup SU(1, 1) are decomposed into a direct integral of unitary irreducible representations of
SU(1, 1). The matrix elements of the unitary operator which performs the decomposition are given
explicitly and used to obtain a relation between the matrix elements of the unitary irreducible representa-
tions of the groups SL(2C) and SU(1, 1). Similar identities between the matrix elements of nonunitary
representations of these groups are obtained by means of analytic continuation. The relevance of these
results to the theory of complex angular momentum and of high energy nearly forwardscattering is

pointed out.

1. INTRODUCTION

ECENTLY various authors!? have suggested and
investigated a connection betweén complex
angular momentum and the (not necessarily unitary)
irreducible representations of the Poincaré group
corresponding to a spacelike four-momentum (the
momentum transfer). These representations are
strictly connected?® to the representations of the little
group corresponding to a spacelike four-momentum,
ie., the three-dimensional Lorentz group, or the
corresponding spinor group, the group SU(1, 1) which
is homomorphic to it. The scattering amplitude at
fixed momentum transfer can be expanded in terms
of the matrix elements of these representations. This
expansion is strictly connected with the expansion
obtained by means of the Sommerfeld—Watson
transform.? It can be considered as a generalization
of the partial wave analysis, which is an expansion of
the scattering amplitude at fixed energy in terms of
the matrix elements of the representations of the
group SU2.

It has also been suggested >7 that, when the momen-
tum transfer vanishes, it is more natural to expand
the scattering amplitude in terms of the matrix ele-
ments of the representations of the little group

* H. Joos, Lectures in Theoretical Physics, W. E. Brittin and
A. O. Barut, Eds. (University of Colorado Press, Boulder, Colo.,
1965), Vol. VIIA, p. 132; L. Sertorio and M. Toller, Neuvo Cimento
33, 413 (1964); F. T. Hadjoannou, Nuovo Cimento 44, 185 (1966).

2 J. F. Boyce, J. Math, Phys. 8, 675 (1967).

3 E. P. Wigner, Ann, Math. 40, 149 (1939).

* E. J. Squires, Complex Angular Momentum and Particle Physics
(W. A. Benjamin, Inc., New York, 1963). This book contains the
references to the original papers.

$ M. Toller, Nuovo Cimento 37, 631 {1965).

¢ M. Toller, “The Laplace Transform on the Lorentz Group and a
Generalization of the Regge Pole Hypothesis,” Istituto di Fisica
dell’Universitad di Roma, Report No. 76 (1965).

? M. Toller, “Some Consequences of a Generalization of the
Regge-Pole Hypothesis,” Istituto di Fisica dell’ Universitd di Roma,
Report No. 84 (1965).

corresponding to a vanishing four-momentum, i.e.,
the homogeneous Lorentz group or the corresponding
spinor group SL(2C) which is homomorphic to it
In other words, many considerations lead us to think
that, at vanishing momentum transfer, the expansion
in terms of the matrix elements of the representations
of SL(2C) permits a simpler description of the high-
energy scattering amplitude.

As the scattering amplitude is an analytic, and
therefore continuous, function of the momentum
transfer, a connection must exist between the SL(2C)
expansion at vanishing momentum transfer and the
SU(1, 1) expansion for very small momentum transfer.
This connection takes a more suggestive form if we
make the assumption (supported by recent research®)
that the scattering amplitude is dominated in the very-
high-energy region by Regge pole contributions. As
shown in the above-mentioned papers, each Regge
pole contribution can be described in terms of the
matrix elements of an irreducible nonunitary repre-
sentation of SU(1, 1). Gribov and Volkov®1® have
pointed out that, when the momentum transfer van-
ishes, the various Regge pole contributions can no
longer be independent from each other, but must be
arranged in families of poles which are displaced from
one another by integral numbers. However, there is
a large ambiguity in determining the structure of these
families, so further hypotheses are needed. According
to the ideas sketched above, we suggest!' that at
vanishing momentum transfer the sum of the Regge
pole contributions belonging to a family gives rise to
a contribution which can be described in terms of an

8 R. J. N. Phillips and W, Rarita, Phys. Rev. 139, B1336 (1965).

? D. V. Volkov and V. N, Gribov, Zh. Eksperim. i Teor. Fiz. 44,
1068 (1963) [English transl.: Soviet Phys.—JETP 17, 720 (1963)).

10V, N. Gribov, Zh. Eksperim. i Teor. Fiz. 43, 1529 (1962)
[English transl.: Soviet Phys.—JETP 16, 1080 (1963)].

11 Volkov and Gribov use a different assumption.
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irreducible representation of SL(2C)'2; we call it a
“Lorentz pole contribution.”

In order to investigate the above-mentioned con-
cepts in more detail, it is necessary to study the con-
nection between the representations of the groups
SL(2C) and SU(1, 1). This is the aim of the present
paper.

In Secs. 2 and 3 we describe the irreducible unitary
representations of SL(2C)* and of the subgroup
SU(1, 1).1 In Sec. 4 we perform the decomposition
of the irreducible unitary representations of SL(2C)
restricted to the subgroup SU(1,1) into a direct
integral of unitary irreducible representations of
SU(1, 1). In Sec. 5 we investigate the properties of the
matrix elements of the unitary operator which per-
forms the decomposition. By means of these matrix
elements we can write a formula which gives the
matrix elements of the representations of SL(2C) in
terms of the matrix elements of the representations of
SU(1, 1). In Sec. 6 we modify and extend this formula,
introducing by means of analytic continuation the
matrix elements of nonunitary irreducible representa-
tions of the groups considered. In Sec. 7 we show
that the identities so obtained are the very mathemati-
cal instruments needed in order to clarify and exploit
the ideas sketched at the beginning of this Introduction.

The arguments treated in this paper are also useful
in connection with the problem of decomposing an
irreducible representation of the complex inhomoge-
neous Lorentz group restricted to the real inhomoge-
neous Lorentz group (Poincare group). The importance
of this problem in the relativistic theory of scat-
tering has been pointed out by Roffman.15-1¢

2. UNITARY IRREDUCIBLE REPRESENTATIONS
OF THE GROUP SL(20)

The elements of the group SL(2C) are the unimodu-
lar complex 2 X 2 matrices of the form

11 Gi2
a= ( s Gufyy — Ay = 1. (2.1)
s QG2

The unitary (and also the non-unitary) irreducible

representations of this group have been investigated
and classified by Gel’'fand and Naimark.?® The method

12 A similar classification of the Regge trajectories has been
proposed by G. Domokos and P. Suranyi, Nucl. Phys. 54, 529
(1964). These authors use as a starting point a Bethe-Salpeter
equation with the integration path of the energy variable rotated in
the complex plane [G. C. Wick, Phys. Rev. 96, 1124 (1954)}. In
consequence, they consider the four-dimensional rotation group
instead of the Lorentz group.

13 M. A. Naimark, Linear Representations of the Lorentz Group
(Pergamon Press, Inc., London, 1964). This book contains the
references to the original papers by Gel’fand and Naimark.

4V, Bargmann, Ann. Math. 48, 568 (1947).

15 E, H. Roffman, Phys. Rev. Letters 16, 210 (1966).

i8 E, H. Roffman, Commun. Math. Phys. 4, 237 (1967).
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used by these authors for the construction of these
representations has been generalized by Mackey?:1¢
in his theory of induced representations.

In order to introduce suitable notations, we give
in this section a short description of the irreducible
unitary representations of SL(2C) belonging to the
principal series. We do not consider in this paper
the representations of the complementary series. As in
the following, we use Mackey’s general techniques, and
emphasize the fact that we are dealing with induced
representations.

It is useful to introduce the following notation for
the clements of some one-parameter subgroups of
SL2C):

u(6) a0
[ cos 30 —isin}f _ cosh 3 sinh }{
N (-—-i sin}6  cos 6 )’ B (sinh 3, cosh %C)’
uu(e) au(C)

cos 3 —sin}h _ cosh${ —isinh}{
- (sin 16 cosif )’ B (isinh 3{  cosh§L )’
u,(6) a(0)
N (exp (—i30) 0 ) 3 (exp ¥ 0 )
B 0 exp (i16)/ Lo exp (—30)/

2.2

In the homomorphism between SL(2C) and the
Lorentz group, the first three elements give rise to
rotations of an angle 6 around the axes of the co-
ordinate system, and the other three elements give
rise to pure Lorentz transformations along the
coordinate axes with relative velocities § = tanh {.

SU2 is the unitary subgroup of SL(2C) (homo-
morphic to the rotation group). As well known, every
element u € SU2 can be written in the form

u = u(@u(Ou,(),
0L u<dn, 067 0Ly < 2m.

By means of this parametrization, the invariant
measure on SU2 takes the form

du = (4m)~* sin 6 du dv db. (2.4)

The induced representations we consider are con-
structed by means of the subgroup K whose elements
are complex matrices of the form

~1
k=(P q),p;eo,
0 p

17 3. Mackey, “The Theory of Group Representations,” Lecture
notes, University of Chicago (1955).

18 G, Mackey, Bull. Am. Math. Soc. 69, 628 (1963). This paper
contains references to previous work on induced representations.

2.3)

(2.5)
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and, by means of the followingone-dimensional unitary
representations of X,

LY (k) = |p(R)** [(p(k)], (2.6)
where p(k) is an element of the matrix k as shown in
Eq. (2.5); M is an integral or half-integral and A is a
pure imaginary parameter.

We mention some properties of the right cosets of
SL(2C) with respect to the subgroup K13:

(a) Every coset (one excepted) contains one and
only one element of the form

10
z= ,
z 1

where z represents both a complex number and the
corresponding matrix. This means that every matrix
a € SL(2C) (with a,, 5 0) can be written in the form
a=kzwithke k.

(b) Every coset contains infinite unitary matrices.
Two unitary matrices « and ' belong to the same
coset if and only if

Q.7

w = u(wu 2.8)
for some value of u. This means that every matrix
a € SL(2C) can be written (in an infinite number of
ways) in the form ¢ = ku with k € K and u € SU2.

A measure in the space of the right cosets can be
considered as a measure du(z) in the complex plane
of z. We choose this measure in the following way:

[ dutar = [ pdn @9

where y(a) is an arbitrary function defined over SL(2C)
with the property

wka) = wa), kek. (2.10)
A simple calculation shows that Eq. (2.9) requires that
du(z) = dRezdImz[=(1 + ||  (2.11)

An element a € SL(2C) given by Eq. (2.1) operates
a transformation in the space of the right cosets or
in the space of the representative elements z. More
explicitly, this transformation is

' —>z" =kza, kek, 2.12)
or, performing the calculations
2" = (Z'ay + a)/(z'ays + az). (2.13)

From Eq. (2.11) we know that the measure du(z) is
affected in the following way by the transformation
(2.12):

W) (L

du(z’) |2'ays + aal® + [2'ayy + a*

Given an element a of SL(2C), we indicate by (a),
an arbitrary unitary matrix which belongs to the same
coset. Clearly a(a),* belongs to the group K. If a is

A. SCIARRINO AND M. TOLLER

given by Eq. (2.1), we have

|pla(a)s’11* = la|® + |asxl®.

Therefore Eq. (2.14) can be written in the form
duzy _ | _plz'e5" [ _| _pla'@)st |f
du(z') 1 plz'a(z'a)]’] pla'a(a’a)y")
In the last expression of this equation, &’ is an arbitrary
element belonging to the same coset as z’ [note that
(@) = (kz")y = (2'), and that p(k) is a representation
of X].

The Hilbert space J¢, where the induced representa-
tion DM* = UL** operates, is formed by functions
f(a) defined on SL(2C) which satisfy the covariance
condition

(2.15)

4

(2.16)

f(ka) = M k)f(a), keK. 217
The scalar product is defined by
G =[ Forwa @
sU2

and the representation operators operate in the
following way:
pla'(a)"] |’

[$M‘(a)f](a')=' —— - [f@a). (2.19)
pla‘a(a’a)y’]

Equations (2.17)-(2.19) define the induced repre-
sentation completely.

Equation (2.19) can also be written in terms of
functions defined on SU2 alone:

[DY4(a)f1(u)
= |p[ua(ua)y™)|”*f (ua)
= |plua(ua)y ]| *L**{ua(ua), 1 f [(ua),]
= |pluaua);1** M (plua(ua); )M [(ua),]-
(2.20)

The covariance condition in this case takes the simpler
form

Sw) = exp (—iMuf@).  (2.21)

In order to write the representation operators in
matrix form, we have to choose a basis in the Hilbert
space of the functions f(x) which satisfies Eq. (2.21).
A very convenient choice is the following:

OM(u) = (2 + DIRYn(w). (2.22)

Rj,,.(u) are the matrix clements of the unitary
irreducible representations of SU2, which can be
written in the form?®

anm'(“z(ﬂ)“v(e)“z(”)) = €Xp (_lm:u - im,v)rfnm'(o)’
(2.23)
where the functions r#  .(6) are given in Eq. (A6) of
Appendix A,
It is known?® that every element of SL(2C) can be

19 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc., New York, 1957).
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decomposed in the following way:

a = wa,(Dus,
u,u,€SU2, 0<{< .

From Eq. (2.20) we have

(2.24)

DM (w)Dlu’) = O M(u'v) = Z O ()R} (1),
(2.25)
and therefore
ﬂ)ﬁln}; m’ (u) (¢7m’ i)Ml(u)q) ) - (5” ,,}(u).
(2.26)
We show in Appendix A that
‘:D%n); ‘m’ (az(C)) - 6mm dmaa (C) (227)

From the last two equations we can obtain the general
form of a matrix element of the representation operator

ﬂ)%”; mAtha(Oug) = Z Ry dm "33 (Z)R m(U2)-
" (2.28)

dM2(l) are given

mij

Many properties of the functions
in Appendix A.

In particular, we know that representations DM*
and D~M-—4 are equivalent and therefore the following
identity must hold:

Dinimi(a) = Wy DL () UM, (229)
where the functions ‘ILM 4 are given by Eq. (A18) of
Appendix A. In the following we use the decomposition

ﬂ)%ﬂ{; m’ (a) ‘ﬁffnﬁ ‘m’ (a) + cu)M}. ‘&:md 'm’ (a)cu)—M ——l
(2. 30)
where
‘k%fa m’ ua,(Q)uy)

= z R mm” (ul)am "53 (C)R m'(u2)' (231)

As shown in Appendlx A, the functions aX}.({) have
a simple asymptotic behavior for { — co.

3. UNITARY IRREDUCIBLE REPRESENTATIONS
OF THE GROUP SU(1,1)

The group SU(1, 1) is a subgroup of SL(2C) formed
by all the complex matrices of the form

« B
“(“ "), wr-tpr=
’ (ﬂ ) g

a

3.1

Every element of this group can be written in a unique
way as follows:
0 = uWa(Ou), 62
0L u<dm, 0<v<2r, 0K {< @ ’
With this parametrization, the invariant measure on
the group takes the form
dv = (4=)~2 sinh { du dv d{. 3.3)
The irreducible representations of SU(1, 1) have
been described by Bargmann.!4 The representation
matrices have the form

Dy ()a(Du,(v)) = exp (—imp — im'v) dy, . (D).
(34
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The superscript A is a shorthand notation for the
parameters which label the equivalence classes of
irreducible representations. In order to obtain more
explicit formulas, it has to be replaced in the following
way:

(a) Representations of the continuous classes: A
stands for the two parameters €, /. The parameter ¢
takes the value O for the representations of the integral
type and % for the representations of the half-integral
type. The unitary representations of the principal
series correspond to complex values of the parameter
I with Re / = —4. For other values of / we have non-
unitary representations, some of which are equivalent
to the unitary representations of the complementary
series. The subscripts m and m’ take the values e,
e+ 1l,e+2,---

(b) Representations of the discrete classes: A stands
for k+ with k =4, 1, §,- - -. The subscripts m and
m’ take the values k, k + 1, k + 2, - - - for the repre-
sentations D** and —k, —(k + 1), —(k + 2),- - - for
the representations D*-.

The Plancherel formula can be written in the form

f O do=[ 3 [Fhnltdh,  (33)
SU,1

where

FA, = f @D d.  (36)
SU((1,1)

The Plancherel measure A which appears in Eq. (3.5)
is defined by

f NOTIED wa(e, is — Byle, is — 1) ds

+ 2 @k — Dlyk+) + p(k—)), (3.7
where *

7n(0,1) = (2 4+ 1) cot =,

7, ) = — (21 + 1) tan =l

For the functions d¢! _.({) = d!,,({) we use a phase

convention different from that used by Bargmann.!4
In such a way we obtain functions which are analytic
in the whole complex / plane. For m > m’ they can
be expressed in terms of the hypergeometric function
in the following way®:

L1 TUema( e
Ao (0) = P— T 1)(cosh )

2
x (sinh—é—) B F21(m —Lm+l+ 1

3.8)

2
m—m +1; —(sinhg)), (3.9)
and they satisfy the symmetry conditions
dopmD) = dZ (D),

(3.10)
di..mr(C) = dypmAD)
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From Eq. (3.9) we can derive the identity

dd () = U7 dip (DU, (G.11)
where
p=L0Em+ D) g g 1)
I'm -1

These equations show that the representations D¢
and D%~1 are equivalent.
We use in the following the decomposition

A (D) = G Q) + Unarn(QULT, (3.13)

where
1 _ (= (=20~ 1) (L LR
amm’(C) = F("‘l _ m)I‘(—l n m)(Slﬂh 2)

m+m’
X (coth-g) le(l +m 4+ LI+ m+1;

204 2; — (sinh %)-2). (3.14)

Functions (3.14) have a simple asymptotic behavior
for large values of {. They are analytic in the whole
complex plane, apart from poles for half-integral
values of [ —

The functlons dkt ({) have been computed by
Bargmann.' They can be given in terms of the func-
tions defined above by means of the formulas

= [m =R + k= DI 6
dnerlf) = I:(m’ — k)l (m +k — 1)5] »®

(3.15)
or

ket _a[m =K' (m + k— D! 2
dmm,(z)—z[(m,_ e m] (4]

(3.16)
The functions d%_ ({) are given by
Ao D) = d%% () = (=D)™ ™ d%},_ (D). (3.17)

It is useful to define the matrices also:

Agum'(uz(ﬂ)ax(g)uz(v)) = eXP ("'imﬂ' - im'v)ainm'(g)'

(3.18)
It is clear that Eqgs. (3.11) and (3.13) can also be written
in terms of the matrices A} .(v) and D¢ (v).

4. DECOMPOSITION PROCESS

In this section we decompose the irreducible unitary
representations DM of SL(2C) restricted to SU(1, 1)
into a direct integral containing the irreducible unitary
representations D4 of SU(1, 1) described in Sec. 3.
Our proceeding can be divided in two stages. In the
first stage, following a general method developed by
Mackey,” we decompose the restrictions of the
representations DM?*, which have been described in
Sec. 2 as induced representations, in pairs of reducible
representations of SU(1, 1), which we indicate by
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O-M and O+M In the second stage we decompose these
representations by means of the Plancherel formula
in a direct integral of irreducible unitary representa~
tions. At last we find an explicit expression for the
matrix elements DM% (v) in function of the matrix
elements D2 .(v).

In order to perform the first step, we must determine
the double cosets of SL(2C) with respect to its sub-
groups K and SU(1, 1). We recall that these double
cosets are the sets composed by the elements of SL(2C)
that may be written in the form

kav, ke K, veSU(,1),
where a is a fixed element of SL(2C) which can be
chosen as representative element of the double coset.
Clearly, the double cosets are pairwise disjoint, and
their union is SL(2C).

From the properties given in Sec. 2, we know that
the following decomposition is unique:

a = kuDu(»), aecSL2C),

4.1
keK, 0<8<Ln, 0<v<2m
It is easily obtained that
u,(6) = kb*a,({), tanh}{ = tan }9,
for 00 < dm;
) SO<ET 40
u,(0) = kb—a,({), tanhi{ = cot b,
for =< 6L m,
where

10
b+=e= )
01

(10 (4.3)
1 o) ’
In both cases we have

plk) = (cosh {)~%. 4.4

From Egs. (4.1) and (4.2) it follows that each element

a € SL(2C) can be written in one of the following three
forms:

a = kbta,(Du,(v),

a = kb~a,(Du,(»),

a = ku,(3mulv).

If we note that a,(0u,(v) e SU(, 1), we see that

Eqs. (4.5) represent three double cosets. It can be

shown that they are distinct. In the following we

disregard the third coset which has vanishing invariant

measure.

For every function f(a), belonging to the space

where the representations described in Sec. 2 operate,

we introduce the following two functions defined over

SU(, 1):

fHv) = f(b*v). 4.6
From Egs. (4.6) and (2.17) it follows that these
functions satisfy the covariance relation

FE(h) = DMHBER(BH Y ), he HE, @4.7)

(4.5)
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where H* are subgroups of SU(1, 1), defined by
H* = SU(1, 1) N (b)) Kb,
which coincide with the group H of the elements u,(x).
More explicitly, the relation (4.7) can be written as

FHulup) = exp (FiM)f£@).  (4.8)
From a straightforward calculation using the
change of variables (4.2), we have

f P dp = - f dv f " O sin 6 d6
SU2

_ 1 o 2 smhl
= Zf dvf DU S
=3

4.9)
p JSU1,1)

where p is an index which assumes the two values
— and +, and F%(v) is defined by

F£(v) = (cosh §)71 f%(v), (4.10)
where v and { are connected by Eq. (3.2). The func-
tions F*({) satisfy the covariance relation (4.8).

If we consider two Hilbert spaces J¢*M and XM
composed by the functions F+(v) with the norm

|FH? = f |F*o)P do,
SU(1,1)

we have obtained, by means of Eqgs. (4.7), (4.9), and
(4.10), an isomorphism between the Hilbert space I,
where DM* acts, and the space

Je+M @ JoM )
In this way we have split the representation D¥? in

the direct sum of two representations 0+ which act
in +M_ More explicitly, from Eq. (2. 19) we have

b:i:v/(b:i: /)—1]
O:i:M 1"} = p[ 0 =Y 4.12
[O=F () fF1() Dlbro(b o) ] f (). (412)
Writing v in the form (3.2), we have from Eq. (2.15)
|p(b*u(b*v)yM)|® = cosh L 4.13)
and, using Eq. (4.10), we can write Eq. (4.12) in the
form [0X(w)F)(v') = F('v). (4.14)
From Egs. (4.8), (4.11), and (4.14), we see that the

representations O*M are representations induced by
the following representations of the subgroup H.

u, () — exp (FiMp). (4.15)

If we compare the representations O*¥ with the
regular representation of SU(1, 1), we see that the
only difference consists in the condition (4.8) which
defines a subspace of the space L¥SU(1, 1)) where the
regular representation operates. This means that the
representations O+ are contained in the regular
representation, which admits a decomposition in a
direct integral of irreducible representations by means

|FP(v)|* dv,

(4.11)
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of the Plancherel formula (3.5), (3.6). The representa-
tions we are considering can be decomposed in a
similar way. We introduce the function FA* defined by

.[S’U(l,l)

We introduce the subsets €, ,, of the set of the
equivalence classes of irreducible unitary representa-
tions of SU(1, 1). An element A of this set belongs
to Q_,, if the representation D2 . contains the
representation (4.15) of the subgroup H—that is, if
+ M is one of the values that can be assumed by the
matrix indices m and m’ (see Sec. 3). Note that if
A ¢Q_ ., the integral (4.16) vanishes.

The Plancherel formula (3.5) takes the form

D IFAEPdA. (4.17)

f \F4o) dv =
SU(1,1) Qity m

The integral can be extended to the subset Q ,, be-
because, outside, theintegrand vanishes. If weintroduce
the Hilbert spaces ** formed by the functions FA*
with the norm

1P =

DY (vHYFX(v) dv = 6,4, FAE.  (4.16)

2 IFRER, (4.18)

from Eq. (4.17) we see that Eq. (4.16) defined the
isomorphism between the spaces JE+* and the spaces

®
Jer=dA,

Qi+ y

4.19)
respectively.
We determine how the functions FA+ are affected

by the transformation (4.14) of the function which
generates them.

Fit— DA (v HFX(v'v) dv’
sU
= Do s pa(00 YFE(0')dv" = 3 D (0)F it |
8T m
(4.20)
This means that the representations which operate

on the spaces J¢A* are exactly the representations DA,
Therefore the result of the decomposition process is

[ﬂ)M).]SU(l,l) = 0+M ) O—M

] ®
=| Dprdre f DAdA. (421)
Qi+ x Q-

Equations (4.6), (4.10), and (4.16) give a linear
relation between the function f(a) and the funct-
ions FA% If, in particular, we take

f() = @i (w) (4.22)
[see Eq. (2.22)], we have
FHu (ua(Du(»)

(COSh l);'—lq)jm uz( :i:.u)uy(ei)uz(v))
= (2 + D¥(cosh 0)** exp (FiMp — imy)rip(6%),
00t <tn, dv<b6 < m, 4.23)
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where the relation between 6+ and { is given by Eq.
(4.2), and

FA¥ = (2j + 1)*[ d/‘f dvf (cosh )* 1 (6%)

X db (=1 exp [i(m" — m)y])(4m)~*

x sinh { d = 0, KM*A, £3j), (4.24)
where

KMHA, ;)= (2] + 1)’}(—1)’"$Mfw(cosh H?

X Thm(®) dm (D} sinbh L dl. (4.25)
Note that this function is defined only for

AeQ , NQ,, . Ingeneral, from Eqgs.(4.9)and (4.17),
we have
f S @) fia)(u) du = 2 Zme m AN,
SU2 QpM m
(4.26)
and if we take
fo@) = 0Hw), fu) = [DO)O}, 1(w),

ye SU(, 1),
we obtain from (4.24) and (4.26)
DI ml0)
~ 5[ KA. ) DRI, i) A,
.27

where
Q=QpMan ngm/

This is the basic formula which connects the repre-
sentations of SL(2C) and SU(1, 1).

If we consider the special case v = e, we obtain the
othonormality condition

f‘l M NQ —ﬁ m ( > f ’] ) d 61.""
P m 1&' -

As the functions ®X(u) form a complete set in the
space of the functlons f(w) which satisfy Eq. (2.21) so
also the functions KM#(A, p;j) form a complete set
in the space of the functions F4? defined for A€
Q,3 N Q,,. Therefore we can derive in the standard
way the completeness condition which can be written
formally as

2 KA, ps DK, p50) = 0,0 0(A, AY), (4.29)
J
where the improper function 6(A, A') is defined by

f WA, A dA = pA).

Equations (4.28) and (4.29) can be considered as uni-
tarity conditions if we consider the functions
KMX(A, p;j) as matrix elements of a unitary operator.

(4.30)
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By means of Eq. (4.29) we can invert Eq. (4.27) and
we obtain

EKM YA, p; DO mKZAN, p'5 1)

=3 f 8,,-8(A, ATYDA, (0)8,,D(A”, A7) dA”
8,,-0(A, AYD}, . (v). (4.31)
5. PROPERTIES OF THE FUNCTIONS
KMAA, p; )
In this section we find some properties of the
functions defined by Eq. (4.25).
If we take into account the identity?®
Pm0) = (=" ™11, _A6) CRY)
and Egs. (3.10) and (3.17), we obtain easily the
following symmetry properties:
K3MMe L ps ) = (=DM "KM (e, L, p3 ), (5-2)
K3k, p; ) = p* M KQHKF, p3 ). (5.3)
From the reality of the functions r?  .(6) and from
the last of Egs. (3.10) we obtain

Krlr‘.“(e’ L psj) = Kiniu(e’ A [39))
KMk, p; ) = Kk, p3 ),
and from Eq. (3.11) we have
KuMe, =1~ 1, p;J) = U UKo ™(e 1, p3 J)-
(5.5

From Egs. (4.2) we know that the variables 0+ which
appear in Eq. (4.25) are connected by the relation

(5.4)

- == — 0+ (5.6)
If we take into account the identity“’
P — 0) = (=171, .(0),  (5.7)

we obtain at once the relation
KWA A, =3 ) = (=D "KMHA, +3)). (58)
On account of this equation, in the following we may

consider only the functions KM#4(A, +; ).
It is useful to introduce the following functions:

EMA(1, j) = 2 + DY—Dm ™ f " (cosh

X Fim(0)an (D} sinh L AL (5.9)
This integral converges for Re / > Re 4 — 1, whereas
the integral which defines KM%(¢, l, +;j) converges
only for Re 2 — 1 < Rel < —Re 4. If we substitute
in Eq. (4.25) the Eqs. (3.13) and (3.16) we obtain

K%l(e’l +; ])
= EMi( j) + UL U3
KMHk+, +; j) ,
2[(m — ) (M + k — 1)1] MG — 1))
M — k) (m+ k— 1)!

TERH=1-1,)), (510)

(5.11)
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Therefore all the functions we are considering can be
expressed in terms of the functions (5.9) by means of
Egs. (5.10), (5.11), (5.8), and (5.3).

In Appendix B we show that the integral (4.25)
can be evaluated in terms of a finite sum of Meijer
G functions® and the result is the following, for
m> M2

KM, 1, +3 j)

=Al 00+ M+ DI(m — DTG — 4 + DI

X 32— M — )l (x + M — m)!
af

y (m+j_a_ﬂ)!a!ﬂ!]—ngg(%lﬁ;_i’j_rlr: IA—'/-I 1)
| (5.12)

where
ANy = (% + DG + M) — M)!

x (j+ml(—mit (5.13)
For M > m we have to use Eq. (5.2).

Equation (5.12) permits the analytic continuation
of the function KM%(e, I, 4+ j) to complex values of /
and A for which the integral which defines this function
does not converge.

We show in Appendix B that this function is
meromorphic in the whole complex planes of 4 and /;
it has poles only for

I=1—n-1,
Il=—4+4n,
where n is a nonnegative integer.
Also the functions EM*(/,j) defined by Eq. (5.9)
can be written explicitly by. means of a finite sum of
Meijer G functions and continued analytically in 4
and /. The result is*
Ex(1, ) = Ajrnl—2 cos n(l — M)]
X [T¢+M+DI'(n— DG~ A+ DI
% z/ 2/3—]'—1(_1)0:
af
X[(j—M=—x)l(x+M—m)!
Xx(m+j—a—plal p

><G§§(1 p—j b ’+1).
2y B—2, m M

These functions are meromorphic for all the values of
A and / and may have poles for

(5.14)

(5.15)

=) —n—1 (5.16)

20 A, Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Higher Transcendental Functions (McGraw-Hill Book Company,
Inc., New York, 1953), Vol. L.

21 We denote by I, the sum over all the values of o for which the
arguments in the factorials which appear in the denominator are
nonnegative integers.
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and for half-integral values of / — M. The poles of this
last kind, which arise from the factor [cos #({ — M)]3,
cancel each other in the right-hand side of Eq. (5.10).
If we use the identity
al E)

a+ n, a)
bl: b2, b3

=(— 1)"G§§(X

@qx

a,, a, a-+n
. ) (5.17)
which holds for integral n and follows immediately
from the definition of G function [see Ref. 20, Eq.
(5.3.1)], we obtain from Eq. (5.15) for integral values

of 2k
EMik — 1,j) = US'UBEM (=K, j), (5.18)

and from Egs. (5.10), (5.11), (5.8), (5.2), and (5.3) we
have
KX k+, p3 j)
_ I:(m — kK)! (pM + k — 1)!
(pM — ) (m + k— 1)

1
]K%@k—Lmn

(5.19)
KM k—, p3 )

= =]

(=m — K)! (—pM + k — D17}
(—pM — ) (—m + k — 1)!:'
X KpHe, k — 1, p3 ).

Note that the right-hand sides of these equations
have not been obtained directly from the integral
(4.25), but are the analytic continuation of the
function XM%(e, I, p;j) defined by the integral (4.25)
for Rel = —1.

We use the following notation for the residues of
the poles of the function KM¥e, I, +;j): -

lim (I — 4+ n+ DKM, I, +;)) = Wi

1-» 2~n—1 (520)
From Eq. (5.5) we also have
lim (I + A — n)KX¥e, 1, +; )
1+—itn
= —UHuimiwMie s (5.21)

The explicit form of the residues W7.*" has been

calculated in Appendix B and for m > M is
Min ; 2410 (n — 24 4+ 1)(=DM™
Wim = A;llm
'n—m—-2+DIn+m—-21+4+1)
X (=17 — M — o)!
apy
X+ M—mlm+j—oa—p)!
X(n—p—pal Byl m+ 24— nlp,
X M+ 4 —nl,p,li — A+ 1LIn — 22 + 1],
(5.22)

where
lal,=al@+ - (@a+n—1.
From Eq. (5.2) we obtain the symmetry property
WiHdm = (— )M M (5.23)

jim >
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which can be used to calculate these functions for
M>m.

A remarkable and perhaps unexpected property
of the residues is the following:

(=D mws A = (—1) W M, (5.29)
This formula has been proved by direct algebraic
calculation for n = 0, 1 and has been tested numeri-
cally by means of an electronic computer for a
very large number of choices of the parameters. We
have not found a general proof for it.

In order to prove the convergence of certain inte-
grals it is necessary to know the behavior of the function
KM¥e, Iy + il’, p;j) when I’ — 4 o0 for fixed values
of the other parameters. In Appendix B we show that
this function decreases faster than any negative power
of |I'|.

6. RELATIONS BETWEEN THE MATRIX
ELEMENTS OF NONUNITARY

REPRESENTATIONS
If we use Eqs. (5.4) and (3.7) and note that for
unitary representationsitis i = —dand /= ~/ — 1,

we can write the basic formula (4.27) in the form

—4 i
DML () = —i 3 f | KEHe —1 = 1p3))
> |

X DI (0)K¥Xe, 1, p; j (e, D) dl + S(v), (6.1)
where € — M is an integer (this convention holds also
for the following formulas) and S(v) is the contribution
of the representations of the discrete classes, given by

8(v) = ZkZi(% — DKMk, p3 J)

X DAv)Kpikk, p3 i), (6.2)
where the sum over k3 has to be extended to all the
values of this index for which the quantities which
appear in the equation have a sense (see Secs. 2 and 4).

From Egs. (3.8), (3.11), and (5.5) we see that the
integrand in Eq. (6.1) is a function symmetric for
I— —1—1. It follows that Eq. (6.1) can also be
written in the form

1 - .
ﬂ)ffn’},ml(v) = - ZJ‘ K%’ e, =1 — 1, p; )
2i P c-3%

X Do A0)K 7 e, 1, p3 j')m(e, D dl + S(v).  (6.3)
Here and in the following we indicate by C;, a straight
path from L — ico to L 4 ico.

Equation (6.3) can be continued analytically in the
complex plane of the parameter A. The singularities
of the integrand are poles which may appear only at
the points

l=—A4n I=2—n-1,
Il=A4n I=—-A—-—n-1, (6.4)
I=e+n I=—-e—n-—1,

A. SCTARRINO AND M. TOLLER

where 7 indicates an arbitrary nonnegative integer.
Note that some of the poles move when 4 varies, and
it is possible that some of them cross the integration
path. In order to avoid this, the integration path has
to be deformed as shown in Fig. 1, where the new
path has been indicated by C.

In the following we do not consider integral values
of 24. Then the poles of the integrand given by Eq.
(6.4) can never coincide and the deformation of the
integration path is feasible. Moreover, with this
restriction the functions appearing in Eq. (6.2) can be
continued analytically in the complex A plane by
means of Eq. (5.19).

If Re A becomes larger than 4, the poles at / =
A—l-—nand!/=—-1A+nwith0<n< NA—1})
cross the path C_;. Here and in the following we
indicate by N(a) the largest integer smaller than Re a.
If we want to obtain the analytic continuation of the
integral in Eq. (6.3), we have to use the deformed
integration path C shown in Fig. 1. Alternatively we
can use the integration path C_, and take into account
the contributions of the poles.

Owing to the symmetry property of the integrand,
the contributions of the poles at / =4 —1 — »n and
at [ = —A + n are the same. The residues can be
obtained from Eq. (5.20) and we have, taking Eq. (5.8)
into account

lim (I—24+n+ 1) KM e, -1 —1,p;))

I-+A—n—-1 P
X Kfnn’l(e’ L psJ")
= Kp' e, A+ n, +5 WP + (=1
x K.Y M e, =2 + n, +5 Wil
= yMingyMin, (6.5)
where
VI = KM He =2+ m, +5)) + (=1
X K;M~He, —4 + n, +;j). (6.6)
The factorization (6.5) of the residues has been
obtained by means of the identity (5.24).

-

FiG. 1. The complex
! plane. We have indi-
cated by O the poles of °

KuMe, p3 ),
by e the poles of
KprHe, —1—1,p3))

(o]

x x

and by X the poles of
e, (e =0). C—4 is
the original integration
path Eq. (6.3), C is the
deformed path and Cj
is the shifted path of
Eq. (6.14).
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By means of this procedure, the analyticcontinuation
of Eq. (6.3) can be written as

1
DY) ==3 KM e, —1 — 1, p3 )
2i% C-3
X D (KM, I, p; j'ym(e, 1) dl
NG~1)
+ 27 Z (e, A —n — l)Vf,.‘f,f” Wl,?’,fﬁ
n=0

X DEAm1(p) + G(v). 6.7)
IfReA< —4,thepolesat/=21+nand/ = —24 —
n—1withn=0,1,---, N(—1 — %) cross the path
C_,. From Egs. (5.5) and (6.5) we have, after some
calculations,

im (I4+2A+n41)3KMHe, =1 — 1, p; j)

1=»—A-n—1
X K3, 1, pi ) = USUS ™ Yoy fichn
(6.8)
and the contribution of the poles takes the form
N=i—h
27 Zo n(e, A + m)W M-ty Mosdnpedinyy - (6.9)

where we have used Eq. (3.11).
From Eqs. (5.2) and (6.6) we have

ViMin = (=DM (6.10)
and from Eq. (6.6) we obtain directly
Vidbhn = (=1)f=mny i, (6.11)

Note the analogy between Eqs. (6.10), (6.11), and
Eqgs. (5.23), (5.24).

The sum of the pole contributions in Eqgs. (6.7) and
(6.9) can be considered as an asymptotic approxima-
tion of the function D%, .(v) when { — oo [here and
in the following we assume that the elements v of
SU(1, 1) are parametrized by means of Eq. (3.2)]. In
fact, both the integral along C_, and the contribution
S(v) of the representations of the discrete classes
decrease for { — oo as exp (—3{) or faster.

In order to obtain a complete asymptotic expansion,
we have to modify Eq. (6.3) taking into account the
identity

KNNe, =1 — 1, p; DD (DK, 1, p3 J7)
= KpXe, =1 — 1, p; ALK 5N L p3 J)
+ KXHe, 1, p; DA @)K (e, =1 — 1, p3 j'),
(6.12)
which easily can be obtained from Eqgs. (3.13), (3.18),

and (5.5). The two terms in the right-hand side of
Eq. (6.12) give the same contribution to the integral
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of Eq. (6.3), and therefore we have

DML ()= —i3 f Kol Xe, 1, p; A mmi(v)
p JC

X KMi(e, —1 — 1, p; (e, 1) dl + S(v)

= —izf KXe, =1 — 1, p; j)
p JC
X UL A )UK Y e, 1, ps j7)
x 1(e, ) dl + S(v).

Now we shift the integration path C on the left and
take into account the contribution of the poles
crossed by the path. As it is (see Appendix C)

f KX, 1, p3 NATA0KY e, ~1 — 1, p; 1)
Cr

X ne, 1) dl = O(exp LL). (6.14)

If we let L — — co, the contribution of the poles gives
an asymptotic series for the left-hand side of Eq.
(6.13). We have to consider the polesat/ =1 —n — 1,
at/=—1—n—1l,andat!/= —e — n — 1. Wecall
G'(v) the contribution of the poles of the last kind.
The residues of the poles of the first two kinds are
given by Eqgs. (6.5) and (6.8), and we have

(6.13)

DML () ~27 Y (e, A —n — YY"
n=0
X W@tllpUA—n~1A—l-+:n(U)U—};+n
Im m mm m
+ 2112 (e, A + n)Wf‘,In’_’l’"V%;lT""
n=0

X AXn(0) + S(v) + §'(v). (6.15)

The left-hand side of this equation can be decomposed
by means of Eq. (2.30). From Egs. (3.14) and (A12),
we can see, after some calculations, that the functions

AMA, (v}, AXn(v), A2 Hv), A AR(v) can be ex-
panded for v = a,({) in asymptotic series of the type

% o (e

where for the first two functions the coefficients «; are
of the type —2 + » (v is an integer), and for the last
two functions the coefficients «; are of the type 4 + ».
In a similar way, using Eq. (3.16), we can expand the
functions §(v) and §'(v) in an asymptotic series of the
type (6.16) where the coefficients «; are of the type
M+ v

As we have assumed that 24 is not integral, the
coefficients «; of the three forms described above can
never coincide. In an expansion of the type (6.16), the
coefficients are unequivocally determined, and there-
fore we can split Eq. (6.15) into three different equa-
tions, collecting the terms which have asymptotic

(6.16)
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expansions with coefficients «; of the same type. In
such a way we obtain
8@ + §'() =0,

K e me(0) ~ 27 E 7(e, A + n)
WM,—;. nVM,—}. "4 i.+n(v) (6 18)
%.’M}. A——M —).(U)cu)—M,—}.

imi'm

6.17)

~ 2 z (e, A —n — 1)yMin W‘%ﬁ’,‘
n=0

X Uk-m14 M) U4+, (6.19)
Of course, Eq. (6.17) could be proved directly by
means of Egs. (3.16) and (5.19). We have not tried
to prove the convergence of the series appearing in
Eqgs. (6.18) and (6.19). For the physical applications
we have in mind it is only necessary to know that
these equations represent asymptotic expansions, as
we have proved above.

7. DECOMPOSITION OF A ‘“LORENTZ
POLE CONTRIBUTION”’

It has been shown in Ref.5 that the scattering
amplitude at fixed momentum transfer can be con-
sidered as a function defined over a subgroup of
SL(2C). This subgroup is homomorphic to the group
of the Lorentz transformations which do not change
the four-momentum transfer. If the momentum trans-
fer is a spacelike four-vector, this group is SU(1,1);
and if the four-momentum transfer vanishes, this
group is SL(2C) itself.

It has also been shown® that the contribution of a
Regge pole with factorizable residue can be written
in the form

@)~ 23 prpr AT H0), (7.1)

Following the ideas suggested in the Introduction,
when the four-momentum transfer vanishes, we define
a “Lorentz pole contribution” to the scattering
amplitude [defined over SL(2C)] in the following
way®7:

f(a) Nj ; 'PimP; m’ AJ%’;:.(“)’
A contribution of this kind can be expanded into

Regge pole contributions of the form (7.1) by means
of Eq. (6.18) in the following way:

0
f@Q~Z 3 ppnl Apitn (),

n=0 mm’

v e Su(, 1).

aeSL2C). (71.2)

(7.3)
where
(n) — 27.”7(6 —14 n)z pij-M,)..

r(n)

(1.4)
pu’ = 3, PV yim”

A. SCIARRINO AND M. TOLLER

In conclusion, we see that a Lorentz pole contri-
bution with factorizable residue can be decomposed
into a series of Regge pole contributions, each with
factorizable residue and with /, =A— 1 —n,n =0,
,2--

The factorizability of the residues of the generated
Regge poles is not a trivial result and is a consequence
of the identity (5.24).

Of course, one of the sums in Eq. (7.4) could give
a vanishing result and the corresponding pole contri-
bution could disappear.

Note added in proof: Results similar to those
obtained in the present paper have been obtained
independently by S. Strom [Arkiv Fysik 34, 215
(1967)] by means of the infinitesimal method.

APPENDIX A. PROPERTIES OF THE
FUNCTIONS dM(7)

mi
The matrix elements of the irreducible representa-
tions of SL(2C) have been calculated by Strom.?-%
Here we give a short treatment consistent with the
notations and the phase conventions used in the text.
In order to calculate the matrix element (2.27), we
have to find the matrix [ua,({)],. It is easy to verify
directly that, if « is given by Eq. (2.3), we can write
[ua (D) = uz(:u)uy(al)uz(")’ (AD)
where
tan 40" = exp { tan 0.
Moreover it is the case that

plua(D(ua D)5’ = exp (—30) cos $6(cos 36’y

(A2)

(A3)
and from Eqs. (2.18), (2.20), and (2.22) we have
jma m’ (az(z))
= |, DI a0l du
= (2 + D}’ + plam®
X f “d,u f dev exp [i(m — m'))
x exp [(1 — A)¢](cos $6)**V(cos %0’)2‘1“’ "()
X Thrm(0') sin 0 d6 = 6, dM1(0), (Ad)
where
a0 = @ + DA + pt

X fo"exP [t -=ny (cos g)m_l)

0 2(1—2) ,
x (cos ;) Phe0) 1. (6) & sin 6 d6,
(AS5)

2.8, Strém, Arkiv Fysik 29, 467 (1965).
3 8. Strém, Arkiv Fysik 33, 465 (1967).
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We use for the matrix elements of the representa-
tions of SU(2) the expression!®#

P =[G + m)! G = ML G+ m)! (G — m)1fE
X 2 (=1~ m — )t
X(G+m —a)(e+m—m)a!]?

6 2j+m'—m—2a ;) m-~m'+2a
X (cos —) (sin ~) (A6)
2 2
These functions have the symmetry properties
anm’(O) = r':rinm'(e) = rim’,--m(e) = (—l)m‘m’rfn"m(e)'
(A7)

Inserting these relations in Eq. (AS5), we obtain the
following properties of the functions &, .({):

d¥3(0) = dELD),
duly (?;) = d:m 7i(0) (A8)
M f2 34 (C)

If we use the expression (A7) for the functions rJ,,..(6),
the integral (A5) can be evaluated in terms of ele-
mentary functions by means of the following change
of variable:

x = exp (—{)(cos $0)*(cos $6) 2,
(cos $6')* = [x~' — exp (—{)][exp L — exp (— O
(cos 36)* = [exp { — x]lexp { — exp (=07,
3 sin 0 d6 = [exp { — exp (— )} dx.
In this we may obtain

i) = ‘umlexp L — exp (=177
X ; (=D — M — o)

XG+m—)l(a+ M—m'al
X(G~M=aNG +m—a) (@ +M~mla]?
X exp [{M — m — j + 24))

exp{ , b M’
X f x1~5 ”l(exp g _ x)o-w - M—a—a
exp ()

X [x — exp (=Mt dx, (A10)
where A, is given by Eq. (5.13). We can expand the
integrand in Eq. (A10) by means of the binomial
formula and perform the integration term by term.
If we separate the contributions of the upper and lower
integration limits, we obtain

d’%? D= amn (C) + (=~ 1)’—" ;JJ{I'A(C),
where
amh (C) f ji m[EXP Z - eXP( Z)l_j*"“’"l
x 2 (= 1)’_"’“(1 +i+m—M—a—a)l

aa'rs

X (M —m + a+ «)!

(A9)

(A11)
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X[(—-—M-—)(+m—o)(a+M—mal
X (' = M =) (j + m—a)!
X@4+M-—mld!lr— )+ ~M—s—r)
X(G+j+m—M-—ao —r)!

XCM —m—j +o +r+ )M +s—)?

xexp[i(=A+j+j—M+m-=2n) (A12)
If we substitute Eq. (All) into the equation
A0 = U RE(OWHE, (A13)

which is a smphﬁed form of Eq. (2.29), and identify

terms which have a similar dependence on {, we obtain
(=D ay (0 = WM ali (DU (A14)

Therefore Eq. (All) can also be written in the form

duii () = ali(0) + WMo HOUGM, - (A15)

mii mij
from which Eq. (2.30) follows immediately. In a
similar way, if we substitute Eq. (A11) into Egs. (A8)
we obtain

m:lj (g) = amia (Z)a
Amis (g) = a:wﬂffla 0= aMJ.’I (&)

From Eq. (A12) we can derive, after some calcula-
tions, an asymptotic expression for the functions

(A16)

m” (g)
fM>m,
adi(0) = @ + DI + i

N [(1 —m)!(j + MG = m! (' + M)!]%
G+mi(j— M +mi(y — M)
(=)A= m+1]n

M — m)! [—=4 — M)y
X exp [{(—4 — 1 — M + m)][1 + O(exp (—20))].
(A17)
If we perform the limit { — o in Eq. (A14) by means
of Eq. (A17), we can compute the coefficients UM4,
The result is

s— 4
sy s + A

APPENDIX B. CALCULATION OF THE
FUNCTIONS KM, I, +;))

In order to evaluate the integrals (4.25) and (5.9) we
perform the following change of variable:

(sinh 3{)* =z, %}sinh{d{ =dz,

co! Q—z—————-—-1+z (sinﬁ)z—- z
(Sz T1+2z 2) Ti+2z

The functions d*,,,({) and &,,,.({) can be written by

UM = (A18)

(BD
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means of the Meijer G functions using the Eqs. (5.6.24)
and (5.3.9) of Ref. 20. The result is

di (0 = [[(m — DT(m’ + 1 + DI
1 +z (m+m’)/2 " —l, i + 1
X ( . ) ng(z\ m, e )
(m > m), (B2)
al,(0) = [—2 cos w(l = m"[(m — DT(m' + 1 4 1]

{m+m’) /2 _
x (“z"z) G§§(z b ”,1). (B3)

m, m
If we use for the functions ri,.(0) the expression
{A®6), the integral (4.25) becomes, for m > M2,
KaMe, 1, +3)) = Ayull(m — DM + 1 + DI
X2 —M=a)l(G+m—o)!
X (@ + M — m)! oc!]"lfw(l + 2z)A " 1gem
0

H

x (14 z)m“““c;;:(z ‘ dz, (B4)

where A}, is given by Eq. (5.13). If we expand the
term (1 + z)™—= by means of the binomial formula,
we obtain
KM L, +3))
= AjelT(m — DM + 1 + DI 3 (— 12+
ap

X[(j—M—a)(a+M-—ma!g!
X (m+j—a— 5)!1“f(,w(z + gy

=L 1+ 1) dz.
m, M

This integration can be performed by means of the
formula (20.5.4) of Ref. 24, and the result, after the
change f —m + j — « — f in the summation index,

x Ggg(z (BS)

A. SCIARRINO AND M. TOLLER

is given in Eq. (5.12). The result (5.15) is obtained in
a completely similar way.
From the general definition of the G function given
by Eq. (5.3.1) of Ref. 20, we have
Ggg(l g—j =1, I+ 1)
2i—4 m, M

+io
=L | T - 2 - 9T0n — 9T = B+ +9
x T(L 4+ 1+ (=1 4+ )1 — M + )27 ds,
(B6)

where the integration path leaves the poles of
P —Ai—s)I'(m —s) (B7)

on the right and the poles of

P+ 14 5)'(—1+ ) (B8)

on the left. The poles of I'l — 4+ 5) are
canceled by the poles of I'(1 — M + s).

The singularities in the G function arise when the
integration path is pinched by two of the above-
mentioned poles. This happens for

m+1l+l=—n,
m—1= —n,
B+1—A+1=—n,
B—A—I= —n,

where n is a nonnegative integer. The first two con-
ditions give rise to poles which are canceled by the
poles of the I' functions appearing in Eq. (5.12), and
the last two conditions give rise to the poles described
by Eq. (5.14).

The discussion of the singularities of the function
(5.15) can be performed in a similar way.

In order to determine the residues W?#" defined by
Eq. (5.20), we use Eq. (5.3.5) of Ref. 20 and write Eq.
{5.12) in the form

(B9)

KaHe I, +:)) = Ajym %’(-—1)“2”“"‘1[(} —M—-)l @+ M—-m(G+m—a—Bflal pI

« {21-31“(1 +m—BI(=A+ 1+ B+ DI(=A—1+p)
T(l+ M+ D0(m — DI(=A— M + 8 + 1)

—A+j+1,
X F
”[-—A—m+ﬂ+1,

—A—M+p+1; 3

—A+l+ﬁ;]

27" (=A—m+Am+ji—+ DI'm + 1+ 1)

T(+ M+ D0(m — M + DI(—4 +j + 1)

><F%[m-!—j--ﬂ+1,

m+14+1,
m-—M-+1;

(B10)

")

* A. Erdelyi, W, Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms (McGraw-Hill Book Company, New

York, 1954), Vol. 2.
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We can easily see that the only singularity for / -4 — n — 1 is due to the function I'(—4 + I+

B + 1). Therefore, using the formula

lim (z + m)(z) = &7

Z2—n

we have

(B11)
n!

W= AirmZﬂ' ()G =M — o) (a+ M —m)(j+m—a—p)al fl(n— T
PG+ m—PHI(=2A+n++1)

TA—n+MI(m—2A+n+DI(—A—M+B+1)

XF32|: _A+j+1,
—A—-—m+p8+1,

As f — n is a nonpositive integer, the generalized
hypergeometric series is a finite sum. If we write it
explicitly, after some calculations using well-known
properties of the I' functions, we obtain Eq. (5.22).

At last we want to study the behavior of the function
KMi(e, Iy + il', +;j) when I’ — 3 oo for fixed values
of the other parameters. We use for the G functions
which appear in Eq. (5.12) the integral representation
(B6), and we shift the integration path on the left
taking into account the contributions of the poles
which are crossed. The new integration path is along
the line Re s = s, where 5, < 8 — 4, 5o < m.

From the Stirling formula [Ref. 20, Eq. (1.18.6)],
we see that for real a and for x —> o0

IT(a + ix)| ~ (2m)* |x|*~* exp (=3~ |x]). (B13)
It follows that a function ¢(a) exists with the property
IT(a + ix)| < @la)(1 + x> ¥ exp (—4 |x]). (B14)
From this equation, if sy < —[l, + 3|, after some
calculation we have

T + 5o + I + i(s” + ) (so — Iy + i(s" — I)|
< glso + lo)glso — 1) 21|+ H% exp (= 11,
(B15)
This inequality can be used to find an upper bound

for the integral along the shifted path. We obtain
easily that this integral is of the order

o[+ exp (—ar |I])].

If we explicitly evaluate the contributions of the
poles, we see by means of Eq. (B13) that they decrease
more rapidly than exp (—2= |I']), and are therefore
dominated by the contribution of the integral along
the shifted path. As s, can be chosen arbitrarily
negative, we see that the G function is of the order
O(|l'|*exp [—= |I'])], where a is arbitrary.

B—n,
—A-M+p+ 1 B

A w12

If we insert this result into Eq. (5.12) and again use
Eq. (B13), we see that the function KM(e, I, + il’,
+; j) decreases faster than any negative- power of
|'l.

APPENDIX C. ASYMPTOTIC PROPERTIES
OF AN INTEGRAL

In order to prove Eq. (6.14) we need the following
inequality:
| AL ()] = @b AD)]

< |tan 7(I + m) cot w(Re I + m)aRe (1))
Rel>1—m). (C1)
This inequality is an immediate consequence of the
following integral representation, which holds for

Re !l > 1 — m and is a consequence of Eq. (2.1.10) of
Ref. 20.

at, (0 = 7)Y (—=1)™"™ tan =(I + m)(sinh 322
X (tanh éc)m+m’f tl—m(l —_ t)l+m
0

% [1 + t(sinh 3O~ dt. (C2)
From Eq. (C1) we see that the integral (6.14) is
smaller in modulus, then

+a0
a5 oot (L + m)l [ 1KY~ e, L+ 11, p3 )

X |KM¥e, —L — 1 — il', p; j))} - | 2L + 2il’ + 1] dl'.
(C3)
As from Eq. (3.14), we have that
G {(§) = O(exp (— L))
Eq. (6.14) is proved if we show that the integral in
Eq. (C3) converges. But this follows from the fact
proved in the Appendix B that

IKwH(e, Lo + i1, p3 )
decreases faster than any power of |I'].
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It is shown that the integrals occurring in the expression for the interaction energy between three
atoms or ions in second-order perturbation theory with Gaussian wavefunctions can be reduced to
single integrals of three different types. The first two types are erf x and erf ix functions, whereas the
third type is a single integral of the error function which is easily evaluated by electronic computation.

INTRODUCTION

T is well known that Gaussian-type electron wave-

functions are particularly simple for the evaluation

of multicenter integrals occurring in the energy ex-

pressions for atomic and molecular systems via a

variational method. Equivalently, first-order pertur-

bation energies can be equally and readily evaluated on
the basis of such Gaussian functions.

In a previous publication,® we have shown that
Gaussian-type wavefunctions can also be utilized in
second-order perturbation theory for interacting sys-
tems of atoms or ions, in the evaluation of both
direct and exchange integrals. However, the methods
developed were essentially based on asymptotic
expansions, which are sufficiently accurate only if the
distances between the atoms are relatively large. This
condition is fulfilled in the problem of evaluating the
three-atom energy in rare-gas crystals; on the other
hand, they cannot be applied to ionic solids, since in
this case the distances are much smaller because of
electrostatic compression of the crystals (Madelung
energy).

For the evaluation of three-ion crystal energies it is
necessary, therefore, to avoid asymptotic expansions of
the integrals. In this paper we present general methods
for evaluating three-atom and three-ion interaction
energies in second-order perturbation theory, valid
for all distances between the atoms or jons. It appears
that all expressions can be written as linear combina-
tions of three types of integrals; two of these are the
well-known erf x and erf ix functions, whereas the
third type can be readily evaluated by electronic
computation. In this analysis we will consider the
general case of atoms or ions of two different sizes,
i.e., the inverse widths of their Gaussian wavefunctions
are generally different.

1S, Zimering, J. Math. Phys. 6, 336 (1965).

TYPES OF INTEGRALS OCCURRING IN
THE EXPRESSION FOR THE SECOND-
ORDER INTERACTION ENERGY

We consider a triplet of atoms or ions (¢bc) and
three electrons, denoted by 1, 2, 3. The distances
between the atoms are denoted by R, , that between the
electrons by ry,, and those between nuclei and electrons
by r,,, etc.

We introduce the following notations: ¢,, ¢,, and
@, are the ground-state wavefunctions for atoms a,
b, and c, respectively,

9u(1) = (B/TTHE exp (—B2r2y2) etc.,
where §, is the Gaussian parameter for atom g, etc.
H;, is the electrostatic interaction (perturbation
Hamiltonian) between atoms a and b.

A, = f @9, dr is the overlap integral between a and b,

2110 = Agb + Azc + A%o - 2AubAacAbcs

¥ is the zero-order total wavefunction (Slater deter-
minant),

¥ = [31(1 — A% )12 det {p(Dpy(Dp.3)} (1)

T = [21 (1 = A1 det {p, (D).
We have, for the first-order perturbation energy,

<H¢,zbo> = <H{:b> + <Héc> + <H!l;c>y

and

where
(HLy = f f f P dry dr, drs.

On the other hand, the sum of pair interactions for
the triplet (abc) is, in first order, given by

. <H(;bc>0 = <H;b>0 + (H;c% +(H I,n')()s
with

(Hgo)o = f J ‘Fz-b)H:w‘F(ab) drydr,.
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The expression for the second-order energy is
z (Habc)ox(H bc)zo/(Eo - Ex)

= '—{<H¢’z%c> a’lbc>2}/EaV,

where y numbers the excited states of the system
(energy E,) and E,, is defined by the averaging
procedure. On the other hand, the second-order total
pair energy is given by

EY® = —(1/Ea){(H2), — (H.pe + [(ac), (bo)]},

where [(ac), (bc)] signifies that the corresponding
expressions for the pairs (ac) and (bc) are to be added.
Since (H,, ) and (H, ), can be obtained read1ly from
first-order calculations,* the only difficulty lies in the
evaluation of (H,2 ), defined by

bc) ~fff\F*H:lic1F dTl dT2 de

We consider the general case where the interacting
atoms or ions are represented by two different
Gaussian parameters § and g’

By substltutmg the expression for H, into (H,2),
we find, using (1), that this quantity is a linear combi-
nation of the following seven types of volume integrals
(some of them multiplied by overlap integrals):

J, = (%)“ H exp _[ofi:j2l) + el 4 )
= () [ o ©
= t(% ) H exp [—azirrfi: N g a s)

= (] [ ©
H otrAlochl
w232 2
Jo = C*( )” 2ot by, 4r,, )
ochlocrm
a \?
Jp = C%’?%<E})
22 2 2
N J‘J‘J‘ exp [—o*(ren + Lris + nrps)] dry drydry. (8)
Aryo0ryg

In Egs. (2)-(8), dr denotes the element of volume, r 4,
the distance between a fixed point A4 on the triangle
(abc) and electron 1 [for example, 4 may be the

middle of the side (bc)]; « takes the values 8, §’, and -
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BI3(1 + B2/)]t and { and % are different ratios
between these last parameters. These seven integrals
are generalizations of Egs. (41)-(50) given in Ref.
lfora=pg=7,".

Upon inspection of the volume integrals J; to J,,
it appears possible to reduce them to the three follow-
ing basic integrals:

. (X
A(X) = 2 e f e du,
X 0

erf

2 (X
B(X)=——f e du =
xmt o

and
C((X1,m), (X2, 0, X3) =

5 f;/;ﬂ)* e X% erf (PP I/ +9(1 — 2 )]*)
P [P()I?

©®)

where

P(z)=X (Xz_Xz"‘Xl)Z + X3z,

{, » > 0and X,, X,, X; are dimensionless quantities
proportional to the lengths of the three sides of the
triangle specified by X;, X,, X;.

We note that P(z) > 0(1 > z > 0) for every trian-
gular configuration except when <(X;, X;) =0. In
particular, when X; = X, and X;=0, we have
P(1) =0 and

C((X, ), (X, ), 0) = A(X).

We note also that in many cases the function
C((X;, n), (X3, {), X;) can be simplified!; for example,

C((X, ), (0, 1), X) = 1 — X2B(X) + (2/II})
- [B2EX) — e X*B(X)].

Finally we remark that 4(0) = 2, B(0) = 201,
The relations between the volume integrals J, — J,
and the basic integrals 4 to C are as follows:

J, = A(aR4p), (10)
_ ¢\
= ((£+ 1)“R“‘B)’ D
Js = B(aR4p), (12)
¢ ¢\

Jg= B R , 13

(c+1) ((c+1)oc “B) (43
Js = C((«Rpg, ), (aR4¢, ), xR4p), (14)
Js = C((xRp¢, ©), (2R40, 0), aR45), (15)
Jy = C((«Rpg, 1), (@R40» {) xR4p).  (16)
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DERIVATION OF EQS. (10)-(16)

Equations (10)—(13) follow by using the formulas

1 ®
~==| €"'dt
rt b

L= et
0

an
and

(18)

~

and by integrating with respect to the coordinates of
electrons 1 and 2. We sketch the derivation of J,,
which is the most complicated one. Taking Cartesian
coordinates (x, y, z) for electron 1 and (u, v, w) for
electron 2 and using (17), we obtain

wetee (LT

x exp [—a¥(x® + y* + z%)]
x exp [—{e*{u® + (v — Ryp)® + W}
x exp [—te®{(x — u)* + (y — 0)* + (z — w)*}]

x dx dy dz du dv dw: dt.

Integration with respect to x, y, z, u, v, and w gives

Jy = ¢ exp [-— (lR_; C)]
§ r exp [LR*/(1 + (L ks O 4 (19)
o C+t+1)

where R* = {¥aR,,. Equation (11) is obtained by
putting in (19),

u = R*/(1 + D + t + 1}

For the derivation of Eqs. (14)-(16), we sketch the
first and the last ones, since the derivation of J, is very
similar to that of J;.

Let the Cartesian coordinates of the vertices A, B,
C be (b, by, 0), (a,0,0), and (0, 0, 0), respectively,
and that of electron 1 be (x, y, z). Then, using (18),
we obtain

J5 = 4131_[—&

X Lw J;w{(f_z exp {—a’[x® + (x — a)™?

+ (x — b} dx)
exp {—a'D(1+ ) + O — b)Y dy)

(L.

exp [—a®2%(1 + £ + u?)] dz)} du dt.

SHIMSHON ZIMERING

By integration with respect to x, y, and z we find

=2 f N f 1t ) dt du, (20)
IT Jo Jo
where
exp [—(a%® + b%? + (1 + £ + u?)]
f(t, u) = 2 28
A+ 4+d9
2D
and
a=otRBC, b=“'RA.C" C=GRAB-
By using the substitution
2 )
{ P(u) t } 22)
w4114+ ut

where

P(u) = a*(u® + 1) — b%® + ctP(u® + 1),
we obtain

(1 + 2 + uty ¥ dt = {2 + P}t dw;
exp [—(a%?® + b%® + cHrP)[(1 + 2 + u?)]

= exp {—b%u?[(1 + u?)} exp (—w?)
and, finally,

Jy =21} f ®
L o {= b1 + ud)]} erf {[P)/( + u2)]*}
[* + DPeE

(23)

Equation (14) is obtained from (23) by the substitu-
tion

z = (2)(1 + u)}h 29
For the derivation of J; we use the formula
1
erfr _ - f e . (25)
r 0

Let, again, the Cartesian coordinates of the vertices
A4, B, C be (b, b,, 0), (a,0,0), (0,0, 0), respectively,
and that of electron 1 be (x, y, z). Selecting for elec-
trons 2 and 3 polar coordinates u = r;, @ = <142
and w = rg,, f = 1B3, respectively, we obtain

Jr = J(@Rpc, 1), (@R 40, §), xRy 5) = 4TI~ H(Epk
x f f f ) {exp [—o(c? + 5 + )]
[f J’ w2 dm du :|
-1 (rA1 + u - 2rA1um)*

[f f " dn dw }]}dx dy dz,
-1 ("Bl + w* — 2rp,wn)

where m = cos « and n =cos f3.
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By putting x = {}ow and using the formula?

J‘ J‘ x%= dm dx _I'I*erfR
-1 (R? + x* — 2Rxm)} 2R

we obtain

Jp = a’{’}n*ﬂ'*fw f ® fm |:exp (—ardD)

erf (c*“rAl) el'f(ﬂ arBl)] dx dy dz (26)

C}“rAl ’7*“"31
where
ra={x — b+ (y — bp* + 2},
re = {(x — a)* + y* + 2},
and

rov= (2 + )t + 2.

Further, using (25) and integrating in (26) with
respect to x, y, and z, it is found that

s B
J'l ""i

o). f(t, u) dt du,

@7

with f(z, u) defined by (21).
The formula (16) follows now from (27), by using
the substitutions (22) and (24).

ASYMPTOTIC EXPANSIONS FOR INTEGRALS
A, B, AND C

In the previous sections we have given analytical
expressions for the integrals 4, B, and C.occurring in
the evaluation of three-atom or three-ion interactions.
Values for the integrals 4 and B are available in the
form of tables, whereas C must be evaluated by elec-
tronic computation. The computation of C can be
simplified considerably for large values of X;, X, X3
(=2.5) by using asymptotic series expansions. We
here give the expansions used, including for complete-
ness also the corresponding series for the integrals
A and B, and discuss briefly their derivation. The

&/ +01%
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asymptotic series expansions are

*3-5
8Xx®

AX) = — + — 4 —
X) +2X‘+4X°+

N(@2n =3
21 2n—1 in
1 X 1 1-3
— — B(X) = -
x "X n*x’( 2x* (X%
(=D"'2n —
(2 X2)n—1

+...

+ O(X7*N-%),

_)

DI 0(x-=N))

X
T nixe (
[where (—1)!! = 1], and
C((Xl H "7)’ (Xzs 09 Xa)
__t + cos @ + 3(3¢cos®® — 1)
X, X, 2XiX3 8X1X3
15 cos O(5 cos® @ — 3)
16X1X}3
105(35 cos* © — 30 cos® O + 3)
128X3x3
+ O(X7°X3%), (28)
for X; > X,— 0 and © = (X;, X,) > 31-

The first two expansions are easily established by
applying 1’Hospital’s rule. For C, we consider a tri-
angular configuration for which

X, > X, and O >1I/3. 29)

We assume, moreover, that X; and [{/(1 + )X,
are sufficiently large {i.e., X and [{/(1 + D]}X, > 2,5}
and that 7 is not too small (n > 0, 8).

Putting

k= X7'3X: + X2 — X3 =2(1 + X,cos O/X,),

-+

+

C(Xr, ), (Xs, D), Xo) = 20T X f

]

Since

0<{z[(1+2)P <} (1>220),
it follows from (29) and (30) that 1> g(z2) >0
(1 > z > 0). Equation (28) is obtained from (31) by
developmg the function {(1 + z)[1 — (z)]‘l'} —1in a
power series for 1 > z > 0, approximating

p=1—(X/X)? (30)
and
g(2) = {z/(1 + 2Pk + uz®),
we have, by definition,
(P} = X,(1 + 25{1 — g(2)}
and obtain
2.2 i‘
et [0+ Bt - s —— ||
Lt =114 G
(1 + 20 — gt
by 1 and approximating
[LE+113— a1
f 2¥e X217 (g
by ’
© e X mien — Dt
J;Z2eX dZ=W, (n=0,1,2,"'),

erf {xl(l + z*>[(1 ~ &) m{l_——z)] %}

where ¢ is of small positive value.
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To indicate the accuracy of the third asymptotic
expansion, we mention that, for X; > X, =3 and
©® > 3171, Eq. (28) gives an accuracy of 5 x 10~ with
four terms.

EVALUATION OF THE INTEGRALS 4 TO C

In this paper we have shown that the evaluation
of the second-order three-atom or three-ion energy of
interaction can be reduced to that of calculating a
number of volume integrals {(2)—(8)]. These integrals
can all be expressed in terms of three basic integrals 4
to C [(10)-(16)]. Two of these last three integrals,
A and B, can be obtained from tabulated values of
the error function® and of Dawson’s integral®*

@
e"‘zf et dt,
0

respectively. On the other hand, values of the integral

2 National Bureau of Standards, Tables of the Error Function and
its Derivative, Applied Math. Series 41 (U.S. Government Printing
Office, Washington, D.C., 1954), 2nd ed.

3 B. Lohmander and S. Rittsten, Kungl. Fysiogr. Séllsk. i Lund
Forh. 28, 45 (1958).

4 W. Lash Miller and A. R. Gordon, J. Phys. Chem. 35, 2874
1931).

SHIMSHON ZIMERING

C [Eq. (9)] are not available, but these can be readily
obtained by electronic computation.

It should be noted that, compared with our previous
analysis of second-order three-body interactions,!:®
the present results constitute a considerable simpli-
fication. In particular, Eqs. (10)-(16) are valid for
the whole range of triangular dimensions, whereas the
asymptotic expansions were only applicable in the
range of large dimensions (in terms of the Gaussian
parameter 8 and the nearest-neighbor distance R in a
solid, this range of validity is SR > 2). The latter
limiting case applies for rare-gas crystals. In ionic
crystals, however, SR is considerably smaller because
of electrostatic compression.®
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Several theorems are proved concerning the asymptotic behavior of Stieltjes transforms as |z]
approaches infinity, in a sector of the complex z plane which does not include the cut in the transform,
The asymptotic behavior of the transform is related to the asymptotic behavior, for large values of the

argument, of the function whose transform is taken.

L. INTRODUCTION

TIELTJES transforms have become familiar to
physicists because of the extensive use of dispersion
relations in calculations concerning elementary par-
ticle interactions. Their asymptotic properties are
important in discussing questions such as the number
of subtractions required in dispersion relations. Some
results concerning these properties are given in a paper
of Lanz and Prosperi,! which includes a list of earlier
papers containing some discussion of such asymptotic
properties. Lanz and Prosperi concentrate on results

1L. Lanz and G. M. Prosperi, Nuovo Cimento 33, 201 (1964).

in which a bound on the transform is derived from a
bound on the original; results in which a precise
asymptotic behavior of the transform can be estab-
lished are mentioned only in passing.

In this paper we prove a number of results on the
behavior of Stieltjes transforms as |z| approaches
infinity in a direction away from the cut in the trans-
form. These results are, in fact, shown to hold uni-
formly in a sector in the complex plane which does
not include the cut. The proof of theorems on the
asymptotic behavior of principal value integrals and
their extension to hold uniformly in a sector which
includes the cut requires further conditions on the
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original function and involves quite different tech-
niques from those used in this paper. It is appropriate,
therefore, to discuss these latter results in a separate
paper.

In Sec. 1I we establish our notation and write down
conditions on the original function which will be
assumed to hold for all the theorems and corollaries
to be proved. We also make some preliminary trans-
formations and state two theorems which are used in
Sec. III. Section III itself contains the proof of several
results on the precise asymptotic behavior of Stieltjes
transforms. Section IV repeats a result of Lanz and
Prosperi; it is included here for completeness.

The aim has been to put down all the results on the
asymptotic behavior of Stieltjes transforms that we
have been able to discover, in the hope that it may be
of value to have these collected together. Of the results
in Sec. III, the first theorem is an extension of a well-
known result which is given, for example, by Widder.?
The main preliminary transformation in Sec. II
follows Widder’s proof of this result. We have not
been able to find the other theorems and corollaries
in Sec. III in the mathematical literature.

II. PRELIMINARIES

Let g(x) be a real valued function defined for

x 2 0, and let g(x) belong to L([a, b]) for any choice
of g, b with 0 < a < b. Let the limits

fﬂw glx) dx and g{x).dx
x -0

exist. {The notation is that of Titchmarsh.?)
The Stieltjes transform f(z) of the function g(x) is
g(n) dt

defined by
1@ =[ "5

for z 7 0, Arg z # . For each such z, the manipula-
tions carried out in this section show that the integral
defining f(z) does indeed converge at both limits.
(Forevery z £ 0, Arg zis unique, and —7 < Argz <
7.) The function f(z) is an analytic function, regular
in the whole complex plane cut along the negative
real axis. We are going to study the behavior of f(z) as
jz} — oo in any direction for which Argz # =
Uniform convergence properties are established in
a sector JArgz| < — 8, where 0 < § < = This
sector is henceforth denoted by S;.

% D. V. Widder, The Laplace Transform (Princeton University
Press, Princeton, N.J., 1941), Chap. VIII, Theorem 3d, p. 333. In
the notation of Sec. I, Widder’s result states that f{x} —> Qas x —
through real values.
® E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals
(Oxford University Press, New York, 1948), 2nd ed., pp. 9-10.
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We dispose of the complication at the lower end
of the range of integration by writing

1
1) = fz) + [ £0L,

ne=[ "L,
Now
1 1 1
zf s0dt_ 7 oy ar = -.f ULy
~0t+ 2z -0 =0 t 4+ z
Defining the continuous function ¢(x) by
49 =[ g0 dr >0
-0

and applying the formula for integration by partst
to the interval {«, 1}, with 0 < a < 1, we have

where

j“ tg(dt _ 1) ' [T dt
a t+z t4zh «(t + 2
Letting « — 0,
J“ g de _ $(1) f B0 dt
o t+z L4z o(t + 2%

The integral on the right side exists in the ordinary
Riemann sense. Moreover, for z € S; and fixed r 5 0,

f | [ ()] dt
o(t + 2%~ Jo(t — rcos )’ + r¥sin®é

[igcoran

~ rsin®éd Jo
It follows that

tg(ndt [T
[LE2 [ ewdyz + ottfz)

as |z|—» oo in any direction for which Argz 5 m,
and uniformly for z in §; as |z| — co. This result
means that the theorems of Sec. III need be proved
only for f,(2).

Next we write fi(z) in a different form. Defining
the continuous function (x) by

w(x)=£°°§—(——‘~}—-”” (x> 1)

and applying the formula for integration by parts to
the interval [1, X], with X > 1, we have

f"g(t)dt=_tw(t) X zfxw(t)dt.
1 t4z t+zh 1 (t + 2)?

* This holds for absolutely continuous functions and Lebesgue
integrals. See, for example, Theorem (18.19) of E. Hewitt and K.
Stromberg, Real and Abstract Analysis (Springer-Verlag, Berlin,
1965).
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Now let X — oo, Since y(x) — 0 as x — oo, theintegral

® y(n)dt
1 (t+ 2)?
is absolutely convergent and

1) f * ¥ dt
=" 4z| ——:.
£@ 1+z 1 (t + 2)°
This form for f;(z) is very convenient for proving
the theorems of the next section.
We now give statements of two theorems which we
use in Sec. III.

Theorem A: Let the complex valued function A(z, r)
of the real variables ¢, r, defined for all t > #,, r > ry,
belong to L([¢,, T]) for each T > ¢, and each r > r,,
and let the limit

ﬁ T e, ) dt

0
exist for each r > r,.
Suppose that, as r — oo,
lim h(t, r)
exists for each ¢ > ¢,; denote this limit function by
hy(t). Let the convergence of A(t, r) to h,(t) be uniform
in each interval [t,, T] with T > ¢,.
Then the limits

L T b dt

and °

lim h(t, r) dt

r—w Jip
exist and are equal if and only if, given € > 0, there
exists T (depending on ¢) such that, for each ¢ > T,

there is a number R (depending on ¢) for which

< e forall r>R.

f ” h(u, r) du
t

This theorem is a simple application of a theorem
on repeated limits given in Sec. 305 of Vol. I of
Hobson.® We do not use the full power of this theorem;
in particular we are always able to find a number R
which is independent of ¢.

Theorem B: Let h(u, r) be a complex valued function
of the real variables u, r, defined for allu > uy, r > rq
and belonging to L([ug, o0]) for each r > r,. Let

lim Ay, r)

T+

5 E. W. Hobson, The Theory of Functions of a Real Variable and
the Theory of Fourier’s Series (Cambridge University Press, New
York, 1927), 3rd ed., Vol. L.

W. S. WOOLCOCK

exist almost everywhere on [u,, c©]. Suppose that
there exists a (real valued) function M(x) belonging
to L([uy, ]) such that |A(u, )| < M(u) almost every-
where on [u,, o] for each r > r,. Then

lim A(u, r)

r—+aoo

belongs to L([u,, c]) and

-] -
lim | h(u,r)du =) lim h(u,r) du.

0 Jug Ug r—+ o

This is just Lebesgue’s dominated convergence
theorem,® written in a way which can be applied
immediately in Sec. III.

IIL. PRECISE ASYMPTOTIC BEHAVIOR

We turn now to the main results of this paper and
give a sequence of three theorems. It is assumed that
the conditions in the first paragraph of Sec. II hold
throughout.

Theorem 1: The transform f(z) -0 as |z| — oo in
any direction for which Argz # =, and uniformly
for zin S, as |z| — co.

Proof. It suffices to prove that

J‘ “ () dt
z
1 (t+ 2)°
under the conditions just stated. Now, for z € §; and
fixed r # 0, we have

. o) o0
([0t o f [vlde

1 (t + 2)° 1 (t — rcos 8)* + r¥sin®é
Theorem A may be applied immediately, with

r [y(0)]
(t — rcos 6)* + r¥sin® 8
(t > 1,r > 1say).

As r— oo, h(t,r) — 0 for each ¢ > 1. Moreover, this
convergence is uniform in each interval [1, 7] with
T > 1, since, for t e [1, T},

h(t, r) < m(T)|r sin? 3,

where m(T) = max {Jv(®)|:t € [1, T)}.

Finally, given € > 0, we can find T such that
[¢(£)] < esin 8/(m — 0) for all t > T, since w(r)— 0
as t — o0, Hence, for ¢t > T, we have

ftw h(u, r)du

-0

h(t,r) =

€sin f“’ du
r =,
m—08 Jo (u— rcosd)? + r¥sin®é

¢ See, for example, Theorem (12.30) of Hewitt and Stromberg
Ref. 4.
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independently of r. The conditions of Theorem A
are therefore satisfied and the resuit follows.

An alternative proof? using Theorem B requires the
transformation ¢ = ru. Then

jw [p(D)] dt
1 (t — rcos 8)® + r?sin® 6

® X)) [p(ru)| du
o (u — cosd) +sin®8’

where %)/, ,(#) is the characteristic function of the
interval [1/r, co]. Now with

XIllr,oo](u) |1P(ru)|
(u — cos 8)® + sin?
M(u) = M/[(u — cos d)? + sin? 8],
where M = max {|p(#)|:¢# > 1}, the conditions of
Theorem B are satisfied, since, for each u > 0, y(ru)

fand therefore A(u,r)]— 0 as r— oo, and clearly
M(u) belongs to L([0, o). Hence the result.

h(u, r) = (u 20,r > 1say),

Corollary: Let the limit {~* g(z) dt exist. Then
#@ [ e
-0
as |z| — oo in any direction for which Argz 5 =,
and uniformly for z in Sj; as |z| — co.
Proof.

zf(2) —J:)wg(t) dt = _JH“’ tg(t) dt .

-0 t+2z

Apply Theorem 1 to the Stieltjes transform on the
right side.

Theorem 2: Let either of the following conditions
hold:

(i) the limitj g—(J—?::l—x exists;
X
(i) x*g(x) >0 as x— oo,

where 0 < « < 1. Then z%(z) — 0, as |z| — oo in any
direction for which Argz s #, and uniformly for
z in S; as |z] — o0,

[Notes: (1) The alternative conditions above are not
comparable. For, if x*g(x) = sin x, then

f”’éixléi

xl——a

exists, but x*g(x)+»> 0 as x — oc. On the other hand,

? The author is indebted to H. Kestleman for pointing out this
alternative method of proof.
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if x*g(x) = (In x)~1, then
J‘ 7 g(x) dx

xl-—a

does not exist, but xg(x) — 0 as x — co.

(2) Theorem 1 extends Theorem 2 under condition
(i) to the case a« = 0, while the corollary to Theorem
1 extends it to the case o = 1.]

Proof. The proof amounts to showing that

N OL
1 (t+ 2)?
under the conditions stated above. We first prove
that x*p(x) — 0 as x — oo under each of the conditions
(i), (ii) in turn.
To use condition (i), write

w0 f*‘” g01

1-a ta

and apply the second mean value theorem for integrals.
(See, for example, Sec. 422 of Hobson.5) This gives

[(e01y- 1L [e0a
z tl——a P x® ) tl—-a ’

where & is some number, depending on X, such that
x< &< X Letting X— oo and then x-— o0, it
follows from the existence of the limit

f“" g(n) dt

tl—a

that x*p(x) — 0 as x — oo, It is obvious that this result
holds under condition (ii).
For z € S; and fixed r 7 0, we have

® p(n) dt ® lp(0)] dt
1 (422 T 1 (t — rcosd)® + risin? ¢
Again we may apply Theorem A with

()]
(t — r cos 8)* + r®sin® 8
(t > 1,r > 1say).

a+1

h(t,r) =

Since « < 1, A(t,r)— 0 as r — oo, for each ¢ > 1.
This convergence is uniform in each interval [1, T]
with T'> 1 since, for ¢ € [1, T},

h(t, r) < m(T)/r**sin® 4.
Finally, given € > 0, we can find T such that

€ sin & sin an

90l < 7 sin {a(mr — 9)]
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for t > T. Thus for f > T, we have

fwh(u, P du <
t

esindsinar 4

7 sin [a(7m — §)]

® du
X - =€,
L u®[(u — rcos 8)® + r®sin® ]
independently of r. The result follows.
To apply Theorem B, put ¢ = ru as before. Then

® (1) dt

ra+1
1 (t — rcos 8)® + rPsin®é
_ J‘ ? X)) [y(ru)| du
o u*[(u — cos 8)® + sin®4]
With

X[l/r,w](“)("u)“ l'/)("u)l
u*[(u — cos 8)® + sin® 8]
(u>0,r > 1say),
M

u*[(u — cos 8)® + sin®6]’

where M = max {¢* [¢(t)]:t > 1}, the conditions of
Theorem B are satisfied, since, for each u > 0,
(ru)*p(ru) [and therefore A(u, r)] - 0 as r — oo, and
M(u) belongs to L([0, oo]). This proves the theorem.

hu, r) =

M@u) =

Corollary: Let either of the following conditions
hold:
(i) the limit f (x°g(x) — A) dx
x
(ii) for large x, g(x) ~ Ax™,

where A, o are constants and 0 < « < 1. Then, for
large |z|,

exists;

f(z) ~ A7 csc (me)z™%,
for fixed Argz # =, and uniformly for z in S;. (The
function z* has its principal value in the complex
plane cut along the negative real axis.)

Proof. Put (x°g(x) — A) = x*h(x). Then the con-
ditions (i), (if) above are equivalent to the conditions
(i), (i) of Theorem 2 on the function A(x). Now

T dt ~ h(t) dt
z)y=A —_— —_,
1@ J'—»o 't + 2) 0 t+z
The first term on the right side is Ax csc (ra)z—2.
Applying Theorem 2, we see that

- f h@dt 0,
-0 t+2z

as |z| — oo in any direction for which Arg z % =, and
uniformly for z in S; as |z] — co. Under these condi-
tions, therefore, z°f(z) > Am csc wa, which is the
required result.

Finally we extend Theorem 2 under condition (ii)
toa =1,

W. S. WOOLCOCK

Theorem 3: Let xg(x) — 0 as x — co. Then zf(2)/
logz—0, as [z| — oo in any direction for which
Argz # m, and uniformly for z in S; as |z| - oo.
(The function logz denotes the principal value of
log z in the complex plane cut along the negative real
axis.)

Proof: It is enough to show that

2 [Cy@dt
logzJ1 (t + 2)°
under the conditions stated. In exactly the same way
as in Theorem 2 it follows from the condition on
g(x) that xy(x) — 0 as x — o0,
For z € S, and fixed r > 1, we have

A O
logzJi (t + 2)?

r2 w0

lp(0)] dt

“logrJi (t — rcos8)? + r¥sin®é-
We apply Theorem A once more, with

r® |90

log r[(t — r cos 8)* + r*sin® 8]

(t > 1, r > 2say).
Again h(t,r)—0 as r— oo, for each ¢ > 1. The
convergence is uniform in each interval [1, T] with
T > 1 since, for t € [1, T,

h(t, r) < m(T)flog r sin? 4.

Also, given € > 0, we can find T such that [ty(?)| < %e
for ¢t > T. Hence, for t > T, we have

J;mh(u, rydu

h(t, r) =

e r J'°° dt
2logrJ1 t{(t — rcos 8)* + r*sin® §)

1 1 1 T

< 6[2 + 2logr {log (1 + r) + sin 6}]

< ¢ for all sufficiently large r.
The conditions of Theorem A are satisfied and the
result follows.

Theorem B cannot be applied in this case, but, by

making the transformation ¢ = ru once more, an
alternative proof can be found. We need to show that

1 f ® (ru) [y(ru)| du
log r Jyr u[(u — cos 8)* + sin® 6]
Let M = max {t |y(t)|:t > 1}. Since
f ®  (ru) |yp(ru)| du
1 u[(u — cos 8)® + sin® 8]

—0 as

r— 00.

© du
< M,L u[(u — cos 8)* + sin® 8}’
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a constant, it is sufficient to show that

1 fl (ru) |yp(ru)| du
log r Jir u[(u — cos 8)% + sin® §]

—0 as r— oo.

Now, given € > 0, there exists T (>1) such that
t|p(t)] < tesin?é for ¢t > T. Thus, for r > T,

1 Jq (ru) |yp(ru)| du
log r Juru[(u — cos 8)* + sin® ]

Tir 1
g—l—_—z—I:Mf ‘ﬂ+%esin26 d_u:l
log r sin® 6 yr u T/ru

1 . r
= ———u (Mlog T + %esin®é lo —)
log r sin® & ( g e &T

SE(%+ MlogT )

esin®*dlogr
< e for all sufficiently large r.

Corollary: Suppose that, for large x, g(x) ~ 4/x,
where A is a constant. Then, for large |z[,

f(2) ~ Alog z/z,
for fixed Arg z # =, and uniformly for z in Sj.

Proof: If we put (xg(x) — A) = xh(x), the function
h(x) satisfies the condition of Theorem 3. Now

T dt % h(t) dt
= A4 — e
7 J; (it + 2) t 1 t4z
A ~® h(t) dt
=—=log(l + f — .
z g ( 2+ 1 t+ z
Thus
zfi(z) _ 4 log (1 + 2) + z f"‘” h(t) dt
log z log z - logzJ: t4z°

Since, from Sec. II,

__z__J‘l g(t) dt
logzJ-ot+ z

it follows from Theorem 3 that zf(z)/logz — A4, as
|z] = oo in any direction for which Argz # =, and
uniformly for z in S; as [z| — co.

We conclude this section by noting that, if g(x) =
h(x)x~®, where p is a positive integer and h(x) satisfies
the conditions of any of the theorems (or their corol-
laries) given above, one can apply these results by
writing

f(2) =J;_>0°_h_(.t_)i = i (- l)m—lz—mfl_’oo h(t) dt

Pt +z) m=1 il

b (oapee[ThOE
1 t+z

-0,
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IV. BOUNDS ON TRANSFORMS
Our final theorem is due to Lanz and Prosperi';
in it a bound on f(z) for large |z| is derived from a
bound on g(x) for large x.

Theorem 4: Let |g(x)| < A/x* for all x > X (>0),
where 0 < « < 1. Then
/(@] < C/lz 0 <a<),

f(@) < C'logzl/lz| (x=1),
for all sufficiently large |z|, for fixed Argz £ 7 and
uniformly for z in S;.

[Note: For a« > 1, f~% g(x) dx converges and the
corollary to Theorem 1 applies.]

Proof: In each case, write

G fg‘"d‘ ] s0d

t+ 2z X t+z'
Just as in Sec. 1I,

fX gtydt fX g(¥) dt
-0tz -0 z
for large |z|. We need deal, therefore, only with the

second integral on the right side.
For z € S; and fixed r # 0, we have

f"“’ g(t) dt f“’ dt
ALY P
x t+4z|" Jxet —rcosd)? + risin® 6]

_4

_ f‘” du
r® JXir u®[(u — cos 8)? + sin? 8]t
For0<a<1,

f"”g(t)dt
X t4+z

A J‘ ® du

r* Jo u[(u — cos &) + sin? ]’
which is the required result.

For o« = 1,

f*”m

x t+4+z

4f°° du
= rJxirulu® — 2ucos 8 + 1}
|: X(1 + cos 8) :|

=4log 3
Xcosd—r+ (X*—2Xrcoséd + r?)

r

Alogr

+ 0( ) for r — oo as required.
r
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Various aspects of the mathematics of the probability distribution Py(S,) of one component of the
square of the radius of gyration of an ideal Brownian chain with N units are presented. A rigorous
expression for P(S,) in the form of a contour integral is obtained. The resulting integral is written in
terms of Tchebichef polynomials. Several rigorous and approximate results are obtained for both the

limiting distribution (¥ infinite) and for finite .

I. INTRODUCTION

ASIMPLE and widely used model for the configura-
tion of a large flexible polymer molecule in
solution is the Brownian motion model. According
to this model the position of the jth unit of the mole-
cule relative to one of the ends is given by the sum
of j steps in a Brownian motion, i.e., :
Ry=r+r+ 1 0))
with the r; independent, identically distributed random
variables. We confine our attention to a chain wherein

the probability of the individual step is given by a
spherically symmetric Gaussian distribution

P(x,y,z) = Qno?)ytexp [—(x* + 3 + 29)[262]. (2)

Although this is not as realistic as a model in which the
steps are confined to the surface of a sphere or re-
stricted to allowed angles, for many purposes the
Gaussian model is adequate and it makes the mathe-
matics more tractable.

An important measure of the size of the polymer
is its radius of gyration S. The x component is given
by1.2

N N 2
S.= N3 (x = N3

Ja=1 k=1
— N3t NS ©)
F=1 ! =1 A

where x; is the x component of R;, the vector from
one end of the polymer to the jth unit, and N is
the total number of elements in the chain. The
probability distribution of S, S,, and S, is of impor-

* Consultant to the National Bureau of Standards.

1 The variable §, defined here is, of course, the x part of the
square of what is customarily called the radius of gyration. To avoid
the awkwardness of writing our variable as the square of another
one or of introducing a new or longer name for S,, we simply
refer to S, as the *“‘radius of gyration.”

2 P. J. Flory, Principles of Polymer Chemistry (Cornell University
Press, Ithaca, New York, 1953).

tance in the light scattering, adsorption, expansion,
and viscosity of polymers,2 and there has been a
great deal of current work on the calculation of the
probability distribution.3-8

In this paper we present an extensive discussion
of the mathematical properties of the probability
distribution function of the radius of gyration Py(S,).
This includes its properties as a function of N for
large but finite N as well as calculations relevant to
the limit function as N goes to infinity. In the limit
the distribution becomes a function of S,/No? alone.
The fact that this is true has the physical significance
that the radius of gyration never behaves like a
“macroscopic” variable no matter how large N
becomes. Its distribution does not become more
sharply peaked as the chain grows longer.

The mathematical problem is a quite complicated
one. Even for the case N — oo, the result, which is
obtained as a contour integral, is difficult to evaluate.
For N finite, not only does the corresponding contour
integral become more complicated, but there is the
additional complexity attendant to the presence of yet
another variable, N. The first paper to treat the prob-
lem was by Fixman.? Fixman obtained the limiting
distribution for the three-dimensional radius of
gyration (S, + S, + S,), calculated its moments, and
obtained asymptotic approximations. In a series of
papers on the problem for finite but large N, Forsman
and Hughes™® and Forsman™® presented the results
of extensive investigations of the distribution function
with particular emphasis on the function for very

2 M. Fixman, J. Chem. Phys. 36, 306 (1962).

4 M. Fixman, J. Chem. Phys. 36, 3123 (1962).

5 W. C. Forsman and R. E. Hughes, J. Chem. Phys, 38, 2118
(1963).

8 W. C. Forsman and R. E. Hughes, J. Chem. Phys. 38, 2123
(1963).

? W. C. Forsman, J. Chem. Phys. 42, 2829 (1965).

8 W. C. Forsman, J. Chem. Phys. 44, 1716 (1966).
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small values of the radius of gyration, as this is
related to the increase in entropy of a polymer when
it is deposited on a surface.

We present a wide variety of results, both exact
and approximate, relating to the function Py(S,) and
to the limiting distribution function for the radius of
gyration divided by N in the limit as N approaches
infinity. We obtain an integral expression for Py(S,)
which is exact for all N. At no point do we assume
N to be large in the derivation. Working from the
new form for P(S,), we present a broad survey of the
mathematical properties of the function. Many of
the results we obtain have been presented previously in
the aforementioned papers.2—8 Much, however, is new.

In Sec. II, we derive the integral expression for
Pp(S,). The derivation involves the evaluation of a
characteristic determinant, which is performed by a
generating function technique. It is shown that the
characteristic function of P,(S,) may be written in
terms of the Tchebichef polynomial of order N — 1.

We have placed all of our exact results on the
properties of Py(S,) for finite N in Sec. III. This
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includes a derivation of an expression for Px(S,) as
a sum of real integrals (obtained by deforming the
contour to go around the branch cuts of the charac-
teristic function), an exact evaluation of the moments,
and a derivation of the form of Py in the limit as
N— 0.

In Sec. IV, we use the method of saddle points on
the finite N integral. We show that a single equation
for the saddle point may be used to obtain simple
approximations to Py over various ranges of the
values of the variable, S,.

In Sec. V we obtain a form for P, which is suitable
for evaluation by quadrature. The results of the
numerical integration are presented and compared
with the asymptotic results for P, .

II. DERIVATION OF CHARACTERISTIC
FUNCTION

According to Eq. (2), the probability of an x
displacement, x; — x,_,, at the jth step is

P(x; - x;_) = (2na?)-t exp [—(x; — x;_1)%20%). (4)

The distribution of S, is then

Py(S) = f . f dxy - de{a[sx ~Lras —lz(zx,)z]

o XP [ —x3/20%] exp [—(xs — x,)*/26"] - - - exp [—(xy — xy_1)*/26" ]} )
(2 - 0.2)N/2 ’
where ¢ is the Dirac delta function. Introducing the Fourier representation of the delta function,
dx, - -
Py(Sp) =— dx
N( E) f J f—oo (2770,2)1\7/2
X exp {iz'[ ~Ex 4 —(Ex,)z] — D207 — - =[xy — xN_l)’*/za*]}. ©
The x integrations yield
® /2 of D with eigenvalue g, i.e.,
PN(SQ:) = ___1__ f dlleii.'a; 1TN (;‘N N
2m(2me®V 2 J-wo | D] _ PR 9
. 2 DyCi=uC, (k=1, » N). ©)
1 fw ai et @) 1=t
222 )= |DIF’ We define the generating function f(x) by
where |D| is the determinant of the matrix D defined N
by fx) = Elcjx’- (10)
j=

Dy, = _(i}'/Nz) + 1+ (i)'/N)]akl - %6kNalN
— 30,141 + Op,1-1)s (8)

where 2 = 021’ and §,, is the Kronecker delta.

We evaluate |D| by a generating function method,
and obtain the characteristic polynomial of D. In the
Appendix we present an alternative method of
evaluating |D| by transforming the matrix D to a
known form. Let [C,, C,, * - -, Cy] be an eigenvector

Multiplying Eq. (9) by x* and summing over k, one
obtains with Eq. (8),

f(x)
z/l2x(z C ) (%x’) — CxN 4 CpxV 24 Cyx

j=1 i=1

x? — 2x[1 + (iA/N) —

1
ul + an
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For x = 1, the above equation yields

N
Ci=2u3C;. (12)
j=

As the normalization of the eigenvectors is arbitrary,
for simplicity we choose 3, C; = 1. Then C; = 24,
and Eq. (11) becomes
21‘2’ < i N+1 N+2
—-——A-ﬁlex — CyxM 4 Cux™** 4 2ux
j=

JG) =

¥

(13)
where t = 1 + (iA/N) — u. We now make use of the
fact that (x® — 2x7 + 1) is the generating function
for Tchebichef polynomials of the second kind,
Uf1)bie.,

x2—2xt+1

(x* = 2xt + 1y P = U ()x". (14)
i=0
The Tchebichef polynomials are given by
/21 ¢ __ 1\ o t n—2m
R
m=t m!(n —2m)!

where [n/2] is n/2 for n even and (n — 1)/2 for n odd.
Using Eq. (14), we write Eq. (13) as

N
£ = {—(2iz/N2)2x"“ — Gy
j=1
+ CpxMVt? 4 pr} S U ()X
i=0
N
j=1

Equating coefficients of x™ in Eq. (16), we obtain for
1<m<N

m—2
—(2i2/N?) 2 U0 +2pUp ()= Cp. (ID)
=
Summing the above equation over m from m = 1 to

N and using the normalization condition for the C,,,
SN C,, =1, yields

-1 - (2iA/N2)Nz:2(N — 1 — mU, @)

F U3V =0. ()

Recalling that ¢ =1 4 ({A/N) — u, we see that
Eq. (18) is an Nth degree polynomial in u for the N
eigenvalues of the matrix D and is proportional to the
characteristic polynomial of D. If Eq. (18) is then
written in the form

v ‘
H (dip — b) =0, (19)

® A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Higher Transcendental Functions (McGraw-Hill Book Company,
Inc., New York, 1953), Vol. I,
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then the eigenvalues of the matrix D are u, = b,/d;.
The determinant of D is

N N
|D| = g.“i = H(bi/dt)-

The product TT, d; is the coefficient of ¥ in Eq.

(18). Thus, using Eq. (15), we get

(20)

N
IId: = 2(—=2" 7 = (-1 2V, @21
i=1

The product TV, (—5,) is the constant in Eq. (18),

and is given by

TT(=b) = =1 — QiZ/NY
< SN —m— 1)U,,,(1 + i}\«]’:) 22

m==0

We use the identity

30— m = DU = [N = Uy @Yt = D)
(23)

One may verify Eq. (23) with the help of the equation®
U () = sin [(k + 1) arccos ¢]/sin [arccos t].  (24)

If one then uses the formulas®® for 3%  sin k0 and
> | ksin k0, one obtains Eq. (23). Substituting from
Eq. (23) into Eq. (22), we obtain

TI(=b) = —(%) UN_1(1 + -‘-A%) (25)

i=1
Thus, we find that
|D| = (N2¥) U p_y(1 + iA/N). (26)

Thus the distribution of the x component of the
radius of gyration is

@© say S —-'l‘
Py(S.) = N{@m? f dﬁ.’e“"s{UN_l(l +13'—A§)] :
—o0

27
Using Eq. (24), this may also be written
3 (® s (sin 6) TF
Py(S,) = N¥@ lf dz"lsw[—(s-‘-’l—-—«J, 28
WS89 = i@y | arers (8L @)
where
8 = arccos (1 + iZ'a?/N). 29

HI. PROPERTIES OF THE DISTRIBUTION
FUNCTION, Py(S,)
The distribution function Py(S,) of the x component
of the radius of gyration of an ideal Brownian chain
of N steps is given by a complex integral in Eq. (27)

18 1. B. W. Jolley, Summation of Series (Dover Publications, Inc.,
New York, 1961).
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Xg=(iN/T?) [l—cos (51r/N)]

Xq=(iN/T?) [I—cos(47r/ N)]

X3= (iIN/a?)[1-cos (BT/N)] N=X+iy’

N=(iN/a2) [1-cos (2/N)]

Xz (iN/6 ) [1-cos ( /N))

FiG. 1. Branch cuts for [Uy—1(1 + i}.'o'”/N)]_}.

or (28). This section is devoted to a variety of the
properties of the finite N solution. In particular we
first locate the branch points, specify branch cuts,
and obtain a real integral for Py(S,) by integrating
along the branch cuts. We also use the integral to
calculate exactly the moments of the distribution.
Finally we show how one may obtain an integral for
the radius of gyration in the limit as N becomes

infinite, i.e.,
. S,
lim Py =E£}.
N-w N(N)

A. Analytic Properties

The integral of Eq. (28) has a branch point at each
of the zeros of sin N0 except those for which sin 6, too,
is zero. That is, there are branch points at

§=kn/N (k=1,---N—1).  (30)

Therefore, from Eq. (29), the branch points in the
A’ plane are

AL = (iNJe¥)(1 = cos kn/N). (31)

We see from this equation that values of &k other than
those specified to the right of Eq. (30) would not
yield any additional value of the 4, . As we see all of the
branch points are on the positive imaginary axis. We
choose to make branch cuts between 4;;_, and A,
withj=1,2,---#N — 1),for Noddorj=1,2,--
#(N — 2), for N even. For N even, there is an additional
branch cut along the imaginary axis from 4,_, to
infinity. The branch cuts are illustrated in Fig. 1.

The fact that there are no singularities in the lower
half-plane means that Py(S,) is identically zero' for

11 1., V. Ahlfors, Complex Analysis (McGraw-Hill Book Company,
Inc., New York, 1953).
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S, negative—as, of course, it must be since S, by
definition is a positive variable.

B. Integral Over Branch Cuts

We now obtain an expression for Py(S,) in terms
of definite integrals of real functions. This is done by
showing that the integral over the real axis [Eq. (27)]
is equal to integrals around the branch cuts in Fig. 1.
As illustrated in Fig. 2, to the integral over the real
axis we add: (1) the quarter circle of radius R(R — o0)
from (R,0) to (|¢, [R? — &]}) (le] >0 and A =
x" 4+ iy’); (2) the line x’ = |¢] from R to 0; (3) the
line y' = 0 from |e| to —|e|; (4) the line x' = —|¢|
from O to R; (5) the quarter circle of radius R from
(—lel, [R? — €2]}) to (—R, 0). This contour does not
enclose any singularities and hence the integral over
the total contour vanishes. The integrals over the
quarter circles (paths 1 and 5) vanish as R — oo, since
the real part of the exponent is negative in the upper
half plane.l!

As € — 0, the integrals on either side of the positive
imaginary axis cancel each other everywhere expect
on opposite sides of a branch cut. Recalling that the
first branch cut went from branch point 4, to 4, , the
second from 4, to A, etc., and introducing the defini-
tion A), = ico for N even, we have

v ple+r , s
Pr(Sy) = 1—2\’— lim > { fl Y d }.rei;.'sxli (sin 6) ]

T e=0 j=1 el+A’2-1 (Sin N0)
_ J‘—Islﬂ'y d}.’e“'"s": (sin 6) :Ié} 32)
—Jel+A'051 (sin NO)| |’

where [N]2] is the greatest integer <(N/2).
In order to understand the behavior of the integrand
near the branch points, it is convenient to write

sin 6 1% et 7t
=|{Uxrn_(1
[sin NG:I { N 1( + N ):l

_ {(%GZ)N_I iﬁl [i(A — z,;)]}_t. (33)

Here, the last equality is obtained from the fact that

v
[k-2le]

R —»®
le]— o

Vex'+ iy’ X

Fi1G. 2. Contour used in evaluating the integral of Eq. (27).
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the A,’s are the roots of the Tchebichef polynomial,
and that the coefficient of 2’V in Uy_, is (2ig*/ N)N 1,
We write (A’ — A,) = p,expi(¢,), where, on the
visible Riemann sheet, —37 < ¢, < 4m. We further

define
N-1

¢k=§+¢£a 5=HP1¢:
k=1

and
Ky = (N[2o3)H0,

; ¥ N-1 -3
[ve) =Ko [iSa]. 0o
sin N6 k=1
This expression is convenient for examining the
behavior of [sin 6/sin N6}, The positive square root
must be taken, as, at A’ = 0, the result must go into
that obtained from Eq. (6) with 4’ = 0, and this, of
course, is positive. Thus,
sin 6 1} Y i Nt

[sin Nﬂ] =Kl Iexpl: 2k§1¢k]. (33)
As we move upward along the imaginary axis with
Re X' >0, ¢,—0 or = depending on whether we
are below or above A, respectively. For Re A’ < 0,
¢ —0 or (—=) depending on whether Im (') is
less than or greater than Im (4,), respectively. Since
the integrals in Eq. (32) are evaluated between 4,; ,
and Ay, we see that the argument of [sin 6/sin N6]#
is exp [—3}im(2j — 1)] = i(—1)7 for Re A’ > 0, and is
exp [+4i7(2j — 1)} = —i(—1)7 for Re ' < 0. Thus
the integrands are of different sign on the two sides
of the branch cut. We further see that because of the
(—1)7 factor the integrands alternate in sign on neigh-
boring branch cuts. Since [sin 6/sin N8] is real along

the imaginary axis, we directly obtain
I: sin 6 T'
sin NG| |

(36)
Upon making the substitutiony = —(2j — )7 +
N X arccos (1 + iA'0%[N), the above integral can be
written as

P\(S,) = Nin 152

[N/2] F
x 3 (~1H f dylexp [—(NS,Jo)
j=1 (1]

x {1 = cos [(y/N) + (2 — D=/ N)]}]
x [sin {(7/N) + (2 — )(m/N)} Plsin 7%},
(37
Thus, the problem of finding Py(S,) for all values of
N is reduced to that of evaluating a sum of integrals

with real integrands, which is amenable to numerical
computation.

Thus

A2y
di’ eil’S,,
A'a5-1

[N/2]
PM(S,) = N7ty i(—1)
j=1
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In addition, Eq. (37) can be used to find an approxi-
mation to Py(S,) for large S, . For S, large, the j = 1
term in the sum dominates the series. Assuming
(27/N) < 1 we have

Py(S,) = N'n ™
x [ v exp (=4SN + 2Ky + msin Y,
(38)
or, in terms of y = S,/Na?,
Pa0) = 7 [ dyexp L=yt + ) + sin -t
(39)
For large y, the only significant contribution to the

integral occurs near y = 0. The above integral can
then be written

Py(y) = ot exp (—3n%) f “dyy ¥ exp (—ymy), (40)

where we have replaced the upper limit by infinity.
Evaluation of the above integral yields

Pr(y) = (m[)t exp (—1nt). @“n
This is in agreement with the result stated by

Forsman.12
C. Exact Moments

We can obtain the moments of Py(S,) from Eq.
(27). Defining the mth moment,

an= [ s2P(S d5.. “2)
we find -
— (—1ymn} .‘f.mﬂ —3
= (PN (Z) T 0| @)

Using the fact that the derivatives of the Tchebichef
polynomials are Gegenbauer polynomials one obtains?®
UnO)| 2N Amimt L,
dy™ [N — (m + D! @2m + 1)!
As Uy_4(1) = N, one may readily evaluate the mo-
ments. The first four are seen to be

1 1
= N02[1 - ﬁ]

S N%‘[l - l]

=1

20 Nt|
a = 551%1\/%‘*[61 + %32 _ 12\{14 _ 11%3]
% = ﬁ.(—) N‘a‘*[1261 + %%4;—0
e ] @

12 See Eq. (1) of Ref. 7.
13 Reference 9, pp. 186 and 174.
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D. Limiting Distribution as N — «

We now consider the distribution function in the
limit N — oo. For this case it is not difficult to verify
that the part of the integral in Eq. (27) which does
not go to zero as N — co corresponds to A'¢?/N K 1.
We then have 6 = i[2iA’0*/N]} and sin 6 = 6. Letting
s = No?1’, we obtain from Eq. (28)

P(S,) = @nNo¥™? f ds exp ['S ’i]
-0 No
; ain -
% {{smh (2;3) }} . (@6)
(2is)

Defining y = S,/Na?, we write Eq. (46) as
(™, ie(Isinh Qis)}]
Po9) = @y [ dse{ RS0
—o (2is)t

We note that the limiting distribution is only a function
of S,/No21* Equation (47) is the one-dimensional
analog of the result obtained by Fixman.? In Sec. V,
we evaluate this integral numerically to obtain P_(y).

}“*. 47

IV. SADDLE POINT METHOD

In this section we show how the integral for Py(S,),
as given in Eq. (27), may be evaluated approximately
by the method of steepest descent. We see that the
saddle point a, is always on the imaginary axis,
running from a, = —ico for S, = 0 to the bottom of
the first branch point, a, = i(N/e?)(1 — cos =/N) for
S, = oo. That is, for all values of the radius of
gyration S,, there is a saddle point on the imaginary
axis below the lowest branch point. Thus the contour
of integration along the real axis may always be
displaced to go through the saddle point, without
the contour crossing any singularities. The approxi-
mation yields

PN(S,) = exp [g(a)l[—2n/g"(a)]},  (48)

where
g(A) = In (N¥2m) + il'S,
+ 3 In(sin 6) — } In (sin NO), (49)
and the equation for the saddle point, dg/oA" = 0, is
y = N2 csc f,[cot 6, — N cot NO,], (50)

where 6, = arccos (1 + iay0?/N). Differentiating, we
obtain

g"(ag) = (0*/2N?) csc? ,[csc? 6, + cot? §,
— Ncot 8, cot Ng, — N2csc? N6l (51)

14 It is interesting to note that here we have an example of a
quantity which does not have a ‘“‘macroscopic limit™ as the number
of elements N approaches infinity. By this we mean that the
fluctuation of the observable quantity (the radius of gyration) does
not become relatively smaller as N increases,
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TasLE 1. Position of saddle point for
¥ = (S:/No*) = o0, §, and 0.
6, ¥ x
T &
(m{N} 0 —_ (1— cosﬁ)
0 (=7 0
i 0 —ico
@ First branch point in A° plane.
It is also convenient to define 8, = —if,, in terms of

which Eq. (50) becomes
y = —3N-2csch f,[coth f, — N coth NB,]. (52)

A study of Eqs. (50) and (52) shows that there is a
solution such that g, lies on the imaginary axis beneath
the first branch point for any value of y. In the limit
y — ©, a, approaches the first branch point, ie.,
ay— (iNja®»[l — cos (w/N)] and 6, tends to (=/N).
As y decreases, 0, decreases and g, moves down the
imaginary axis. At y =} (the mean value of y),
0,=ay=0. For y <}, g, lies on the negative
imaginary axis while 6, is now on the positive imag-
inary axis. As y becomes smaller, a, and 6, move
further from the origin. In the limit y — 0, a, ap-
proaches (—ico) and 6, approaches (ic0). The values
of y for 6, = (#/N), 0, and (fo0) are given in Table I
along with the corresponding values of a,. We can
obtain simple approximate expressions for the
solutions of Eq. (50) and (52) for three ranges of y,
viz., (i) 27y 3> 1; (i) ¥ =« }; and (iii) y << 4. Whenever
6, « 1, which holds for case (ii) and also for case (i)
when N 3> 1, then, as discussed in Sec. IILthe expres-
sion for Py(y) reduces to P(y), and our treatment is
simply the one dimensional analog of Fixman’s
three-dimensional results. However, for case (iii)
(small y), we obtain a more general result than has
previously been derived.

Case (i) 2ny > 1
We have
ea == (77/ N ) - (62/ Z"Sz):
ag == i(m*2No?)[1 — 1[=%],
g'(ap) == —2(yNo*)?,
P(y) = (we[2p)} exp (—n%).

This differs only by the factor (¢/2)} from the result
obtained in Sec. III [Eq. (41)].

(33)

Case (il y=>= 13

In this region we obtain an approximate expression
for the distribution near its mean. For the approxi-
mation to the solution of Eq. (50) [or Eq. (52)] to be
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valid, we must have N@, < 1 (6, = 0 corresponds to
y = ). In terms of the region of validity for y, this
inequality is

9oy — P « 1.
In this region we have
ap = (iN6%26%),
g"(ap) =2 —(N*¢*/45)[1 + (20/T)(6y — D}, (54)

P(y) == (45/2m)H[1 — (60/D(y — D)1

It is seen in the last section, where we present the
results of a numerical integration for P(y), that Eq.
(54) is indeed in excellent agreement with the computed
function.

and

Case (iii) y £

Here we obtain an approximation to P(y) in the
region where y is much less than its mean value. In
terms of the equation relating the value of y to the
saddle point, Eq. (52), we can obtain a simple result
as long as

coth 8 K N. (55)
Then Eq. (52) becomes
Ny ~ % csch f,. (56)

Here we have used the fact that Eq. (55) implies
NB > 1. Inserting Eq. (56) into Eq. (55) we see that
the range of y over which this approximate form holds
isyKi.
We then have the results
ay = —i(NJo){[1L + (o*4SDI — 1},

g'(a0) = —QINONYPLL + 4N, D

P(y)
__ exp(Ny{=1+[1 + Ny}

~ anty 1+ QNY)TBHENYT 4 [+ @Ny) )

If 12N K y « 4, then Eq. (57) reduces to

P(y) =}ty exp [~ (8y)1]. (58)
If y K 1/2N, Eq. (57) becomes
P(y) == (N[8m)ty~EeV iy Nyvee, (59)

From this we see that the single expression for
P(y) given in Eq. (57) covers both of the small y
cases discussed in Ref. 7 by Forsman.

V. NUMERICAL EVALUATION OF THE
DISTRIBUTION FUNCTION AS N — ©

An integral representation of the distribution func-
tion Py(y) in the limit N — oo is given by Eq. (47).

S. R. CORIELL AND J. L. JACKSON

In this section, we obtain an integral representation
of P,(y) with a real integrand and evaluate P.(y)
numerically. To accomplish this we need to express
the quantity {[sinh (2is)?]/(2is)3}% in terms of its
real and imaginary parts. Defining

E(s) = {[sinh (2is)}]/(2is)}}?

= {A(s) + iB(s)}, (60)
where A(s) and B(s) are real, we have
A(s) = 3s~}[cos s? sinh st + sin st cosh s3],  (61a)

B(s) = ks—¥[—cos st sinh st + sin st cosh s2]. (61b)

It can be seen that A(s) is even while B(s) is odd. We
can then write

E(s) = Eg(s) + iE(s), (62a)

where Ex(s) and E/(s) are real and may be written

Eg(s) = 27¥Sp(s){4(s) + [4%() + BY9)IF}E,  (62b)
Ef(s) = 23S(s){—A(s) + [4%(s) + B¥9)}}E, (620)
where Sg(s) and Sy(s) are functions of s and are equal
to plus or minus unity. These functions are discussed
in the next paragraph. It can be seen that, since A(s)
and B(s) are even and odd functions of s, respectively,

the functions Eg(s) and E,(s) are even and odd,
respectively. We can now write P (y) as

P.(y) = @m) f_ " dse™{ER(S) + B}

=(Q2m)?! f ds[E% + E3I*[Eg cos (sy)
— E;sin(sy) + iEjcos (sy) + iEg sin (sy)].
(63)
Because of the symmetries of Ex(s), E,(s), sin (sy),
and cos (sy), the integrals containing E; cos (sy) and

Ep, sin (sy) vanish. Similarly we can change the limits
of integration to zero to infinity, obtaining

Pu) = o [ "aslER + B
X [Eg cos (sy) — E;sin (sy)]. (64)

Making use of the fact that P (—|y|) = 0, we have

P (y) =277t ﬁ wds[Eie + E3'Eg cos (sy). (65)

It is necessary to determine the function Sg(s) in
order to evaluate P ,(y) as given in Eq. (65). To do this
we recall the discussion of Sec. III concerning the
branch cuts. Using the nomenclature of Sec. IlI, we
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Fi16. 3. The probability distribution P (y) of one component of the
square of the radius of gyration.

write E(s) as'®

. -3 : N—-1
E(s) = N_é[Ln@_] — N K5 exp B S ¢k].
k=1

sin N6
(66)
Hence we have

p' ‘l’ N—-1
Ep= cos |3 R 67
» (ng) os[zkglqbk} 67)

ﬁ % N-1
E, = ' i . 68
. (in) sin [%ﬂ (68)

When s is near the origin, (3 D¥-1¢,) &K 1 and Ej,
is positive. It is clear that E changes sign whenever
32X ¢ =Qn+ Dim; n=0, £1, £2,---. At
these values Ep = 0 and we can find the values of s
at which (3 Y¥1 ) = (2n + 1)3n by setting Ex(s) =
0. This is given by the solution of the equation
cos (s) sinh (s}) = sin (s?) cosh (s3) with cos (s) <
0 and sin(s}) < 0. The approximate solution is
[$,] =2 {27n + 57/4 — exp [—2Q27n + 5#[d)}% n =
0, 1, 2,---. Thus Eg(s) is positive for 0 < s < sy,
negative for 5; < 5§ < 5,, positive for s, < s < 53, and
so on, which specifies the function Sy(s) introduced
in Eq. (62b).

The integral for P (y) as given in Eq. (65) has been
evaluated numerically. The results are shown in Fig. 3.

15 Rather than rewrite the corresponding functions in the limit
as N — o0 we use the finite N forms from Sec. III [i.e., Eq. (34)].
The explanation is not affected by leaving N finite.
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The maximum in P (y) occurs at y = 0.060 =+ 0.001.
The zero, first, and second moments were computed
from P,(y) and agree within 19 with the exact
moments. Numerically, we obtain P(})==2.61 and

dP[dy =~ 23.8,
y=4

while the saddle point method of Sec. IV gives
P_(}) = 2.68 and

dP|dy = 23.0.
y=%

Forsman and Hughes® have obtained an approxi-
mation to P (y) by an iterative procedure. Their
results are in reasonable agreement with the results
obtained here, e.g., the maximum in P (y) as obtained
by Forsman and Hughes occurs at y = 0.066 and
P _(0.066) = 5.5 (estimated from Fig. 1 of their
paper) while our maximum is at y = 0.060 £ 0.001
with P,(0.060) = 6.30. Equation (58), which was
obtained by the saddle point method and which is
valid for y « 4, predicts a maximum in P (y) at
y = 16 with P_(F%) = 4.9.
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APPENDIX

In this appendix, we present another method of
finding the determinant of the (¥ X N) matrix D,

Dy = —(iAIN?) + [1 + (i2/N)16 — 30un0in

- %[6k.l+1 + 67{:,1—1]' (Al)
We define the (N X N) matrices L and B by
Ly = 6kl - 6k,t+13 (A2)
By, = $0y, — GA/N?)(k — )(I — 1) + (iA/N)
X [(k =1D)SUI—k)+ (@ —1DSk—=D], (A3)
where
1; x>0,
S(x)=1{%; x=0, (A4)
0; x<0.

By matrix multiplication, it can be shown that D =
LTBL. Since |L| = |LT| = 1, we have |D| = |B|. The
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matrix B has the form
i 0
B= ,
0 4

where the (N — 1) by (N — 1) matrix 4 is defined by

(A5)

Ay = Biya,1415
ie.,

Ay = 38 — (A[N*)kl + (iA[N)

X [kS( — k) + ISk — )], (A6)

and we have |B| = }|A].
We next define the (N — 1) by (¥ — 1) matrix C
by the equation
A =} + (HN?C, (A7)
where [ is the identity matrix. Thus,
C. = —kl + NkS(I — k) + IS(k — D). (A8)
The inverse of C is given by

(C—l)kl = (I/N)[26kl - 6k.l+1 = 6k+1.l]’ (A9)

S. R. CORIELL AND J. L. JACKSON

which can be proved by matrix multiplication. Noting
that A = C[3C! 4 (iA|[N®I], we have

D = }IC] ‘;c-l + 1
or
INC™ + QQiA/N)I]
2V INC| '
Let Py_y(x) be the (N — 1) by (N — 1) matrix defined

by [Py_a(®)} = X84 — 0,111 — Opya,;- It has been
shown by Wolstenholme?® (see Rutherford??) that

[Py_y(x)] = sin NbJsin 6 = Uy_,(3x), (All)

where 0 = arccos (3x). Combining this result with
Eq. (A10), we obtain

D] = Uy_.(1 + iA/N)
N2~

which is the same as Eq. (26).

[D| =

(A10)

: (AL2)

18 J, Wolstenholme, Educ. Times 27, 67 (1874).
17D. E. Rutherford, Proc. Roy. Soc. Edinburgh 624, 229
(1946-47).
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The existence of a Bose-Einstein condensation in an interacting many-boson system at 7 = 0°K is
proved under certain conditions on the particle density and the interparticle potential. Starting with the
tentative assumption that the condensation exists, we study the fluctuation in the occupation number
of the condensate with due regard to its interactions (1) with particles outside the condensate as well as
(2) with the fluctuation itself. If the condensate fluctuation has a normalizable ground state, then the
assumed existence of the condensation is tenable. For the case of the pair-Hamiltonian model satis-
fying the conditions for condensation, the interactions of the second category are of no importance. In
the limit of infinite volume, this Hamiltonian can be diagonalized in an irreducible representation of a
Bose-field operator ¢(x), where ¢(x) has nonvanishing ground state expectation value, in accordance with
the usual c-number replacement of creation and destruction operators for the condensate particles. The
full Hamiltonian for a system of pairwise interacting bosons is studied only in a low-density limit.
Bose-Einstein condensation exists when the over-all space integral of the interparticle potential is
positive. In this case the interactions of the second category play an important role in ensuring a nor-
malizable ground state for the condensate fluctuation. There is an indication that in the limit of infinite
volume the Hamiltonian cannot be diagonalized in any irreducible representation of the field operator .
Yet the c-number replacement of the condensate operators is legitimate as far as states of particles
outside the condensate are concerned. Some speculations are made as to what may happen for systems of
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moderate density.

I. INTRODUCTION

T is universally believed that at sufficiently low
temperatures a Bose-Einstein (B.E.) condensation
occurs in a system of N — co interacting bosons.! To
date no proof has been given to support this belief
except for several simplified model systems.? In a
classic paper on interacting bosons, Bogoliubov?
proposed that ome simplify the second-quantized
Hamiltonian, so as to take advantage of the assumed
B.E. condensation, by replacing a} and a,, the
creation and destruction operators for the zero-
momentum single-particle state, by a ¢ number Nj.
The quantity N, is the average number of particles
occupying this state, and it is supposed to be O(N),
of course. Bogoliubov’s procedure has been very
useful for the purpose of providing a first-principles
explanation of some of the low-temperature prop-

* Present address: Department of Physics, Gakushuin University,
Mgjiro, Toshima-ku, Tokyo, Japan.

+ Present address: Department of Physics, Bar-Ilan University,
Ramat Gan, Israel.

1 The limit we are referring to is that for which both the number
N of particles and the volume V enclosing the system become
infinitely large, with the particle density p = N/V held fixed. Such
a limit is called the volume limit.

3 W. H. Bassichis and L. L. Foldy, Phys. Rev. 133, A935 (1964).
Their study concerns a model system which, in the absence of
interactions, consists of only three energy states. The existence of a
B.E. condensation can also be demonstrated for the Hartree~Fock
model of interacting bosons.

3 N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947).

erties of liquid *He. Nevertheless, it is necessary to
ascertain the domain of applicability of this otherwise
ad hoc procedure. In this regard, an a posteriori
verification®¢ that N, = O(N) does not establish its
legitimacy.

Based on a result”-® from the theory of the repre-
sentation of canonical commutation relations, one of
us (H. E.)® proposed the operator replacement

Qe = N:,} + ¢, (1.1)

where the operator ¢ and its adjoint ¢! satisfy the
usual boson commutation relations,

[e,c'1=1, [e,el=1[",c'1=0,

[C(T), ag)] =0 (k # 0). (1'2)

It is the main subject of this paper to study the use-
fulness of the replacement (1.1) for the purpose of
obtaining an existence criterion for the B.E. con-
densation.

Two remarks are in order about this operator
replacement. First, if we adhered to the usual Fock

¢ T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135
(1957).

8 N. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959).

¢ S. Beliaev, Soviet Phys.—JETP 7, 289 (1958).

7 H. Araki and E. J. Woods, J. Math. Phys. 4, 637 (1963).

8 H. Ezawa, J. Math. Phys. 6, 380 (1965).
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representation® for the operators a{', then any state
vector describing B.E. condensation would keep
rotating in the Fock space and therefore no con-
vergence could be expected in the volume limit when
Ny — 0. It should be recognized here that the B.E.
condensation can be defined only in the volume limit,
N, V— o, N|V = p fixed.!® Thus we need some
replacement for the quantum mechanical variables
all. The idea of the replacement (1.1) is to shift the
“origin” of a{" in accordance with the size N, of
the condensate. The new operators ¢!’ describe the
fluctuations of the k = O-state occupation number
from its average. Underlying (1.1) is the hope that
¢! remain “finite” in the volume limit when N, — co.
If unfortunately the condensate of a given system is
such that its fluctuations' cannot be described by any
finite ¢), then a further change of variables will be
needed. The proper choice of the variables will be
determined by the Hamiltonian of the system.1?
Parenthetically we note here that a finite description
of the condensate may be achieved in some other ways
too. For instance, we may try the variables P, Q
defined by a, = 2-¥(NEP — iN;1Q) and

al = 2-¥(N}P + iN;1Q);

they satisfy the commutation relation [P, Q} = —i.
The number of condensate particles, aja, = 3N, X
(P? 4 N2Q% — Ng1), can be O(N) for finite operators
P, 0.

The second remark concerns the particular features
of our choice of variables (1.1). For one thing, the
Bogoliubov replacement alt’ — N} is closely related
to (1.1). If it can be shown in fact that ¢! = o(N}) for
the condensate of a given system, then the Bogoliubov
replacement is justified for the treatment of the system.
The notation ¢'" = o(N}) should be understood to
mean that the operators ¢! can be treated as if they
are quantities of o(N}). The precise meaning can be
given only after we find a Hilbert space appropriate
for describing ¢‘!). Another interesting feature of the
replacement (1.1) is that it leads to an irreducible
representation of boson-field operators if ¢! = o(N3).

? For the classification of the representation of canonical com-
mutation relations, see L. Garding and A. S. Wightman, Proc. Natl.
Acad. Sci. U.S. 40, 622 (1954); A. S. Wightman and S. S. Schweber,
Phys. Rev. 98, 812 (1955); R. Haag, Lectures in Theoretical Physics
(Interscience Publishers, Inc., New York, 1961), Vol. III.

10 For the general definitions of B.E. condensation, see O.
Penrose and L. Onsager, Phys. Rev. 104, 576 (1956); C. N. Yang,
Rev. Mod. Phys. 34, 694 (1962).

11 The size of the condensate fluctuation is given by the formula

a(a;'ao) = Nyo(c + hHh+ 2N§a’(c + ct,ete) + a(cto),
where
6(4, B) = ${AB + BA) — (AXB), o(A4) = a(4, A),

and the angular bracket means expectation value.
12 H. Araki, J. Math. Phys. 1, 492 (1960).
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If we used the representation in terms of the finite
operators P, Q defined above, the term NO‘QQ becomes,
in effect, negligible in the volume limit and only the
operator P remains relevant, so that P can be treated
as a ¢ number. The representation of the boson-field
operators becomes a direct sum of representations,
each corresponding to a particular value of the ¢
number P. The representation is thus reducible in the
volume limit.

We now formulate within the context of the
operator replacement (1.1) the existence criterion for
the B.E. condensation for the special case of T = 0°K.
Let 3 denote the form of the Hamiltonian which
obtains when the operators a, and a] are replaced in
accordance with (1.1). Since we have to use a repre-
sentation in which the total number of particles is
not sharp, we introduce ¥ = J& — uN°, where N =
Y. ala, and p are the total number operator and the
chemical potential, respectively. We call J¢, rather
than ¥, the Hamiltonian of the system. Since the
Hamiltonian ¥ and therefore its ground state |Q2)
involve two parameters N, and x4, we can impose two
subsidiary conditions on the ground state,

Qlc|Q) = Q| c"|Q) =0, (1.3)
QN |Q) = Ny +(Q c'e + 3 ala, |Q) = N,
k

(1.4)
besides the usual normalization requirement

Qo) =1 (1.5)

Here and in the following a prime on a summation
symbol for momentum states k means that thek = 0
term is to be omitted. Note that if we understand the
canonical transformation as providing an analog of
the method of small oscillations, then (1.3) should be
compared to the equilibrium condition with which we
determine the center of oscillation. A B.E. conden-
sation occurs if the number N, determined from
(1.3)-(1.5) is in fact macroscopic, Ny = O(N). For
the purpose of practical calculations, it is actually
more convenient to start by assuming that N, is
macroscopic. Then one must determine whether or
not the Hamiltonian has a bona fide ground state
satisfying the restrictions (1.3)~(1.5).

To facilitate such calculations, in Sec. II of this
paper we present a modified version of the Born-
Oppenheimer method,!® which, as is well known, was
originally designed for the treatment of molecular
vibrations. Just as Born and Oppenheimer eliminated
the electron-nucleus interactions to obtain an effective

13 M. Born and R. Oppenheimer, Ann. Physik 84, 457 (1927);
R. de Kronig, Z. Physik 50, 347 (1928).
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nuclear potential, so we construct an effective
Hamiltonian A, for the condensate fluctuation by
solving an “eigenvalue problem” for the particles
outside the condensate (k # 0). To be specific, let
$g and Ho denote the Hilbert spaces appropriate to
operators af”, (k # 0), and '), respectively. Then
A, is an operator on $ such that

(1.6)

where vy, is a vector of §p describing the state of the
k # O particles and, at the same time, an operator
defined on $,. In other words, y,, is a linear combi-
nation of vectors of § 5 whose coefficients are functions
of the operators ¢". The reason why we call A, an
effective condensate Hamiltonian is that, given the
“state” v, of the k # 0 particles, the spectrum of the
associated condensate fluctuation is obtained by
solving the eigenvalue problem

A |bne) = Epg |0a), (L.7)

where the |¢,) € H, are the state vectors of the
condensate. The physical meaning of the eigenvalue
E,, can be found by combining (1.6) and (1.7):

Ky, = p.A,,

K |n, a) = E,, 1, ), (1.8)

where
ln’ 0(,> =9, I(;[’na) € 5B ®v$")0'

Thus E,, is the energy eigenvalue of the total system.
The differences E,, — E,, give the excitation energies
of the condensate fluctuation. Let us denote the
ground state of the total Hamiltonian by n = « = 0:
|0, 0) = |€2). As we see in the following sections the
condition (1.3) serves to determine the chemical
potential' by requiring that A, has no term linear in
¢M. The number N, is then determined by (1.4). If the
above program yields a normalizable ground state
and if the number N, turns out to be macroscopic as
desired, then we can conclude that the boson system
undergoes a B.E. condensation.

In Secs. III-VI we study the eigenvalue problem
(1.6) and (1.7) for the case of the pair Hamiltonian
model, whose thermodynamical properties have been
studied by one of us (M. L.).!3 Then in Sec. VII we
try to discuss some challenging problems one meets
when one examines the case of the full boson
Hamiltonjan. Note that the pair Hamiltonian includes
only a small subclass of interaction terms included in
the latter. Despite several unphysical properties, the

141t may be seen that the chemical potentials u, determined,
respectively, by the condition that A, has no terms linear in N}cm,
all coincide, p, == 1y, as long as the states y,, differ from p, by a
finite number of k $ 0 excitations.

15 M. Luban, Phys. Rev. 128, 965 (1962).
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pair Hamiltonian is interesting because it admits of a
complete mathematical analysis.

In Sec. III we begin our study of the pair Hamil-
tonian by solving (1.6), the first part of our eigenvalue
problem. Reasonable solutions can be obtained only
when the interparticle potential and the particle
density p = N/V satisfy certain conditions (k #% 0
stability conditions), e.g., v(0) > 0, where v(k) is the
potential in the momentum representation.!® For the
moment we assume that these conditions are satisfied.

In Sec. IV we calculate the effective condensate
Hamiltonian A, by making use of the perturbation
formulas presented in Appendix A. The Hamiltonian
consists of two parts, a finite part AJ and an infini-
tesimal part Ag; both are power series in c!™, and the
coefficients are O(1) in the former and o(l) in the
latter as N — co. In the second-order approximation
we obtain

Al = W, + foc'e + dhg(cc + cic’),  (1.9)

where W,/N, f;, and A, are ¢ numbers of O(1).'” For
the present case of the pair Hamiltonian, the use of
Green functions shows that there is good reason to
believe that this expression for A$ is asymptotically
correct to all orders as N-» . The Hamiltonian
(1.9) can be studied more conveniently after the
canonical transformation,

p=2%c+ch, g=i2tc—ch; (110)

the new variables satisfy the usual momentum-
coordinate commutation relation,

[p.ql = —1. (1.11)

Then (1.9) becomes

A=W, — 3fo + 3(fo + h)(P* + Ag®), (1.12)
where

4= (fo — hl(fo + ho)- (1.13)

It is now clear that A} has a normalizable ground
state |¢qo) if and only if

Jo by > 0. (1.14)

The inequalities (1.14) constitute what we call the
k = 0 stability conditions. When (1.14) is satisfied,
the requirements (1.3) and (1.5) can be satisfied by
1) = 9 o). The number N, we get from (1.4) is
macroscopic in accord with our presupposition of the
B.E. condensation. Further, as desired, the operators

18 The condition ©(0) > 0 means, therefore, that the space
integral of the interparticle potential must be positive.

17 We can calculate the effective condensate Hamiltonian A,
corresponding to the state ¢, of the k % 0 particles. It may be seen
that A, = A, as long as the state y, differs from ¥, by a finite
number of k # 0 excitations.
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c™ are finite in the sense that all matrix elements’®
Q) (MY 1Q),i,j=0,1,2,---,are O(1). Thus the
Bogoliubov replacement af’ — N} is valid.

In Secs. V and VI we study the implications of the
k = 0- and k # O-stability conditions on the inter-
particle potential and the particle density p. In
particular, the condition f, — A, > 0is found to imply
that & must be partially attractive.!®2 Thus a
potential that is purely repulsive, #(x) > 0, in co-
ordinate space will lead to a violation of (1.14). For
a many-boson system with such a potential, the
discussion in Appendix B shows that the operator part
¢M of (1.1) must be comparable in order of magnitude
with the ¢ number part N}. Two possibilities are
therefore open. Either (1) a B.E. condensation
occurs in such a system but the operator replacement
(1.1) is not useful, or (2) a B.E. condensation, at
least of the usual variety, fails to occur in the system.
Regarding the latter possibility, we can also show
that the assumption of no condensation for such a
system is untenable (see Sec. V).

When we turn our attention to the case of the full
Hamiltonian in Sec. VII, the situation becomes less
clear because we are unable to calculate the effective
condensate Hamiltonian in an asymptotically exact
fashion. In the low-density limit, where a second-
order perturbation calculation is believed to be
meaningful, the finite part AJ of the condensate
Hamiltonian turns out to have the form of (1.9) with
the coefficients® f, + Ay = 2p0(0), and fy — by = 0;
the restoring force term in (1.12) vanishes and there-
fore the operators ¢! cannot remain O(1) as N — oo.
Vanishing of the restoring force is closely related to
the Hugenholtz-Pines theorem®2?* and the corre-
sponding result of Gavoret and Nozieres,?>-2® which
assert, respectively, that the one- and two-particle
excitation energies vanish in the low-momentum
limit. Since ¢! may become large, the infinitesimal
part Ay of the condensate Hamiltonian will play a
significant role. Inclusion of Aj leads to a Hamiltonian
A, of the form a constant times the following:

(c + cH? + 2N cTee + clcfe) + Nytclelee
= [(@5a0 — No — 1)* — /Ny, (1.15)

which is diagonal in the occupation number repre-
sentation of aja,. The energy is minimum when

18 In view of the previous footnote, the expectation values with
respect to the excited states are also O(1).

1% The precise condition on v is given in Sec. V. See (5.5), (5.15),
and the lemma preceding (5.19).

20 The quantity 9'(x) is the Fourier transform of »(k).

2! Note that v(0) > 0 when the k O stability conditions are
satisfied.

32 K. Huang and A. Klein, Ann. Phys. (N.Y.) 30, 203 (1964).

3 J. Gavoret and P, Noziéres, Ann. Phys. (N.Y.) 28, 349 (1964).
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aja, = N, or Ny + 1 so that the system undergoes a
B.E. condensation. It is remarkable that A, is diagonal
only in the occupation number representation of
ala,, a representation which is reducible in the
volume limit.? The reducibility is a reflection of the
nonconvergence of the state vector, a situation
mentioned at the beginning of this section.

Finally, in Sec. VIII we discuss the relevance of
our present results to the theory of representations
of canonical commutation relations.

II. MODIFIED BORN-OPPENHEIMER
APPROXIMATION

In order to discuss the condensate fluctuation we
use a perturbation method which can be regarded as
a natural extension of the Born-Oppenheimer
approximation.1®-2* Deferring the presentation of the
mathematical details until Appendix A, in this
section we discuss the pertinent features of our
method.

Suppose we are given a dynamical system which
consists of two subsystems B and C. The Hamiltonian
consists of three parts,

¥ =3y + ¥y + %, 2.1)

where Xz and ¥, are the Hamiltonians of the
subsystems and J€; that of their interaction. Under
the assumption that the Hamiltonian J¢z has been
completely diagonalized, our method is designed to
give an “effective Hamiltonian” for the system C
with due regard to its interaction with the subsystem B.

Let the Hilbert spaces appropriate to the sub-
systems B and C be $Hp and H, respectively. The
state vector of the entire system then belongs to
D5 ® H¢. The diagonalization of the total Hamil-
tonian is achieved in two steps. First we find ¢, and
A, , the former being a vector in §z and at the same
time an operator in $, and the latter an operator
in $., such that

(JeB + JeC + JeI)’lpn = wnAns (2'2)

and

Yhp, =1, (2.3)

where 1 is the identity operator in $ . More precisely,
y,, has the form

vo=13lu)L;, 2.4)

where |u;) € 5 and the coefficients L, of the linear
combination belong to the ring of operators in §,.

24 A detailed comparison between the present method and the
original method of Born and Oppenheimer'? as applied to the
problem of the hydrogen molecule will be presented by one of us
(H. E.) in a forthcoming publication.
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The product in (2.3) means that
2 (u | up)LiL,
%)

It should be noted here that A, is a Hermitian
operator; in fact, by the isometric property (2.3) of
Y., We see from (2.2) that

A, = ylXy,, (2.6)

the product being understood in the sense of (2.5).
We call A, an effective Hamiltonian for the sub-
system C. The second step in the diagonalization of
the total Hamiltonian X is to diagonalize A,,:

Aﬂ |¢7l¢) = Eﬂa |¢na)’

where |¢,,) is a normalized eigenvector in $,

(Sbna I ¢nﬂ) = 6aﬁ L

and E,, is a ¢ number eigenvalue. Note carefully that,
because A, stands to the right of g, in (2.2),

¥n |¢n¢) (E gB ® 50)

is a normalized eigenvector of & with eigenvalue E,, .

The solution to the system of equations, (2.2) and
(2.3), can be obtained at least formally in the frame-
work of our perturbation expansion with respect to
the interaction J; . In the zeroth-order approximation
in which we ignore J; completely, the solution is
simply given by

Yo, = 2.5

@7

2.8)

In, «) = 29

(0) l"), A(O) W(O) +J€‘C” (210)

where W and |n) € $p are an eigenvalue and the
corresponding eigenvector of Ky:
Kpn) =

W |n). (2.11)

Note that 9@ is just a vector in $p and has no
operator character. The formulas for the perturbation
corrections are obtained in Appendix A on the
assumption that the eigenvalue problem (2.11) has
been completely solved. It is worth noting that
despite its operator character such an eigenvector of
(22) as y' =|n)+ >,lu;) L; can be normalized
without difficulty when the operator part is small as
compared with the zeroth-order ¢ number vector
|n); the normalization factor (which is to be multiplied
from the right) is obtained in the form of a power
series in L{",

III. DIAGONALIZATION OF X%,

Consider N identical bosons confined to a cubic box
of volume V. Then, the “pair Hamiltonian” is
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defined by!s-28
*p=3 (K - waia, + (2V)0(0)

()34 -1

+@V 3 up — Kalaala,
) k,p( # k)
+ (ZV)— 2 U(P - k)aka—kana—ps (3'1)
k.p(#Kk)

where v(k) is the Fourier transform of the inter-
particle potential, @, and af are the usual boson
destruction and creation operators, respectively, for
plane wave states satisfying periodic boundary
conditions with respect to V. The quantity u is the
chemical potential; it is introduced here because we
have to use a representation in which the total
particle number is not sharp. Our task is to find the
ground state of Jp that satisfies the requirements
(1.3)(1.5).

On the basis of the discussion of Sec. I we replace
the operators a by N} 4 ¢P assuming that the
number of k = 0 partxcles is macroscopic, Ny = O(N).
The density of the condensate N,/V is denoted by p,.
Then we use the method of Sec. II to split ¥p into
three parts:

Lp = Lplawzn) + Ko(o) + Xyawza, ) (3:2)
where the symbols in the brackets indicate the
variables included in each part of the Hamiltonian.
It is understood that @, , ¢ mean a(", ¢!, respectively.
Specifically,

¥y = V7'By g' {v(0) + v(k)1By,

+ (zV)—l[BI,2 3 o)Bus + H.c.] — XE, (3.3)

where H.c. stands for Hermitian conjugate, and the
renormalization term has the form

BE = AMoc'c + dAhg(ce + c'cl). (3.4
Moreover,
BOI—agaO_NO—cc-‘-N%(C-‘-CT)’ 35
Boz—aoao—No—cc+2Noc’ ( . )
By, = ala, — &,
T BTk % 0), (3.6)

By, = ava_y — .

The quantities Afy, Ahgand &, , 7, are ¢ numbers to be
determined later. Further Xp is given by?®

¥’y = Ry + ¥, (3.7

25 We use a unit system % = 2m = 1, where m is mass of the
boson.
28 The single prime on a double summation sign
14

k,p
means that terms for k and/or p = 0 are to be omitted.
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where

XY =W, + 2 {Ix +f(k)]akak
+ () @a, + alya))} (3.8)
and
Xz = (2V)0(0) 3’ BlaByy
k0

+ @YY 3 o(p —K)BYLB,

k. pl#dk)

+ @V 3 op — KBLB,, (3.9)

k.p{#k)

the symbols here being defined as
=@V Y &L — V)T Y op— K,
kp k.l #1k)
- @yt 3 U(P — Ky + [pe(0) — pINo,
ot (3.10)
f®&) = k* + poo(k) — V7 3 v(p)n,
+ VY ol — k) — o), (3.11)

h(k) = poo(k) + V723" v(p — Ky, (3.12)
Further, X, is given by ’
o = ¥ + ¥, + XE, (3.13)

where
%, + 3E = yNi(e + ¢
+ (1 + fo)'e + Bha(ee + ', (3 14)
= V‘”’Név(())(c ce + c'ele) + VY (0)c'c'ec,

(3.15)
and

r=—n+ (Pt VT 50
+ v % o(k)(&y + 7o)
Finally,
Jo=1©O + Bf,
hy = B(O) + Ahy,
where f(0) and 5(0) are given by (3.11) and (3.12),
respectively. It may be seen in the following that the

condition (1.3) requires the chemical potential to be
such that

(3.16)

x=0. 3.1

At this point we note only that (3.17) removes the term
linear in P from ¥,. Note that this linear term
contains the large factor N}. We take y = 0 through-
out the following calculations.

Now, in order to carry out the diagonalization
procedure as presented in the previous sections, we
must first solve the eigenvalue problem for Xz and
this forms the subject matter of the remainder of this
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section, For this purpose we can use a many-body
perturbation theory® by taking (3.8) and (3.9) as
unperturbed Hamiltonian and perturbation, respec-
tively.

Let us first study the unperturbed Hamiltonian
X% . It is convenient to use a new set of variables
{Cks,> 7y} which is obtained by two successive
canonical transformations,?

0 = 2 Yi(ay — ab),

3.18
P = 2-'}(“& + abs ( )

and
Go=2Hg + 90, my=2p, +p),

b = z—é(Pk - Po)y T = _2—%@'& - g
The new variables satisfy the usual momentum-
coordinate commutation relations,

[77'k+’ §k+] == 1, [€k+a Ck—] =0,

{’"‘k+5 Zk..} == 0,

Then XY, takes on the form of the standard harmonic
oscillator Hamiltonian,

Ky = -'Zf{k)

{k}
+ %E M (mps + mo) + AL + 5],
b (3.19)

etc.

where }[k] under the summation symbol means that
the allowed momenta k should belong to a half-space
only, k, > 0, say. We can now see clearly that J&% has
a normalizable ground state if and only if

Mt = f(k) + h(k) > 0,
A = f(K) — h(k) > O.

These are what we call the k # O-stability conditions.
How these conditions restrict the interaction potential
v(k) is studied in Sec. VI. For the moment, let us
assume that the conditions are satisfied. Under this
assumption, ¥% can readily be diagonalized by a
Bogoliubov transformation,

(3.20)
(3.21)

Qy = «kbk + 5&631‘, (3.22)

where b{!’ are new boson operators and their com-
mutation relations are secured by requiring the real
¢ number coefficients o, f, to satisfy

o = B =1.

27 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957);
C. Bloch, Nucl. Phys. 7, 451 (1958).

(3.23)
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If we choose the coefficients such that®®
ap = H{fK)/e(K)] + 1},

by = —h(k)/e(k),
e(k) = [f(k) — BK)], (3.24b)

then X% is diagonalized in the new representation,
that is

(3.24a)

where

1Y = Wy + 3" e(k)bib,. (3.25)
k
The quantity e(k) is real as a consequence of the
assumed k 3 O stability conditions (3.20) and (3.21).%
The ground state is given by the no-particle state
IO} Of bks
b 10} =0 (allk £ 0),

and its energy is
Wo= Wo + %g’ [e(k) — f(K)].

The motivation for the separation (3.7) is that if the
&, and ), are chosen as

£ = {01 ajay [0},

M = {0 aya_, [0},
then we can show that in the volume limit the
Hamiltonian J5 is essentially equivalent® to J€% in
the following sense: (1) The eigenvalue spectra are
identical, and (2) the expectation values of quantities
of O(1) with respect to the corresponding eigenstates
are equal in the volume limit. The proof of this claim
is given in succeeding paragraphs. Using (3.22)-(3.24)
the matrix elements in (3.28) are easily found to be

o= P = HIf®)/e(®)] — 1},
M = axfy = —3h(K)/e(k).

Now we substitute these equations into (3.11) and
(3.12) to obtain a set of coupled integral equations

(3.26)

(3.27)

(3.28)

(3.29)

28 The stability conditions can be obtained without using the
canonical transformation to the standard form of the harmonic
oscillator Hamiltonian (3.19). After the Bogoliubov transformation
(3.22), 3§ becomes a sum of e(k)blby + 3h'K)Nbyb_, + bibT,)
overk, where e(k) = (of + ﬂﬁ) fK) + 2048, h(K), A’ (K) = 2040, f(k)
+ (zxi + Bh(k). Now, the equation k’(k) = 0 has real solutions for
oy » By if and only if f(k) £ A(k) have the same sign. But, if they were
both negative, then f(k) < 0, which implies e(k) < 0, because by
using #'(k) = O to eliminate oSy, we get (k) = (o + SRf (k)2 —
h(k)%]/ £ (k). Thus we reach the stability condition. At the same time
we know that the sign of a, ) must be opposite to the sign of
K £K).

2 When f(k) > 0, ayfy has the sign of —h(k). See footnote 28.

20 There is no surprise in this equivalence. A beautiful argument
has been given for the case of pairwise interacting fermions (BCS
model) by R. Haag, Nuovo Cimento 25, 287 (1962); see also
H. Ezawa, J. Math. Phys. 5, 1078 (1964); H. Umezawa, Y. Taka-
hashi, and S. Kamefuchi, Ann. Phys. (N.Y.) 26, 336 (1964).
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for f(k) and A(k):
(k) = k* + poo(k) + (2V) g [v(p — k) — v(p)}]

x {[f(@lem] — 1} + V) g v(p)h(p)/<(p),
(3.30)

h(k) = pov(k) — (2V)7 3" v(p — Kh(p)/e@). (3.31)

p
In these equations we have set y = 0 in accordance
with (3.17).

We turn now to the proof of the asymptotic
equivalence of X5 and XY, . According to Goldstone?’
the ground state of the total Hamiltonian J¢; can be
written as

195) = 2} 3 [(Wo ~ R fingea [0}, (3.32)

where Z} is a normalization factor and [0} the
unperturbed ground state (3.26). It should be observed
here that (3.6) and (3.28) make the operators B,, the
normal products in the b representation as defined
by (3.22) and (3.26). Namely, {0|B,,|0} = 0, (i = 1, 2).
The vectors [(W, — J%)~1K5]" |0} can be represented
in a well-known way by diagrams like those of Figs.
1(a) and 1(b). If every part of a diagram is linked to
some external lines, then we call it a linked diagram.
If, on the contrary, a diagram has some isolated
bubbles, then such a diagram is said to be unlinked.
The diagrams in Fig. 1(a) and in Fig. 1(b) are linked
and unlinked, respectively. The suffix “linked” in
(3.32) means that we should take only those terms
which are represented by linked diagrams; this is
because all terms represented by unlinked diagrams
can be absorbed by the normalization factor Z?,

The pair Hamiltonian has some special features
that greatly assist us in calculating its energy spectrum
and various matrix elements with respect to its
eigenstates. First of all, the perturbation term ¥, is
made up of the pair operators B, ,, so that for any term
of the perturbation series the particles in the inter-
mediate states or the final state can be paired off
according to their momenta. Now consider a diagram
that contributes to (3.32) a term,

[u) = z ) VA AK,, -, ks)bllbikl e b};bfk, 10},
N (3.33)

Y o

(a) (b)
Fi16. 1. (a) Linked diagram. (b) Unlinked diagram.
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$r
[
i

(a) b ©
FiG. 2. Miscellaneous contractions appearing in the expansion
(3.32) of the state vector |{2z).

where A is a certain function of the s external
momenta not involving any volume factor; the volume
dependence is factored out as ¥~ in front. It is not
difficult to see that the exponent of the volume
factor should satisfy an inequality,

A 2> s (3.34)
In fact, if the diagram involves no internal lines we
have the equality A = 4s, because there is a factor V1
for each product of four b operators, or Bj; B,; in
(3.9). Now if in such a diagram we apply a contraction
of the form shown in Fig. 2(a), AS =2 pairs of
external lines are removed whereas the summation
over the internal momentum contributes a factor V2%,
AA = 1. Therefore such a contraction changes A
into A’ =1 —1 and s into s’ = s — 2, so that the
equality in (3.34) remains valid: A’ = 4s’. For the
contraction shown in Fig. 2(b) we have As =3,
A2 =1 so that 2’ = 4(s" + 1) > 45’ in accordance
with (3.34). A contraction of the type shown in Fig.
2(c) need not be considered since it is an unlinked
diagram. Continuing the process of adding con-
tractions, we can verify (3.34) for all diagrams
involved in the perturbation series (3.32). As a
consequence of (3.34) we can conclude that the norm
|||} of the vector (3.33) is of the order one or smaller3!
as V— oo,
With the aid of (3.34) we can now prove that in the
asymptotic sense (V' — o) the excited states of Xp
are given simply by

bI,. IQB) (l" = 1, 29 v .)a

(3.35)

and the corresponding energies are W, + >7_, (p,).
Note that this eigenvalue spectrum is the same as
that of X%. The. proof begins with the observation
that the vector

lPl,"'aPr)=b;:1"'

IRy) =[5, b,] [Qp) (3.36)
has a vanishing norm as V' — co:
[Ry]1? = O(V~). (3.37)

31 This is not the case for the full Hamiltonian because its
interaction term

z u(k)aI +l‘az_kal’aq
k.p.q

involves three independent momenta which are to be summed,
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In fact, the commutator applied on a constituent of
IQB)’

[, bi]1u) = 2V)"(0) X Bii[Bys, bi}1u) + - -

increases only one momentum summation at the cost
of one volume factor V1. Hence we get (3.37).32 By
a similar argument we can also prove that

[Rell? = O(V7Y), [Rg) = b, |Qp), (3.38)

and therefore that b!|Qp) is asymptotically nor-
malized:

1} 1QR)IF = 1 + oV, (3.39)

We can now conclude that, as ¥ — co asymptotically,
b} |Qp) is an eigenstate of ¥, because

Kby |Q5) = bk 1Qp) + 565, b1 Q) + Ry)
= [Wo + @)1} [2p) + IRy),

and the residual |R;) has a vanishing norm by (3.37).
Repeating a similar argument, we can verify the above
statement concerning (3.35). A generalization of (3.38)
shows that it is impossible to create a state lying lower
than |{Qp) by applying the destruction operators b, on
|Qp). From this result we know that the set of vectors
of the form (3.35) is asymptotically complete as a basis
for the cyclic representation® of b{".

Let us turn to the calculation of various matrix
elements. We have the formulas

(Qgl By [Qp) = OV, (3.40)

(p, —pl By; |Q5) = {p, —p| B\, [0} + oy, etc.,
(3.41)

where
Ip, —p} = bib’, |0}. (3.42)

To prove (3.41), for example, we have only to observe
that the matrix element can involve two kinds of
contractions. Namely, the momentum k of B,, can
be contracted either with the momenta of the virtual
pairs contained in the ground state |{25) or with the
momentum p of the real pair. For the same reason
that we obtain (3.38), the former contraction yields
only a vanishing contribution of O(¥-1). The latter
leads to {p, —p| By; |0}, which is the main term of
(3.41). In general, nonvanishing contributions to
any matrix elements (y'| By, - - - B |y) come only
from contractions of p, - - -, q with the momenta of
real pairs involved in the states |¢) and |¢’). This
completes the desired proof that JC5 is asymptotically

32 This conclusion remains valid if we consider a wave packet
state,

1H=73 v-trw! Qs
for which [ {f|*dp < w.
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equivalent to X%, and the diagonalization of ¥p is
thereby accomplished in the asymptotic sense.

IV. EFFECTIVE CONDENSATE HAMILTONIAN

We are now in the position to construct the
effective Hamiltonian A, for the condensate fluctua-
tion which is associated with the ground state of
the particles outside the condensate by using the
modified Born—Oppenheimer method of Sec. II. The
present calculation makes use of our perturbation
method through second order (see Appendix A).
The result for A, actually incorporates the ladder-type
corrections which occur in the higher orders of
conventional perturbation theory. In the case of the
pair Hamiltonian model, which we are going to study
in this section, we have good reason to believe that
the present result for A, is actually correct through all
orders of our perturbation theory in the volume
limit. In fact, the excitation spectrum of the conden-
sate fluctuation as well as the ground-state expectation
values of products of the operators ¢ can be
calculated in an asymptotically exact fashion by
making use of a Green function approach, and all the
results therefrom will prove to be in complete agree-
ment with the results from our second-order per-
turbation calculations. The Green function approach
and our method of perturbation are complementary
to each other: The former, though the more convenient
to handle, rests upon the assumption that the
Hamiltonian J€p has a bona fide ground state in the
representation based upon the operator replacement
(1.1), while the latter is useful for studying this
assumption,

A. Modified Born—Oppenheimer Approach

The total pair-model Hamiltonian Jp is given by
(3.2). For the purpose of applying the perturbation
method as developed in Sec. II and Appendix A, it
proves convenient to subdivide J;, the interaction
part of ¥p, as

JeI - Jeint - Jeg’ Jeint = Jeg + Je}’ (4‘1)
where
%% = NEVY(c + ') 3 [o(0) + o(K)]Biy
k
‘k —1 7 \ ]
+ NV ¢ Y v(k)Byy + Hee. |, (4.2)
k -
%, = Ve 3 [1(0) + v(k)1Byy
k
+ (2V)"[cc S oW)Bl + He. | (4.3)
k .

It may be seen that X, + ¥; is negligible as long as
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¢ = o(N?¥), in particular when the k = 0 stability
conditions (1.14) are satisfied,

Let us calculate the effective condensate Hamil-
tonian A, associated with the ground state (3.32) of the
k # 0 particles. We treat H, = X, and H, = —XE&
as small perturbations of first and second order,
respectively.®® As is well known, this procedure leads
to a low-density expansion*; the expansion parameter
is (poa®)t with a being the zero energy scattering length
of the interparticle potential v. According to (A16)
the zeroth-order condensate Hamiltonian is

AP = W, + %, 4.4)
and the formula (A17) gives the first-order correction,

AP = (Qp| int [Qp) = O(NIe, N7%c?), (4.5)

where use has been made of (3.40). It is understood
that ¢ in the Landau symbol stands for the operators

¢M, In order to calculate the second-order correction
by (A18),* ie.,

AP = H.P. (Qg| Eint [9§") — (Qp] KB |Qp), (4.6)

we have to know the first-order correction (Y to the
“wavefunction” of the k s 0 particles. Inserting a
complete set of intermediate states we can write the
matrix element in the first term of (4.6) as

(Qpl Kint 19") = T (Qp] Eint In)(n | w&).

n

4.7

Due to the particular features (3.40)-(3.41) of the
pair Hamiltonian, the only intermediate states
significant in the volume limit are |k, —k); for
notation see (3.35).% Using (3.41) we find

(k, —k| %21Qp)
= QNYV)y, e + y_®c'] + o(NX), (4.8)

(k, —k| ¥ |Qp) = O(N?), 4.9
where
y+(k) = [U(O) + v(k)]akﬂk + U(k)a: ’ (4.10)
y-(k) = [0(0) + v(K)]ou Sy + v(k)B.
Note that
7+(k) — y_(K) = v(k). 4.11)

The first-order correction p{ to the state vector is
obtained by solving the operator equation (A19). Let
us momentarily ignore the ‘“‘small” quantities ¥,

33 Ope may start with AH, and A*H,, by employing a parameter 1
and putting A =1 after the perturbation calculation. The re-
normalization counter term is then necessarily O(A®) if one takes
AH, for the interaction.

34 Y P. stands for “Hermitian part of.”

35 The summation over momenta k of the intermediate states
|k, — k) should be restricted to a half of the momentum space so as
to avoid double counting.
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and the matrix element (4.9) of JX;. Then substitute
the trial form

&, —k | 9 = CNYVYu + ye + zc)  (412)

into (A19), where x;, y,, and z, are ¢ number un-
knowns. On comparing the coefficients of ¢, ¢t and the
¢ number term on both sides of (A19), we get a system
of simultaneous equations for those unknown
coefficients, which gives

xk = 0,
= [4e"(k) — wg] {[—2¢(k) — foly,(K) + hoy_(K)},
2 = [46%(k) — wp] {[—2e(k) + foly_(K) — hoy,(K)},
4.13)
where
wy = fo — h.
Then, the first term of (4.6) turns out to be

H.P. (Qp! %, [9§) = dfoc’c + 38ho(cc + c'ch)
+ O(NY, N%c2 -+, (4.15)

(4.19)

where
oo = 200 3 [y )y + 1)zl

Oy = 200V 3 [y, Wz + 7M.

If we had included ¥, and X; in the calculation of
y{, we would have obtained additional terms in
(4.15), some of which are of higher degree in the
operators c‘!’ and are denoted by the dots in the
Landau symbol. They are negligible if ¢ = o(N%).
Thus (4.6) becomes

AR = oNEe, -+ ) (4.17)

if we choose the renormalization coefficients Af, and
Ah, such that
Afy = 8fy, Ahy = bh,. (4.18)

Combining the results (4.3), (4.4), and (4.17) we get
Ay = AJ + Ag, 4.19)

16)

where
A=W, +foc ¢ + %ho(ce + ¢ fe , (4.20)
Ay = V-INR(O)(c'ee + c'ce) + @Yy o(0)c'c'cc

+ O(N“Y, N-%2, ., (4.21)

and the coefficients f; and A, of AJ, given by (3.16),
(4.16), and (4.18), are

fo=1(©) + 2p,¥* g' [y + y-(K)z],
ho = h(0) + 2p,V™* g s Xz, + y_®y).

But this is a system of coupled linear equations
because yy and z, depend linearly on f, and 4, through

(4.22)

H. EZAWA AND M. LUBAN

(4.13). Decoupling is immediate if we form fy & 4.
Then,

Jfo— hy= 2D_1{"‘ —Z v(K)oy Sy
_ Por 2e(K)o*(k)
Vg 4e*(k) —

Ze(k)
4é4(k) —

2}, (4.23)

fot+ hy= 2D—1{Po”(0) £o Z

X Tra) + y_<k)12}, (4.24)
where use has been made of (4.11), and

Z(k) 2 .
This completes the calculation of the effective
condensate Hamiltonian through the second order
of our perturbation scheme. The presence of the
denominator D in (4.23) and (4.24) shows, however,
that some higher-order effects are already taken into
account,

The first term AJ of (4.19) has exactly the same
form as (1.9), whose properties depend on the sign
of fy + hy. When they are both positive,

foxth >0, (4.26)

so as to satisfy the k = O stability condition (1.14),
AY is a harmonic oscillator Hamiltonian having a
normalizable ground state |Qg). Since the coeffi-
cients f; and A, are O(l), it follows that the matrix
elements (Qcl (c')’c? |Q¢) are all O(1) (i,j=0,
1, 2,---), verifying the statement that ¢ = O(1),
which is stronger than our presupposition ¢ = o(N?%).
Further, when (4.26) is satisfied the second term A,
of (4.19), if treated as a perturbation to AJ, has no
effects in the volume limit. In the asymptotic sense,
therefore,

Ay = A}, (stablecase, V— ). (4.27)

The physical meaning of the w, in (4.14) is now clear:
it is the frequency of the harmonic oscillator (4.27).
Thus in this approximation the excitation energies
of the condensate fluctuation are integer multiples of
the energy quantum w,. The Green function method
discussed in the next subsection tells us that this
excitation spectrum is asymptotically exact.

In Secs. V and VI we study how the stability
conditions (3.20)~(3.21) and (4.26) restrict the form
of the potential » and the particle density p. We find
that there actually exist some potentials that can
satisfy all these conditions. In Appendix B we study
cases where some of the conditions are violated.
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A remark is in order about the denominator
4e*(k) — w? in (4.23)(4.25). Clearly we have to
require that

Re(k)P > i, (allk # 0). (4.28)

Physically speaking the role of the inequality (4.28)
is to prohibit a condensate excitation from decaying
into two k s O-excitations. Here we wish to show
that it is a consistent assumption to assume that (4.28)
is satisfied if

D> 4. (4.29)

By consistency we mean that if (4.29) and the k # 0
stability conditions, (3.20) and (3.21), are assumed
satisfied—which in turn requires that (4.28) holds—
then in fact (4.28) is satisfied. For this purpose, it
suffices to show that [2€(0)]> > w? since, according
to (3.30), (k) contains the rapidly increasing term k2.
Now it follows from (4.23) and (4.24) that

fo= b < =273 olmB, = 1/©) — HOID™,
(4.30)
Jo + hy < 2D7pw(0) = [f(0) + R(0)]D7Y, (4.31)
and thus
w? < €(0)2D2 < [2¢(0)]%
B. Method of Green Functions

We now proceed to show that our second-order
approximation (4.27) gives the complete effective
condensate Hamiltonian in the volume limit, The
argument is based on the observation that the
excitation spectrum of the condensate fluctuation as
obtained from (4.27) agrees exactly with the corre-
sponding result from our Green function treatment,
which is asymptotically exact as ¥ — co. To prove
this result within the approach described in Sub-
section A would be very difficult if not impossible.

In almost all works on low-temperature boson
systems the Green function method has been
formulated after one makes the Bogoliubov replace-
ment a{’ — N . Recently, Popov and Faddeevs¢ pro-
posed that one use the operator replacement (1.1) so
as to include the condensate fluctuation within the
Green function formalism. All the conventional
graph techniques can readily be adapted to the new
situation. The only necessary addition to the con-
ventional set of prescriptions is that the chemical
potential should be determined so as to eliminate the
tadpole diagrams due to ¢ and c'; this condition is
equivalent to (1.3).

(4.32)

3 V. N. Popov and L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 47,
1315 (1964) [English transl.: Soviet Phys.—JETP 20, 890 (1965)].
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Now we define one-particle Green functions for
the condensate fluctuation by

g(w) = F, Q| T[c(2), c'(0)] 1),
g(w) = F, Q| T[c'(@), '(0)]1Q),
where |Q) is the ground state (assumed to exist) of the
pair Hamiltonian ¢, in the representation based upon

(1.1), T denotes the Wick chronological operator,
c(?) is the Heisenberg operator

(4.33)

c(t) = exp (iXpt)c exp (—i¥pt),

and F, denotes the Fourier transform in time

F A =Q2m)t f ” A(t) exp (iwt) dt.  (4.34)

In order to carry out a perturbation calculation
for g and § we use®

Hy =3’ (k)blb, + f(0)c'c

k

(4.35)

as the free Hamiltonian to define the interaction
picture
O(2) = exp (iHyt)O exp (—iH),

where O is a Schrodinger operator. The rest of the
Hamiltonian, ¢ — H,, is regarded as a perturbation.
Thus the unperturbed k # 0 Green functions are
given simply by

GOk, ko) = FATIB(D), BO)) = (ko — e(K) + i8) 7,
GOk, ko) = FATIBI(0), 5L(O)]) =0, (4.36)

and the k = 0 Green functions, which are defined
analogously, are given by

g0w) = (@ — f(0) + id)™, §%w) =0, (4.37)

where the parentheses mean the expectation values
with respect to the ground state of (4.35). In this
section we assume that ¢ = o(N?) so that %, in
(3.15) may be ignored. The standard equations for
the k % 0 Green functions® 3 can be immediately
modified to apply to the k = 0 Green functions:

[(@ + 8) ~ ay(w)lg(w) — ox(w)é(w) =1,
(4.38)

—oy(w)g(w) + [(—w + id) — o)(—w))§(w) =0,

where 0,(w) and og(w) are the irreducible self-energy
parts of the condensate fluctuation; see Fig. 3. Note
in particular that the term f(0) of the condensate

37 See (3.14) and (3.25).

38 A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics, translated
by R. A. Silverman (Prentice-Hall, Engelwood Cliffs, New Jersey,
1963).
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a - QD

4 A4
‘w [t
w -w
Fi1G. 3. Irreducible self-energy parts of the condensate fluctuation.
To be attached are external lines for excitations of the condensate
fluctuation (shown by dotted lines) carrying momentum zero and
energy w.

--»

“kinetic energy” in (4.35) is amalgamated into oy(w).
We have written id explicitly in (4.38) since this is
needed in the following discussion. The solutions of

(4.38) are
g(w) = [0 — u(w) + s(w))/d(w),
8() = —ow)/d(@) 439)
where
d(®) = [0 — u(@)P — {[s(w) — 6] — oy(w)?},
(4.40)
and
s(w) = $[oy(w) + oy(—w)], 4.41)

uw(w) = }[oy(w) — oy(—w)].

In the case of the pair Hamiltonian (3.1), the
irreducible self-energy parts are simply represented
by the diagrams in Fig. 4, all further corrections
vanishing as ¥V — oo if the matrix elements of c are
o(N?), which we assume in this subsection. With the
aid of Fig. 4(a) one finds

_ o) 4 200
0i(@) =f©0) + 5= L3 f dk,

X {GO(k, {0 + k)G (=K, fo — ko)y}(k)
+ GOk, —}w + kg)G(—k, —}o — k)yi(k)},
where the vertex functions y (k) are given by (4.10).

The method of residues applied to the k, integration
gives

~ 205 [___¥iK)
o(w) =f0) + =73 [m — 2¢(k) + i
A
© + 2¢(k) — ié]' “

w w w

1 ] )

! H h
]

i ! ! ,
4 &
%, - h o) Y-

T'mr., ol /ﬂ\\ 726: 1l
] t : VY : 1 |' :
Lo R

]
w w w ul -w"l’ -w -cL «.:
(@) (b

Fi10. 4. Irreducible self-energy parts (a) oy(w) and (b) oy(w) of
the condensate fluctuation for the case of pair Hamiltonian model.
Dotted lines are for the condensate fluctuation (to be attached) and
full lines represent excitations of k £ 0 particles.
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In the same way, with the aid of Fig. 4(b), we obtain
2py v 2e(k) — i6
= h(0) — ==
@) = hO) — = S — o — o
x 2y, (&y_(k). (4.43)
Thus according to the definitions (4.41)
2e(k)
2¢(k) — i8] — o®
X [Yik) + y2(K)], (4.44)

@ =10 - 25

u(w) = wi(w), (4.45)
with
o 2pp o ) + )]
Hw) = v Ek: v(k) Dek) — OF — b (4.46)

In view of (4.33) and (4.39), we know that the one-
particle excitation energy of the condensate fluctuation
should show up as a pole w, of g(w), or, equivalently,
of g(w) in the lower half w plane:

d(wy) =0, Imw, <O. 4.47)
Recalling (4.40) and (4.45) we can write w? as
where
= D1 — i8],
Jo i [s(wg) — 9] (4.49)
ho = D™1ay(w,),
and
D =1 — di(w,). (4.50)

The signs of f, and A, are determined in such a way
that f, approaches its unperturbed value f(0) as
v(k) — 0. One should notice that the notations in
(4.49) are justified because the present results are
essentially identical with those obtained from our
perturbation method [see (4.23)-(4.25)]. These equa-
tions differ only by the imaginary term id, which
serves to fix the sign of w,.

We now locate the solution w, of (4.47) in the
complex w plane under the assumption that (pea®)t «
1. In this case (4.28) is satisfied so that the imaginary
parts of s, @, and o, are O(9). Furthermore, because
these imaginary parts would all vanish if v(k) — 0,
they are therefore all smaller than the term id
explicitly written in (4.49). Therefore,

Im(f} — b)) = —[25/D*}ee 8. (4.51)

In the following, all expressions are understood to be
evaluated at § = 0. Now supposing that

fo—h3 >0,

then, according to the criterion Im w, < 0, we know

(4.52)
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from (4.51) that
wo = (f — hd¥sen £,

with the square root being taken to be positive.
Under the assumption of (4.52) we know that the
sign of f, is the same as the common sign of f, & hy,
and, therefore, that the result (4.53) is in complete
agreement with the perturbation result, namely with
the eigenfrequency of the effective Hamiltonian
(4.27).

Since the self-energy functions, (4.42) and (4.43),
are asymptotically exact as V' — oo, so is the result
(4.53) for the one-particle excitation energy. More-
over, we can easily see that apart from the 6 function
for the over-all energy conservation, the many-
particle Green function

8@y, @) = Fppny (Q Tet) - ' (1,)] 1)

decomposes into a sum of products of one-particle
Green functions in the volume limit. This means that
the many-particle excitation energies of the condensate
fluctuation are integer multiples of the one-particle
excitation energy. Since we know already of the
agreement between the values of the one-particle
excitation energies as obtained from the Green
function method and the modified Born-Oppenheimer
method, we can now conclude that our second-
order result (4.27) gives the correct energy spectrum
in the volume limit. Corresponding results for the
matrix elements of ¢!’ and their products (ie.,
agreement of ground state expectation values) can
be easily established once one Fourier-transforms the
Green functions back into ¢ space. This completes
the comparison between the results of the Green
function theory and our perturbation theory. From
this we conclude that our second-order perturbation
approximation (4.27) for the effective condensate
Hamiltonian is already exact in the volume limit.

(4.53)

V. IMPLICATIONS OF THE STABILITY
CONDITIONS

Having obtained a set of stability conditions for
the pair Hamiltonian model, we now determine the
restrictions which these conditions place on the
particle density p and the characteristics of the inter-
particle potential v. For the reason given at the close
of the previous section we restrict our attention to
those cases where (4.29) is satisfied®®:

D> 5.1

3* The discussions in this and in the next section are not affected
if we take D > 0 in place of (4.29) as long as [2¢(O)]* — w > 0.
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We further assume that
2¢(p) — wo, >0 (allp = 0). (5.2)

In order that the k = O stability conditions (4.26) be
satisfied, we must then require that the numerators of
(4.23) and (4.24) are positive. Thus in terms of the
self-energy functions,

s + 0y = 2pg0(0) — 20 57 4@ @) + 7_(1))]2

By

>0

V' 4e(p)® —
(5.3)
and
1
—gy == -——h
T =2 ke
Po 46(1!)
——>0. 54

The k # 0 stability conditions are given by (3.20)
and (3.21). The functions f(k) and (k) appearing in
these equations are the solutions of a system of
coupled integral equations, (3.30) and (3.31). Because
f(k) has a rapidly increasing term k2 the k # 0
stability conditions will be satisfied if

J©) + h(0) = 2pe0(0) > O, )

fO) — h0) =V~ Z o(k)— h(k) > 0. (5.6)

(k)

At this juncture we note that the inequalities (5.5)
and (5.6) follow from the preceding four. From now
on, therefore, we call the set of inequalities (5.1)-(5.4)
the stability conditions for the many-boson system.
These constitute a set of sufficient conditions for a
many-boson system to have a bona fide ground state
with a B.E. condensation. Based on the above, the
subset (5.1) and (5.2) can be called the k<0
stability conditions, as opposed to the old ones (5.5)
and (5.6), or (3.20) and (3.21).

It should be kept in mind, in view of the dis-
cussions in Appendix B, that if any of f, 4 A, > 0
and f(0) & h(0) > 0 are violated, either there is no
B.E. condensation in the system or the operator
replacement (1.1) loses its usefulness.

In the following we show that one of the stability
conditions, (5.4), can be rewritten in a simple and
suggestive way. As for the other ones, in particular
(5.3), we have to be content with an analysis of a
weak coupling model, this analysis being the subject
of the next section.

In order to analyze (5.4), we rewrite its first term
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with the aid of the integral equation (3.31) as

1 o v(php)
poV 5 €(p)
1 1
= 2 — 2
57?7 " ® "1 2
1 . ..
x (v(p — g + o + g))m(fg) 2u(g) + -,

(&)

where, as in Sec. III, 3[p] under the summation sign
means that the sum includes only those vectors p
which belong to a half-space. This expression can be
written in a compact way by considering a fictitious
problem of a pair of b excitations (see Sec. III)
interacting via the two-body potential #. A state
vector |p) describing a pair of b excitations with
momenta p, —p are normalized so that

®|8) = V3,,. (5.8)
These state vectors can thus be written as
= viib! 10}, 0),

Ip) o0, 10}, (p # 0) 59)

0y = V¥bib{ 0},

with the understanding that p (5 0) belongs to the
half-space indicated by the summation signs in (5.7).40
The Hamiltonian describing a single pair is G + U,
where the matrix elements of the operators T and U
in the momentum representation are

(Pl G lg) = 2Ve(P)dy s (5.10)
PVig=vp—g +vlp+g. (11
In terms of G and U the left-hand side of (5.7) is

1 h® _ o106 £ vy U0y, (5.12
pngv(P)e(p) Of V( V) 10), (5.12)

as is easily verified using the expansion

G+ V=B —BVE+---, (513)

inserting as intermediate states the complete set of
pair states,*! and by comparing the result with the
right side of (5.7). Likewise, the second term of (5.4)
can be written as

_ L 4@ne)

Vp4€(P)2—-w:
1 1 1
= —{0] U - U|0). (5.
o 2(‘B—w0+“6’+wo) 0. G149

40 The state vector |0} is the no-particle state of the by operators,
here defined for all k, including k = 0. Compare with (3.26).
41 Note that U connects the state |0) to pair states |p) only.
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Hence the inequality (5.4) can be put in the simple
form

(1/pol(s — 03) = (0] V(T + V)V [0)
— 30 V(B — we)™ + (T + wy) ]V |0) > 0.
(5.15)
Now suppose that the eigenvalue problem

(B + V) o) = E, |o) (5.16)

for a pair of b excitations with zero center-of-mass
momentum has been solved. Utilizing the complete
set of pair states |p), the second term in (5.15) itself
satisfies the inequality

(0] V(B — wo) ™ + (B + w) "1V |0)
> v lel V0P
w  e(p)
Thus (5.15) can be replaced by the following:

1ME]KOLI U 0)]*/E, >*[Z] [l VU 10)[*/Qe), (5.17)

where the symbol 4[«] on the summation sign warns
against double counting the eigenstates of (5.16).
Because of the identity

O V*10) = Sl VO =3 |68l VIO, (5.19)

the two sums in (5.17) can be interpreted in terms
of averages with weight factors |(x| U |0} and
|(p| U |0)|2, respectively. The inequality (5.17) suggests
that the interparticle potential # must be such that
it lowers the energy levels of the fictitious two-
particle system (5.16) from their values when & = 0
andfor shifts the dominant weight factors to the
low-energy side. Crudely speaking, this suggests that
# must be partially attractive. On the other hand, we
recall that (5.5) requires that v(0) = f #(x) dx > 0.
The following lemma allows a more precise statement
to be made.

Lemma: For a low-density system of particles
interacting via a potential that is sufficiently weak
and everywhere positive in coordinate space, the
quantity s — o, is negative, in violation of the
stability condition (5.4).

Keeping only the first two terms of the expansion
(5.13) we obtain
s — 0y < —pofkp = 0] VB x| 5(x) dx < O,

(5:19)
which was to be proved. Here |x) is an eigenvector of
the relative position operator x; for the sake of
clarity the momentum eigenstate is written as
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|p = 0). Note that when e(p) is chosen to have the
well-known form, e(p) = p(p? + 16map,)?, the main
contributions to the sums in (5.4) come from momenta
< (apy)}.* Then the above expansion of the propagator
(G + U)? is allowed, and hence the lemma is true
when the density parameter is sufficiently small,
(pa®)t K 1.

If the above lemma suggests that the pair-Hamil-
tonian model with a purely positive potential may
not have a B.E. condensation, we have to recall that
for such a system the assumption of no condensation
is untenable.’®* For the proof, we multiply the
integral equation (3.31) for A(k) by V-A(k)/e(k) and
sum over momenta to obtain

v g e(®)hk)* + % kE g(Kv(k — p)g(p) = 0,

(5.20)

where g(k) = h(k)/e(k), and we have put p, = 0, i.e,,
we assume that the system has no macroscopic
occupation of the k = 0 state. The first term is
nonnegative. By the convolution theorem for Fourier
transforms. and the assumption that #(x) > 0, the
second term is also nonnegative:

b leor s ax 2 0, (5.21)
v

where g(x) is the Fourier transform of g(k). Thus the

only solution to the integral equation (3.31) is

h(k) = 0 (all k), which means g = 0 according to

(3.24), and therefore

Q1 3, ajay |2) =0, (5:22)
in contradiction to the fundamental requirement (1.4).
Thus the assumption of no condensation is untenable.
These results appear to be contradictory. Further, it

is ill-advised to try to avoid this contradiction by

42 C. J. Pethick and D. ter Haar, University of Oxford, Clarendon
Laboratory Report, (1965); Phys. Letters 19, 20 (1965). These
authors conclude that 7(x) > 0 is a sufficient condition for the
pair-Hamiltonian model to undergo a B.E. condensation at
sufficiently low temperatires. This conclusion was obtained with
reference to a portion Hy of J,, the former being quadratic in
a{( ) operators. Pethick and ter Haar then presented an argument
based on a type of thermodynamic perturbation theory that Hyp
and J¢, are thermodynamically equivalent in the volume limit.
Their derivation closely parallels but corrects an error of an
attempted proof of thermodynamic equivalence given earlier by one
of us (see Appendix A of Ref. 15). Independently we sketched
essentially the same formal proof as that of Pethick and ter Haar.
We do not, however, believe the proof to be very convincing for
the following reason. Employing the same thermodynamic per-
turbation theory as we use in the “‘proof” of thermodynamic
equivalence, we find the formal result (8(c, ct)), = O(1), where
(*++)p is the ensemble average taken with respect to J¢, and 6 is
any polynomial in (). This result, however, cannot in general be
true, for we have shown in Secs. IV and V that if certain stability

conditions are not satisfied, c(f) = O(1) is an untenable assumption. .

We believe that these various formal *“proofs” break down because
the perturbation series are divergent.
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supposing that D < 0, for, according to (4.25), in the
low density limit D s 1. Thus, in conclusion, it
appears that the operator replacement (1.1) loses its
usefulness for a purely repulsive potential, for
example, of the Yukawa type.

VI. A WEAK COUPLING MODEL

In this section we express the stability conditions
(5.1)(5.4) in terms of the parameters of a simple
potential of the form

(k) = A(K® + «*)' + B(k® + 4371,  (6.1)
corresponding to the configuration space potential
B(x) = (4nry1- (de ™ + Be=*). We find that there
exists a range of parameters for which the stability
conditions can in fact be satisfied. In accordance with
the lemma of the previous section, that a purely
repulsive potential cannot satisfy (5.4) and (5.5)
simultaneously, we can expect that one of the con-
stants 4 and B must be negative. Although the
precise requirements on 4 and B are determined later
in this section, we can at present require that

x+y>0, (6.2a)
I~ 1yl < L, (6.2b)

wheret?
x = AmA[(4nk®), y = mB[(4wi). 6.3)

Equation (6.2a) ensures that »(0) > 0; [x| ~ |y| is
suggested by the above lemma; and the requirement
}xl, |yl < 1 ensures that the attractive component of
#(r) is not sufficiently strong to allow any two-body
bound states. Further, to simplify the later analysis
we assume that

Ak 6.4)

Finally the assumption of “weak coupling” is

characterized by the requirement
z = mp,B[x?A2 K 1. (6.5

We begin the analysis by obtaining approximate
solutions of the integral equations (3.30) and (3.31)
for f(k) and h(k), respectively. The former equation
may be written as

F &) = k3(2m) + polv(k) — v(0)] + f(0) + df(K),
(6.6)
where

J0) = po® + 4o [ dpD@I®, (67

0 = §am* [anlop — 1 — o] LB — 1],
(6.8)

43 Although throughout this paper we have chosen the particle
mass as m = }, in this section we write the mass as m.
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We show very shortly that, as long as (6.2)(6.5) are
satisfied, it is a good approximation to write

S&) = k*[(2m) + f(0) + polv(k) — v(0)], (6.9)

(k) = «(0) + k2/(2m). (6.10)

Specifically, our procedure in the following is to

utilize (6.10) in order to solve (3.31) for A(k), and

then using this result, we show that (6.9) and (6.10)
are valid.

In Appendix C we show, using (6.10), that when

(6.2)6.5) are satisfied, the following is a good
approximate solution of (3.31):

h(k) = KO®E) + hV(K), (6.11)

where
Oy — Wk —4 poB ,
hP(k) = pov(k), B7(k) = T O e+ o

(6.12)

and 7 = 1.62. One can then easily verify that

}emy f dpo()h ()/<(p)
= @myzy[t + O(x/A)],
Jamy f dpo(@)h ™ @)/e()

= =22m)"%Pzy}r + )7 + y) 1 + O(x/A)].
(6.14)
In the following we avoid writing the error terms

since A >> k. Combining (6.7) and (6.11)(6.14) we
have

(6.13)

J(0) + h(0) = 2p4(0) + (%n) Z 9.31_86_:4?—%”
(6.15)
— hO) = () zy 285+ 024y,
£(0) — h(©) = (2m)z,v ot 6.16)

The second term on the right-hand side of (6.15) is
the error due to the approximations (6.9) and (6.10)
[see (5.5)]. Thus to ensure the validity of the present
method we require that

B (0.19 4+ 0.12y
A ( 1.62 +y
Finally, according to (3.25), €(0) is given by [f(0) —
HOYIE.
The validity of (6.10) is now easily established.
Using (6.9) and (6.11), for values of k « « one finds
J®) £ k) = f(0) £ h(0) + (k*[2m)[1 + O(2)]

so that in this range (6.10) is a good approximation.
Further, for values of k > «, the term k2/2m in

) « 20(0) (6.17)
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(6.9) dominates all other terms, and thus (6.10) is
valid in this range as well.

Concerning the validity of (6.9) as an approximation
to the exact expression (6.6), we find that the term
df (k) is ignorable as compared to f(0) and k%/(2m)
when k < «/5 and k = «, respectively. In particular,
for k < /5, direct evaluation of the integral in (6.8)
using (6.9) and (6.10) shows that

18/ @)1 < fO) Kk O(x/2).
We now proceed to study the stability conditions

(5.1)~(5.4). In the following it suffices to approximate
y.(k) £ y_(k) [see (4.10) and (4.11)] by

y4(k) — y(k) = v(k) ~ (0), (6.18)
y4(k) + y_(k) ~ v(0)[1 + Ale(®)], (6.19)

where
A = f(0) — «(0) — 2k(0). (6.20)

These approximations are valid because of the
presence of the factor [4e(k)? — wi]1 in (4.25), (5.3),
and (5.4) which is a very rapidly decreasing function
of k as compared to v(k) or A(k). Thus (4.25) may be
written as

D=1+ m” °v(0) f (26(1() ~ o 2e(k)1+ w.,)

A
(1 o (6.21)

The integral is readily evaluated using (6.10) [assume
for the moment that (5.2) is satisfied so that the
integrand is well behaved over the entire range of
integration], and the result is

D=1+ o[ﬁ z'}y%(%o_)z ]

Recalling (6.2), (6.4), (6.5, and the fact that
v(0) < |B| 472, it suffices to take D = 1, and thus the
stability condition (5.1) is satisfied.

We now turn to the stability condition (5.3). An
analysis similar to the above shows that the leading
contribution to the integral in (5.3) can be obtained
by substituting y, (k) + y_(k) = v(k) and w,=0.
Combining (4.24), (5.3), and our previous result (6.22)
we have

(6.22)

v(k
£y + hy~ 2p,0(0) — "02 ( )
Recalling (6.13) we obtain
o+ by = 2p0(0) — (fm)zy.  (6.24)
At the same time we note that with the aid of (6.11)
and (6.12) we can write (5.4) as

oK) ! g, o°
T A 2

(6.23)
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Recalling the identity w2 = (fo — hg)(fy + #,) and
(6.14), it follows that

= ft + o[ (32) 5])

9

2

e wt
m(+ 1) +y)
where o = [2me(0)]2. Now using (6.15)+6.17) one

easily finds that o/1 K o/x & 1. This result, in
conjunction with the inequality v(0) < |B| A%, leads to

Jo— by = =20 [m)[zp*/(r + D(= + »)]. (6.25)

The k = 0 stability conditions require that both
(6.24) and (6.25) are positive. Since the parameters y
and z have the same sign, it follows from (6.25) that

-7<y<0. (6.26)
Equation (6.24) rewritten as
Jo + ho = 203 m)zy~ [x + (1 — $y)]
provides the added restrictions
x>0, (6.27)
1—(1+2)t<y<o. (6.28)

The requirements x >0, y <0 imply that the
short-range component of the potential #i(x) must be
attractive and the long-range part repulsive. Note
further that because of (6.2b) the lower bound on y
is actually provided by (6.28) rather than by (6.26).

Finally, we turn to the last of the stability conditions
(5.2). This condition, however, is automatically
satisfied when (6.28) is satisfied, as is readily seen
using (6.5), (6.16), (6.24), and (6.25).

Summarizing, in the case of the pair Hamiltonian
model when the potential is of the form (6.1) and the
restrictions (6.2)(6.5) and (6.27)—(6.28) are satisfied,
then the stability conditions (5.1)—(5.4) are satisfied.
We have thus explicitly demonstrated that the
stability conditions can in certain cases be satisfied.

VII. THE FULL HAMILTONIAN
We now turn to the question of the existence of a

B.E. condensation in a system of N pairwise inter-
acting bosons described by the complete Hamiltonian

=30 - ‘u)ala, + (2V)“k2 v(k)alwal_ka.a, .
’ e (1.1)

Only a small subclass of the interaction terms of
(7.1) are included in the pair Hamiltonian (3.1) which
we have been studying in the previous sections. Again
we ask: Does the system described by (7.1) undergo
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a B.E. condensation? In addition, what is the order
of magnitude of the operators c¢‘!’ defined by (1.1)?
By tentatively assuming the existence of a conden-
sation, we use the operator replacement (1.1) to
follow the program outlined in Sec. II. First, the
Hamiltonian J5 of the particles outside the conden-
sate is diagonalized by truncating it in the manner
introduced by Bogoliubov.® The effective condensate
Hamiltonian A, is constructed using the perturbation
method of Appendix A. Then we use an invariance
argument as supplemented by a result from Green
function theory to indicate that this approximate
result already has the characteristic features one
would expect of the exact condensate Hamiltonian.
We then find that in the low-density limit the Hamil-
tonian A, is diagonal in the occupation number
representation of ala, but not of c'c. Some discussion
is also given regarding systems of moderate density.

A. Perturbation Calculation of A,

Following the program of Sec. II, we split the
Hamiltonian (7.1) into three parts Xz, ¥y, and ¥;
which describe the system of particles outside the
condensate, the condensate, and their mutual inter-
action, respectively. The Hamiltonian J€5 is written
as
where the first term is identical with (3.8), i.e.,
¥y =W+ 3 (I + Mooy

+ thk)aa + aliad}, (7.3)
and the second term is

=N 3 o&)al,a,a, + H.c.)
(pfl'xl;o)
+ vy g 3 o) :ah,al_ae,: (7.4

P8
(g—k, p+k#0)

(7.2)

Here the symbol:---: means the normal product in the
b representation as defined by a Bogoliubov trans-
formation (3.22), whose coefficients are determined
below. For instance,

T agagt = xugbyb, + a,ﬂ.bi,b,
+ ﬂﬂalblpbﬂ + ﬂ)ﬂlblﬂbt‘l
= Ay — %805, ¢ - (7.5)
Further, in Egs. (3.11) and (3.12), which define the
¢ number coefficients in (7.3), we have to put

& =B M= by (7.6)
The condensate part ¥, of the Hamiltonian (7.1)
need not be written down here because it has exactly
the same form as its pair Hamiltonian counterpart
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(3.13). Finally, the interaction patt of J€ is given by

Ry = [(Jy + J; + JYNkc + Hec]
+ (J; — Afc’e + Bz — Ahg)ee + Heel, (7.7)

where
Jy=Vv"1 g [0(0) + v(k)] :afa:,  (7.8)

Jp= V1 g o) satal s, (7.9
Jy= N 37 o@alpala,.  (7.10)
(o0
Comparison with the pair interaction (3.3) shows that
the term carrying J, is the new addition in X;.
The first step of our program is to diagonalize X5.
Restricting our attention to the low-density limit,

x = [p(0)P « 1, (7.11)

and assuming that the potential (k) is slowly varying
for k < [pe0(0)]}, we follow Bogoliubov’s procedure®
of taking as a crude substitute for ¥:

Hp=3' ®ala, + &) aay + a'padl, (7.12)

where
S&) = k? + p(k), h(k) = p(k). (7.13)

The chemical potential has been chosen so as to
eliminate the terms linear in ¢! in 3, [see (3.14)].
That is, we choose y = 0, or

p=(po+ V3 EWO) + V7 X (& + pv(K).
. . (1.14)

Note that two approximations have been made to
obtain (7.12): First, we have neglected all terms in
f(k) and A(k) of (3.11) and (3.12), respectively, that
involve momentum summations; Second, we have
ignored J';. All the effects of these terms are known
to be vanishingly small in the low-density limit.*
Assuming that the k 3 0 stability condition,

vk) >0 (allk), (7.15)
is satisfied, the diagonalization of (7.12) is achieved
by the Bogoliubov transformation (3.22)<3.25) in
conjunction with (7.13). The ground state |Qp) of
Hp is the no-particle state of b, [see (3.26)], and the
excitation energy is given by

e(k) = k[k? + 2p®)}E. (7.16)

We now proceed to apply the perturbation theory
of Appendix A to construct the effective condensate
Hamiltonian A, associated with the ground state
|Qg) for the particles outside the condensate. The
calculation is identical to that of Sec: IV for the
pair-Hamiltonian model, since in the low-density
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limit (7.11) we can ignore the term in X[ involving J3.
This follows because the inclusion of J, in the
perturbation calculation leads to three-particle inter-
mediate states |p + k, —k, —p) and thus to twofold
momentum summations whose values are small,
since when (7.11) applies, most of the particles have
low momentum. We can therefore borrow the results
of Sec. IV and in particular, the effective condensate
Hamiltonian A, is given by (4.19)-(4.25). When we
use (7.13) for f(k) and A(k), Eqs. (4.23) and (4.25)
become

b 2P0 1 v(k)?
Jo = ho = =0 oy f d"«(k)me(k)” - of]’
(.17
1 o(K)? (K2 — pg(0))
Dz=142 dk . (7.18
+ 2o (2w)3f o) 4 — ot Y

Notice that if @, = 0, the integrals in (7.17) and (7.18)
have an infrared divergence, because according to
(7.16)

(k) oo k,

¢ = 2pe(O)} (7.19)

is the sound velocity in the present approximation.
Nevertheless, the product of D~* and the integral in
(7.17) is finite. Furthermore, according to (4.14),
0} = (fy — ho)(fo + ho) so that a consistent solution
of (7.17) is

where

Jo— by =0, (7.20)
and thus
wy == 0, (7.21)
A similar analysis of f; + A, [see (4.24)] using (7.21)
shows that .
Jo -+ hg = ¢ = 2py(0). (7.22)
This calculation shows the importance of the denomi-
nator D, a quantity which has emerged from our
perturbation scheme in a very natural manner. A
corresponding treatment of the infrared divergence
was given by Gavoret and Noziéres.2® An interesting
feature here is that despite the special treatment
required for the k = 0 mode, f, + A, is smoothly
connected® to f(Kk) + h(k) = k2 + 2pa(0), [see (7.12)],
for k — 0.

Substitution of the coefficients (7.20) and (7.22)
into (4.20) yields as the effective condensate Hamil-
tonian

A=A+ A, (7.23)

4 If we use a better approximation for e(k) such as e(k) =

k(k* -+ c®} with the exact value of the sound velocity c, then the

formula (7.21) gives fy 4+ 4, = c? accordingly. This fact was also
observed by Gavoret and Noziéres. See Ref, 23.
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where
A = (AMY (e + ') + W, — (4M)™Y, (7.24)
M™ = ¢ = 2p.0(0), (7.25)

and the lowest-order approximation for Aj is given
by (4.21).

A remark is in order about the consistency of the
above treatment. Since we have employed crude
approximate expressions for f(k) and A(k) in the
diagonalization of Jz, one could fear that (7.23)-
(7.25), our second-order result for A,, is marred by
errors in the zeroth- and the first-order calculations.
However, our perturbation method of constructing
A, ensures that the second-order result is the same
as the zeroth-order condensate Hamiltonian J¢, of
(3.13). Thus the second-order calculation is meaning-
ful.

B. General Considerations

The effective condensate Hamiltonian A, which
obtains in the low-density limit (7.11) is given by
(7.23). Among those steps taken to obtain this result
we set y = 0 so as to eliminate the term yN}(c + ¢7)
of (3.14). If this additional term were present in A,
the ground state expectation value of ¢! would be
O(N}) in violation of the assumption underlying the
use of the operator replacement (1.1). In this sub-
section we show that results similar to the above
obtain when we remove the restriction to low-density
systems. In particular, we show that A, is given by

Ay = A + Ay, (7.26)
where the most general form of A is
A3 = $M(po, '8 + 2o, WINGp
+ U(g) + wolpo, )No, (7.27)

and where p and g are the canonical variables defined
by (1.10), and Ay is such that the coefficients of its
operator part vanish in the volume limit (N,, N,
V — c0; No/V, N|V finite). The quantities M, y, and
w, are ¢ number functions of O(1) dependent upon p,
and p, while U(g) is an arbitrary function of g. The
“physical” values of p, and u are determined by the
requirements (1.4) and

X(PO’ .u’) = O: (728)

thereby ensuring that (1.3) is satisfied and that
M = o(N}).

In order to prove the above proposition, let the
result of the exact calculation for A) obtained by
using the replacement (1.1) be

A§ = F(p, g; po» p)- (7.29)
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Now suppose that we use N3 — & and ¢ + & in place
of N(’,} and c in (1.1), that is,

NEoN—g coctg (7.30)

where £ is a ¢ number of O(1). Construction of the
effective condensate Hamiltonian must go through in
exactly the same way as previously for & = 0, so that
the result will be

(AYY = F(p + 2%, g, po — 26NEVL, ). (7.31)

But once we determine p, and p by (1.3) and (1.4), the
two results, (7.29) and (7.31), must coincide since the
transformation (7.30) does not change the operator
¢ nor the ¢ number N} with regard to their relation
to ay. That is to say, the condensate Hamiltonian
must be invariant under the transformation (7.30):

F(p, 25 po» ) = F(p + 2}, g; py — 26NV, )
(7.32)

when p, and u take on their physical values, and when
Ny — o0,

It can easily be seen that in the limit Ny — co the
invariance condition (7.31) is satisfied by (7.27) if
and only if

M(py, )" = 2peBx(po, 1)/0po
= 2p,0°[powy)/p3 »
0 [PoWo(Po > ﬂ)]/ aPo =0,

(7.33)
(7.34)

where the functions are to be evaluated for the values
of u and p, which satisfy (7.28). The last condition
(7.34) simply means that the condensate density p,
should be determined so as to minimize W, = wyp,V,
the ground state energy of AJ. Reference to (3.10),
(3.14), and the expression for y following (3.15) shows
that in the low-density limit wy, = 4pv(0) — ¢ and
x = —u + pe(0). In this case (7.33) and (7.34) are
obviously satisfied.

The above discussion shows that a condensate
Hamiltonian of the form (7.27) can satisfy the
invariance requirement (7.32). The point is that the
change in the Hamiltonian induced by the transfor-
mation ¢ — ¢ + £ is a linear form of ¢ which can be
counterbalanced by the changes in y and wyN,
induced by N} - N} — £. In general, a Hamiltonian
AS = F(p, g; po, u) can satisfy (7.32) only when it is
invariant modulo a linear form L of p under the
transformation p — p + 2%, The coefficients of the
linear form L must be independent of g. Hence
0%F|0p* must be invariant under p — p + 2%£. Thus
F must be of the form

F = a(g; po, m)p* + b(g; po> Wp + ¢(g; po> ).
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Finally, the linear form L is independent of g and so
the same must be true of the coefficients @ and b. This
completes the proof that (7.27) is the most general
form for the condensate Hamiltonian in the volume
limit. Incidentally, (7.33) shows that a(p,, #) = $M*
is to be identified with the self-energy part 2k, w)
atk = o = 0; cf. Egs. (107) and (131) of Ref. 22.

Concerning the potential term U(g) of (7.27), some
information is provided by Green function theory, to
the effect that in a many-boson system described by
the full Hamiltonian, the one- and two-particle
excitation energies vanish in the low-momentum
limit.>*® If the interparticle potential (k) is not
singular at k = 0, it can be shown that the excitation
spectrum of the full Hamiltonian is continuous down
to zero momentum?® so that the one- and two-
particle condensate excitation energy should be zero.
In other words, no energy gap separates the ground
state from excited states. On this basis, one could
expect that the Hamiltonian A has no normalizable
ground state. The result (7.24) obtained with the aid
of our perturbation method is in accordance with
this expectation.

It may happen, however, that the “infinitesimal”
part A; of the condensate Hamiltonian supplies some
terms which are in the nature of a restoring-force
potential and which will make the ground state
normalizable and the excitation spectrum discrete. In
view of the volume dependence of A; we can expect
that the energy gap between the ground state and the
states of one- or two-particle excitations will vanish
asymptotically as ¥ — co. In the next subsection we
illustrate this possibility by employing the lowest-
order approximation for A;.

C. Ground State of the Condensate

In order to obtain some idea about the nature of the
ground state of the condensate we restrict our
attention to the low-density limit so that Aj and A,
are given by (7.24) and (7.25), and (3.15), respectively.
Thus we study

Ao = (4M)(c + ¢')?
+ pov(O)[N(T%(cch + c'ee) + N eTeel, (7.35)

where we haveignored the c number term W, — (4M)—!
of (7.24). Using (7.25) we can rewrite (7.35) in terms
of the original operators a{" for the k = 0 particles as

Ao = N pop(0)(adag — Ny — 1)° — 3. (7.36)

The form of (7.36) shows (i) that the stability condition
for the condensate is v(0), just as for states k # 0, and

45 See the remark following (7.22).
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(ii) that when this condition is satisfied the ground
state of A, is given by the eigenstate of aja, with the
eigenvalue N, or N, + 1. In general we can write

1Q0) = oy [Ny + 1) + & [Ny); (7.37)

the notation here is self-explanatory.
With this form for |Q,) it becomes impossible to
satisfy (1.3) since

Q] a, — N} 1Q,)
= afuy(No + D = (lagl® + JasDINE, (7.38)

and the right side cannot be made to vanish. In
general the role of the requirement (1.3) is to determine
the value of the chemical potential 4. However, in the
present case u and p, have already been chosen in
accordance with (7.28) so as to remove the term
Niy(c + ') linear in ¢ which would otherwise
appear in (7.35). Note also that the term in question
can be written as Niy(a, + a} — 2N}) and thusin the
present case setting y = O eliminates the term in A,
linear in a{. Further discussion on this point is
given in Sec. VIII in connection with problems of the
representation of field operators.

It is important to note that the ground state (7.37)
is infinitely degenerate. A normalization condition
such as (Q,| Q,) = 1 merely imposes the restriction
®; = COS @, &, = sin @, but where ¢ is an arbitrary
angle. Further, a condition such as (Q | alq, |Q,) = N,
is identically satisfied and does not provide any
restriction on . This degeneracy is related to the
convergence difficulty discussed in Sec. I.

If A, were calculated beyond the second-order of
our perturbation method the result (7.25) may be
expected to change. Also the form (7.35) of the
condensate Hamiltonian will very likely change.
However, in view of a lack of further information,
it might be worthwhile just to examine what will
happen if we assume (7.35) but not (7.25). For this
purpose it is more convenient to use the variables p
and g defined by (1.10). Then (7.35) becomes

Ay = 2M)p?
+ p(O)[2 N (pg? + g%p + 2p° — 4p)
FINSGP 4 g - D(P+ g = 3] (7.39)

The volume dependence of the terms in (7.39) suggests
that a scale transformation is needed to obtain
canonical variables of O(1) for the ground state. Let

p=Nom, g= Nyd, (7.40)

where »
I, ] = —i, (7.41)

v is a real number, and it is assumed that % and { are



BOSE-EINSTEIN

O(1). Substitution of (7.40) into (7.39) shows that the
only useful choice for » is » = ¢, in which case
(7.39) becomes

Ao = N;*K, + R, (7.42)

where

Ay = @MY '* + po0(0)

x 20 + Pn) + 4, (143)
and the residual term R is negligible as compared
with N;*A,. Note that the scale transformation with
v = £ could not have been used if there had been a
potential term U(g) of the form U(g) ~ g%, 8 > —2.

The form of (7.43) can be simplified by introducing
a new momentum variable,

m =17+ 23pp(OML, (7.44)
which, because of (7.41), is conjugate to {
[m, {] = —i. (7.45)
We then obtain
Ay = QM) 17 + 104, (7.46)
where
A = gpo(0)[1 — 2p(0)M]. (7.47)

It is now clear that the Hamiltonian A, has a normal-
izable ground state if

M>0, A>0. (7.48)

Note that if we use the second-order result (7.25)
for M, then we obtain
A=0, (7.49)

so that A,, which has been obtained from (7.35)
using (7.40), fails to have a normalizable ground
state. Note further that according to (7.33), M > 0
means 92W,[0pZ > 0.

Now, let us assume the stability conditions (7.48)
and check the requirement (1.3). Since the Hamil-
tonian (7.46) is a symmetric function of {, its ground
state is such that

Q] £12) =0.

Hence the ground state expectation values of the
operators ¢ and ¢! are equal. On the other hand, we
know from (7.44) that

Q] 712) = —272p(0)M (] L2 1Q).

(7.50)

(7.51)
Recalling (7.40) and the definition (1.10) of p and ¢,
we obtain

Q] ¢ 1) = (@] ¢ |Q) = O,  (7.52)

which vanishes in the volume limit. In view of the
steep potential well {* in the Hamiltonian (7.46), the
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ground-state expectation values of any products of
{ and = are finite. Recalling the scale transformation
(7.40) we see, therefore, that the operators cV
behave in general like quantities of O(N%), and thus are
much smaller than N}. Hence, it can be concluded
that the Bogoliubov replacement a{’ — N} is justified
if (7.39) is a legitimate version of the actual effective
condensate Hamiltonian and if the condition (7.48)
is satisfied.

We now briefly discuss the case where the stability
conditions (7.48) are violated in such a way that
MAi < 0. Applying the WKB method to (7.46) the
eigenfunctions @({) of A, are found to behave like

PO~ AL exp [+ i3Q/MAI,
(L~ ),

so that this function is normalizable. Unfortunately,
if one uses (7.53) the expectation value (1.3) involves
divergent integrals, thereby making the qualification
of (7.56) as a ground state wavefunction dubious.
Further, if the stability conditions (7.48) are violated
in such a way that M <0, 1 <O then the energy
levels of (7.46) have no lower bound.

VIII. REPRESENTATION OF COMMUTATION
RELATIONS

In this section we discuss the relevance of our
results to the problem of the canonical commutation
relations for dynamical systems having infinitely many
degrees of freedom. One purpose in studying non-
relativistic many-body problems in the volume limit
N, V— o (N/V = p:fixed) is that we may get some
insight into the possible mathematical structure of
relativistic quantum field theories*® where the infinity
of degrees of freedom is one of the essential features
apparently demanded by experimental facts (e.g.,
multiple production of particles at extremely high
energy).

We start with a remark concerning the Bogoliubov
replacement @, — N} which is often used on the
presupposition that a Bose system undergoes a
Bose-Einstein (B.E.) condensation at sufficiently low
temperatures. This remark serves at the same time to
fix our notation. One might feel uneasy about this
replacement because it leads to a violation of the
commutation relation [a,, a}]l = 1. But, as we now
show, this is in general not a problem when one is
interested in the volume limit.

(7.53)

4% An operator replacement essentially the same as our (1.1) was
once used in quantum field theory by S. Kamefuchi and H.
Umezawa, Nuovo Cimento 31, 429 (1964). There are numerous
field theory papers devoted to the discussion of inequivalent
representations.
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The commutation relations of a Bose field operator

$(x), eg., [#(x), ¢'(3]=0(x—y), have to be
interpreted in the sense of distributions. Thus we take

a set of test functions f(x) to define smeared-out
operators,

() = f F@$(x) dx, (8.1)

for which the commutation relations are
[6(). /()] = f g dx, (82
[(f), 4] = 0. (8.3)

For particles confined to a box of volume V we
require that f(x) vanish outside V. Further, these test
functions must be square integrable, so that (8.2)
will be sensible, and also integrable,

[roax<m<a, arv, @9
in order that they be of use in the case of B.E.
condensation. If in the volume ¥ one were to take a
set of normalized plane waves satisfying periodic
boundary conditions, then the smeared-out operators
(8.1) are the usual destruction operators a,.%" In
general we may write

$(fy) = V-*gfy(k)ak,

where f;,(k) is the Fourier transform of f‘,,(x). Now if
one takes a{"’ = N}, the operator (8.5) is replaced by

$u(fy) = pif(0) + v 3 frWa, - (86)

where as usual the prime on the summation symbol
indicates that the term k = 0 should be excluded from
the sum. Note that the assumption of (8.4) is needed
to make the first term of (8.6) well defined. With the
aid of (8.4) we immediately see that, when ¥ — oo,
¢5(f,) satisfies the same commutation relations
satisfied by ¢(f;-). Thus the Bogoliubov replacement
does not violate the commutation relations in the
volume limit.

One of the characteristic features of an infinite
system is that there are a variety of inequivalent
representations of the commutation relations (8.2),
(8.3), and not all of them are appropriate for the
quantum mechanical description of a dynamical
system with a given Hamiltonian.!? The Hamiltonian
chooses a representation, so to speak. It can be proved,
for instance, that operators ¢(x) and pf + $(x)
cannot be related by any unitary transformation if

(8.5)

47 This set of single-particle wavefunctions fails to satisfy (8.4),
and thus ¢z( fv) does not satisfy (8.2) and (8.3) if the volume limit
of the field operator is taken.
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po # 0, (V — c0). The Bogoliubov replacement implies
the use of a field operator of the form,

600 = pb + $0, QI FX D=0, &)
whatever the representation for ¢'(x) may be. Here
|€2) is the ground state of the dynamical system in
question. Such a field operator may be said to be of
the Bogoliubov type. But does the existence of a
B.E. condensation always demand a field operator
of this form? If, furthermore, we ask whether a given
Hamiltonian of a many-boson system requires a
representation of the form (8.7), there are actually
two questions involved. The first is the one asked just
above. The second question is whether or not the
system described by the given Hamiltonian undergoes
a B.E. condensation.

A method for finding a suitable representation has
been suggested by Araki and Woods.” They proposed
that one first calculate a system of Wightman
functionals

Wolfys oSy gp)
= QW) $(fH) - (b (gh) - - - $'(gh) 1QV))
(r,s=20,1,2,---), (8.8)

for a finite dynamical system of volume V by
employing its ground state |[Q(V)), and then analyze
their volume limits (¥ — o0) to see what representa-
tion is implied. Underlying this procedure is a
theorem,®*® that once a set of Wightman functionals
satisfying certain conditions are given, we can re-
construct a Hilbert space and field operators which
reproduce the given set of functionals, and this
construction is unique up to unitary transformations
(Gel’'fand construction). Araki and Woods used this
method to find a representation suitable for an
infinjte free Bose gas. They took |(V)) to be the
eigenstate of the number operators aja,, where all
the N = pV particles are occupying the lowest
single-particle states k =0 (B.E. condensation).
Then the limiting representation turns out to be
fully reducible: It becomes a direct sum of repre-
sentation ¥,(0 < « < 2w). The field operator in 3, is
of the Bogoliubov type ¢(x) = pge"“ + ¢p(x), where
#p(x) is a Fock operator.

In the previous sections we have been studying the
operator replacement (1.1), that is,

ay = Nz‘ + ¢, 8.9

with a particular interest in the order of magnitude

48 A. S. Wightman, Phys. Rev. 101, 860 (1956); M. A. Naimark,
Normed Rings, translated by L. F. Baron (P. Nordhoff Ltd.,
Groningen, The Netherlands, 1959).
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of the operator part ¢ as Ny— oo, In the case of the
pair Hamiltonian model we have found that under
certain conditions (stability conditions), restricting
the particle density and the interparticle potential,
the Hamiltonian has a normalizable ground state
1€AV)) such that

QMM QW) =0 (8.10)

and
QMY 1AMy = 01) (+j>2). (8.11)

This result implies, first of all, that the model system
undergoes a B.E. condensation. Because of (8.10) and
(8.11), all the terms in the Wightman functionals
involving the operators,

FAQeVE, gV, (8.12)
vanish in the volume limit, so that the system (8.8)
implies a representation of the field operator of the
Bogoliubov type (8.7). Moreover, explicit calculation,
in the limit ¥ — oo, of (8.8) shows that the limiting
functionals are identical with what we obtain by
taking a linear combination of a Fock operator ¢p,

$00) = ot + f a(x — Y)$x(y) dy
+ j Bx — Y@y dy, (8.13)

for the field operator, and the vacuum state of Fock
space for the ground state. The quantities «(x) and
B(x) are the Fourier transforms of the coefficients of
the Bogoliubov transformation (3.22). Therefore, the
pair-Hamiltonian model in the volume limit can be
described by the representation (8.13) as long as the
stability conditions are satisfied. The representation
(8.13) is obviously irreducible. It is interesting to
recall here that we met with a dilemma in the case
where #(x) is weak and everywhere repulsive in
coordinate space. In this case, when the operator
replacement (8.9) is made, one cannot obtain a
normalizable ground state for the condensate, yet
we can prove that the assumption of no condensation
is untenable. Perhaps one has to generalize the
concept of B.E. condensation for such cases. The
other possibility is that another operator replacement
in place of (8.9) will be successful.

In our study of the full Hamiltonian in the low-
density limit, we met the interesting situation where
the effective condensate Hamiltonian A, has the form
(7.36), that is

Ay = 3N;poo(0)(abap — Ny — $? — 31, (8.14)

which is diagonal only in a representation in which
aja, is itself diagonal. In contrast to the case of the
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stable pair Hamiltonian, it is the occupation-number
space of a;, but not of ¢, that contains the ground
state of A,. The ground state of the present system
has a B.E. condensation whenever v(0) > 0, yet it
fails to admit the Bogoliubov-type representation. In
fact (7.38), in conjunction with the normalization
condition (Q(V) | Q(V)) = 1, tells us that

QW) Nytag — 11QF)] > § + 0(x), (8.15)

where « is the density parameter [pe0(0)%]. This
result presents no difficulties as long as V' < co. But,
as explained in Sec. I, we meet with a convergence
difficulty if we consider the volume limit; the ground
state (7.37) keeps rotating in the occupation number
space as N, increases and there is no convergence.
This implies that the occupation number repre-
sentation is inadequate for the infinite system. Since
the ground state of the condensate is given by (7.37)
the calculation of the Wightman functional (8.8)
proceeds in much the same way as in the case of the
free Bose gas.” The volume limit of (8.8) using the
occupation number representation of aja, turns out
to be fully reducible. The irreducible representations
for the field operator are of the Bogoliubov type
plei* 4+ ¢'(x) (0 < « < 27). But as we have seen in
the above, the Hamiltonian cannot be diagonalized
in such a representation. In connection with (8.15)
we note here that if we wish to satisfy

(@] a = N3 |Q) =0 (8.16)
by

[Q) = > a, [Ny + n), (8.17)
where |n) is an eigenstate of aja, with eigenvalue #,

then we must have
(8.18)

equality extending in both right and left directions
indefinitely. From this result we see again that the
Hamiltonian (8.14) cannot be diagonalized in a
Bogoliubov-type representation.

When the density parameter « is not very small, our
discussion in Sec. VIIC concerning the ground state
of the full Hamiltonian is based on conjecture. It
appears likely that under certain conditions the
operator replacement (8.9) gives a normalizable
ground state in which

Q)| (D) 1UV)) = OWN3HD) (i + j > 2).
(8.19)

TS Uy T 0N, = Ay RRC

In the volume limit the representation is then of the
Bogoliubov type (8.7).
Returning now to the question of the existence of
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the B.E. condensation we note here a problem that
is left for future investigation. Throughout the above
discussions we have taken the point of view that an
infinite system should be studied as the limit of a
finite system. One might try, however, to consider an
infinite system from the outset by taking a field
operator of the form of (8.7), whose commutation
relations are exactly accounted for by the corre-
sponding relation for ¢'(x), e.g.,

[$(x), $'W)] = [¢'(x), '] = dx —y). (8.20)

Let X5 denote the Hamiltonian which we obtain by
substituting (8.7) into the given Hamiltonian of a
system. Then the existence criterion for the B.E.
condensation is stated as the existence of a finite
condensate density p, that makes the lowest eigen-
value Wy of X extremum?:

where u is a chemical potential. This ad hoc require-
ment added to the eigenvalue problem of X% is
motivated by a rather reasonable physical consider-
ation. One would further require, for instance, that the
extremum given by (8.21) should actually be a
minimum and that the sound velocity be real. It is
then interesting to ask how these ad hoc requirements
compare with the stability conditions of our scheme.
We know at least that (8.21) is a necessary consequence
of the stability of the condensate. This conclusion was
obtained by an invariance argument in Sec. VII.
Moreover, the condition as to the reality of the sound
velocity is needed also in our scheme because we too
have to diagonalize the part J¢5 of the Hamiltonian
pertaining to particles outside the condensate. But,
it is not yet clear whether this is the whole story or not.
Judging from the case of the pair Hamiltonian it
may well be that the set of stability conditions for
the effective condensate Hamiltonian is more strin-
gent than the set of conditions mentioned above. If
this is so, then we have to check the existence of the
B.E. condensation, case by case, before we can use
the Bogoliubov replacement. If, on the contrary, we
can show the equivalence of these two sets of con-
ditions it will mean a real justification of the
Bogoliubov replacement and furthermore of the
method of Hugenholtz-Pines® and Beliaev.®* We hope
that some results will be obtained by widening the
invariance argument of Sec. VII.

In conclusion, we have obtained certain conditions
which when satisfied prove the existence of a Bose-
Einstein condensation and justify the Bogoliubov
replacement a, = N} for the case of the pair Hamil-
tonian model. In the case of purely repulsive

H. EZAWA AND M. LUBAN

potentials the operator replacement g, = NE+c
does not lead to a stable condensate, yet the assumption
of no condensation is untenable. This case presents a
challenging problem to the representation theory of
canonical commutation relations. As for the full
Hamiltonian, we have discovered that in the low-
density limit it cannot be diagonalized in any
irreducible representation of the canonical com-
mutation relations. No clear criterion has been
obtained for the existence of a B.E. condensation for
the full N-body Hamiltonian, except the one, v(0) > 0,
in the low-density limit.
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APPENDIX A. PERTURBATION FORMULAS

In this appendix we present a perturbation method
to solve the eigenvalue problem formulated in Sec. II:

(JeB + JeC + Je])wn = WnAn ’ (Al)

vava =1, (A2)
where 1 is the identity operator in $. We refer the
reader to that section for the notation to be employed
here. In particular the meaning of the product in
(A2) is given by (2.5). We assume that the complete
set of orthonormal eigenvectors |n) and eigenvalues
¢, of g are known. Further, we suppose that J¢; has
the form
;= AH, + A*H,,
where A is a small real parameter.
Consider an eigenvector |n) of &5 which we assume
to be nondegenerate, ¢,, # €, (m £ n). We suppose
that the perturbed “eigenvector” y, and “eigenvalue”
A, can be expanded as

Yo =1+ AW + A2UWP + -+ ) |n),
An =A;0) + ZA(,,I) + 2.21\(2) + -,
where the W{# are operators in $; ® H and the AY

are operators in $. . In the following we suppress the
index n wherever no confusion can arise.

(A3)

(A4)
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As is the case for ordinary Schrodinger perturbation
theory, v, and A, are not uniquely determined by
(Al) and (A2). In fact, if p, and A, satisfy these
equations, so do y, and A, defined by

¥ = 9V, A, =VA, (AS)

where ‘U is a unitary transformation in $. Thus,
without loss of generality, one can require that

(n] W |m) = 0, (A6)

and that the operator (r| U ® |n) defined in H is
Hermitian, i.e.,

(n] Wt [m) = (n] USDT |n). (A7)

To prove these assertions we begin by noting that the
isometry condition (A2) implies that

(n] WD 4 Ut |n) = 0, (A8)
(n] WOTUD + US4 WD ) =0, etc. (A9)

Now if we suppose that (n] WY |n) # 0, then the
first-order term of

¥y = paexp [—1(n] W |n)]
= [+ 2P + 1 = A(n WY [n) + -] In)
) (A10)
is
W' |n) = [WD = (a] W |n)] |n),
so that (n] W™ |n) = 0 in accord with (A6). More-
over, (A10) is a unitary transformation because

{exp [~ 4 (n] WD [m)]}' = exp [—2 (n] WD |n)]
= exp [A(n] W |n)],

the second equality following from (A8). Thus we see
that it is always possible to fulfill the requirement
of (A6).

Turning to (A7), suppose that (n] W® |n) is not
Hermitian. Then consider another unitary trans-
formation:

1/};,1 = ¥, CXp (_AzA)’ (All)
where

A = 3[(n] WD |n) — (n| WDT |n))]
is the anti-Hermitian part of (n| U |n). The second-
order term of y, is given by

W ) = W) — n) 4,

so that (n| W@ |n) is easily seen to be Hermitian.
This completes the proof of (A6) and (A7). Hereafter
we assume that (A6) and (A7) are satisfied for the y,
in (A4). Finally, note that the isometry condition
(A9) now becomes

(1] WD 1) = (n] W™ |n)
—3(n] WD U 1),

(A12)
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Returning to the eigenvalue problem, (Al) is
equivalent to the set of equations

(Xp + Ko) [p@) = [p'9) AO), (A13)
(65 + 30) [9™) + Hi [p®) = [p0) A® + [p@) AW,
(A14)

(Xp + Ko) [v) + Hy lp™) + H, [p®)
= |p®) A® 4 [pm) AD - [p@) A etc., (Al5)

where {p®) = [#) and |[p!?) = W |n),i= 1,2, --.
From (A13) we find

A® = ¢, + J,. (A16)

Furthermore, multiplying (A14) from the left by
(n] and using (A6) yields

AW = (n| Hy |n). (A17)

The similarity between (Al7) and the standard
formula for the first-order energy corrections is only
formal since, instead of being a ¢ number, AY is an
operator in $.

To obtain A®) we multiply (A15) from the left by
(n| and we find

A® = g, (n | 9®)] + (n] Hy [9) + (0] Hy [n).
But, according to (A7), the operator (n | p*®) is Her-
mitian in $ so that the commutator term in A® is

anti-Hermitian. Since A must be Hermitian [see (2.6)]
we can conclude that

A® = H.P. (n| H, |p®) + (n| Hy |n), (A18)

where H.P. stands for Hermitian part.
In order to find |¢) we multiply (A14) from the
left by (m] with the result,

(E" - em)(m I w(l))

= (m| Hy |n) + [Kg, (m|pP)), (m #n). (Al19)
In the case of ordinary perturbation theory, (m | p™)
is a ¢ number so that the commutator term is absent.

The method of solving (A19) for (m|y"W) can be
found in the text.

APPENDIX B. VIOLATION OF
STABILITY CONDITIONS

We briefly discuss what happens in the pair-
Hamiltonian model if the k = 0 stability conditions
are violated. The k # O stability conditions are
assumed to be satisfied; in particular we assume
v(0) > 0. Thus we study

Ao = focte + 3hycc + clct)
+ pov(O)[Ny¥(cec + Hoc.) + 3N;kcleec] (B1)
for several choices of fy &= /.
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Case 1: fy + hy > 0 and fy — hy = 0. In this case
the situation is the same as the one we discussed in
Sec. VIL If, (a), fo > pov(0), then the condensate is
stable and ¢ = O(N%). If on the contrary, (b),
Jo < pov(0), then the condensate Hamiltonian for-
mally constructed has a normalizable ground state,
but the ground-state expectation values of ¢! involve
divergent integrals in contradiction to the fundamental
requirement (1.3). If, (c), f; = pew(0), then A, has
the form of (7.39).

Case 2: fy + hy < 0 and fy — hy = 0. In this case
the spectrum of the condensate Hamiltonian A, is
not bounded below.

Case 3: fo + hy = 0 and f, — hy # 0. The method
of scale transformation as applied to the variables
P» g of (1.10) leads to

Ao = No*12fef* + 20Ok (B2)
where we have put ¢ = Ny£ and p = Nioy. The
Hamiltonian (B2) has no normalizable ground state
irrespective of the sign of f;.

Case 4: fy + hy and f, — A, have opposite signs or
are both negative. In this case the finite part of the
Hamiltonian (B1),

A3 = 3(fo + ho)P® + 3(fo — ho)a® — £y,

has no normalizable ground state. The “infinitesimal”
part Ay — A may act as a restoring force, but it can
compete with A only when p, ¢ = O(N%). Whenever
cases (2)—(4) apply, either there is no B.E. conden-
sation in the system. or there is a condensation but
the operator replacement (1.1) loses its usefulness.

(B3)

APPENDIX C. THE FUNCTION h(p)

Before discussing the solution of the integral
equation (3.31) for the case of a superposition of
Yukawa potentials [see (6.1)], we briefly describe how
to solve that equation when v(k) describes a single
Yukawa potential,

v(k) = B[(k* + 22). €n

In accordance with (6.10) we assume that
e(k) = (0) + k*/(2m). (C2)

Thus the integral equation (3.31) becomes
i@ = o) ~ [AGE W0, ()

H. EZAWA AND M. LUBAN

where h = p;'h and the kernel is given by

G(p, k) = Qm)~°mB[(p — k)* + 2]7(k* + ¢*)7,
(C4)
and 0% = 2me(0).
The kernel has the remarkable property that in a
good approximation it reproduces functions of
Yukawa type; that is,

f G(p, (K + £ dk ~ BE)(P* + MD™, (CS)

where
M2= A+ o)A+ 9, (C6)

B(&) = (4m)y (& + o) 'mB. (o7))

For the proof, we evaluate the integral of (C5) by
invoking the convolution theorem for Fourier
transforms; the integral is transformed to a sum of
two integrals, each containing the product of two
Yukawa potentials in coordinate space. We obtain

f dkG(p, K)(K® + £

= mB[4np(€* — o*)I™ tan™* [(§ — o)p/(p* + M?)].
(C8)

But the inequality pM < #(p® + M?) shows that the
argument of tan™! never exceeds

3G~ A+ H(A + o,

which, in turn, is less than } in the following calcu
lations. Thus in the following (C5) is in fact a good
approximation to (C8).
In view of this reproducing property of the kernel,
we try to obtain the solution of (C3) in the form
h(p) = Zoa,.(p2 + A7 (C9)
where 0 < 4y < A; <-:-- as well as the g, are
parameters to be determined. In particular, the first
term of this sum is taken to be v(p), so that g, = B,
Ay = A. Substituting (C9) into (C3) we obtain the
recurrence relations

A1 = _.B(ln)ana (C10)
=@+ )4+ o). (C11)
Interms of y, = 4,/(4 + ©),the latter relation becomes

Par1 =Y+ Yo Yo=AH@A+0), (Cl2)
and the the sequence y,, converges to
Yo = 31 + (1 + 4y0)i]. (C13)

Every y, lies in the interval [y,, y,,), and the length
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of the interval decreases as o decreases. A good feature
of the sequence y, is that it converges very rapldly
For instance, when o = 0, ¥, = 1, the sequence is as
follows: 1, 2%, 1.55, 1.60, ---, and eventually
Y« = 1.62. The rapid convergence of y,, suggests that
it would be a good approximation even if we set

Yy1=ya="°*=19y,. Then,
h(p) = v(p) — BB~ (P* + 22)7%, (C14)
where
=14 0o (C15)
and

B =/l + p(A.)) (C16)
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Now we turn to obtaining the solution of (3.31)
when v(k) has the form (6.1); that is,
v(k) = B[(k® + A%) + A/(k? + «%).

In this case a good approximate solution is

h(®) = B/(p* + 1Y) + A|(0* + «*) — BBI(p* + 13,).
(C18)

This result follows from the fact that if (3.31) is

solved by iteration with (C18) as the lowest order

form for A(p), the correction terms are very small in
view of (6.2b) and (6.4).

(o))
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It is shown how, starting from the (experimental) knowledge of scattering phase shift, energies of
bound states and renormalized coupling constants, one is able to determine completely the parameters of
a quantum field theoretic model previously considered by the authors, the so-called Dyson model. The
very same conclusion holds for the case of potential scattering, which is also briefly considered.

1. INTRODUCTION

HE problem of determining the parameters of

some field theoretic models from the (experimental)
knowledge of the scattering phase shift and the
energies of the bound states has been previously
considered by the authors.! In I it was found that the
problem did not have, in general, a unique solution.
In this paper we again consider this matter by also
assuming the (experimental) knowledge of the renor-
malized coupling constants.

It is shown in Sec. 2 how this knowledge, together
with that of the phase shift over the full energy range
and that of the bound state energies, is able to deter-
mine completely the parameters of the models.

In Sec. 3 the concept of renormalized coupling
constant is introduced in potential scattering®® and
it is briefly shown how also in this case the potential
is uniquely determined.

2. FIELD THEORETIC MODEL

We start by recalling the main results of I. It has
been shown there that if we assign the phase shift
d(w) in such a way that it has one of the behaviors 4,
B’, or B” shown in Fig. 3 of that paper, and the
number r and the energies of the bound states, we can
reproduce this situation by means of the Dyson
model, whose Hamiltonian is?

H=H,+ Hy,
t & on,,t
Hy = myyyyy + }21 (my + o)y, y;
1=

+ | o®a'®)a(k) &k, (2.1)

Ny
H, = @mt f zsz'(f;% [g givlpna®) + h.c.:] %,

1 L. Fonda and G. C. Ghirardi, J. Math. Phys. 7, 906 (1966). We
refer to this paper as I in what follows,

# Forthetreatment of the inversion problem in potential scattering,
see the review article by R. G. Newton, J. Math. Phys. 1, 319 (1960},
and V. de Alfaro and T. Regge, Porential Scattering (North-Holland
Publishing Company, Amsterdam, 1965).

3 For the definition of the renormalized coupling constants in
potential scattering, see: L. Bertocchi, M. McMillan, E. Predazzi,
and M. Tonin, Nuovo Cimento 31, 1352 (1964); L. Bertocchi, S
Fubini, and G. Furlan, ibid. 32, 745 (1964),

by choosing in a proper way the parameters
appearing in it.

The a priori unknown quantities of the problem
are:

(a) the number N, of excited states of the scatterer;

(b) the N, energies w{® of these excited states;

(c) the N, unrenormalized coupling constants g;

(d) the form factor f(w), which is subject to the
condition f(u) = 1.

The quantities which are known are, the number n
and the energies of the bound states of the system
and the scattering phase shift d(w) over the full
energy range, i.e., from @ = g to v = +o0.

As shown in I, the number N, is immediately
obtained; it is equal to;

No=n +P0 (2.23)

if the phase shift starts decreasing (cases 4 and B"),
and equal to

Ny=n+P+1 (2.2b)

if the phase shift starts increasing (case B') being P,
the number of times that sin 6(w) vanishes in the
interval 4 < w < 400, ie., the number of times
d(w) goes through a multiple of = excluding the points
w = p and @ = + o0, We outline again here that the
phase shift cannot in any case go through the same
value multiple of —a more than once, otherwise the
assigned situation cannot be reproduced by this
model. The fact that N, is connected to n and P,
through (2.2a) and (2.2b) is an immediate consequence
of the fact that for this model the Levinson theorem
holds.

Instead of using the 2N, parameters w{® and g, we
can use the o{®’s, 3%o, 22 and the N, — 1 CDD poles
z{® of the model. The relation between these two sets
of parameters is obtained through the identity

Ng

N, g? =1 ;I;Il (z - wSO))
[2 “”:l = Mo Vet o
Z &: jl_.ll- (z— zjo )

(2.3)

i=1Z — W,

i=1
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The form factor is then obtained in terms of the free
parameters by

47 R{w)
f 3(0)) = — w——*—(ws . 2)}
X exp [— 1:; f ———~‘§f”) ‘2’] sin 8(w), (2.4)

where R(w) is given in terms of the bound states
energies w, and the free parameters

Z g‘ L Z {ﬂ)
by
(11 - @] = e
R(z) = P (2.5)

28 1Tz —2"
=1 d=1

In order to determine the 2N, parameters

P

(0) Z g‘

f==l

and z{® we have made use in I of the following
relations:

(1) The condition f3(y) = 1.

(2) The n eigenvalue equations for the bound states
of the model.

(3) The equations for the resonances.
As extensively discussed in I, there are only Ny — n
independent relations of this kind if the number
of resonances is greater than this. More precisely when
the phase goes from —mw to ~(m — 1)m, also if it
crosses the value —m= + 3» more than once, we get
only one independent equation for these resonances.

{4) As discussed in 1, the positions of the P, CDD
poles falling above n are fixed by the zeroes of sin é(w)
as it is necessary in order to have a positive f%(w).

Summarizing, we have N, 4+ 1 + P, independent
relations among the 2N, free parameters. There
follows that, in general, the assignment of the phase
shift and of the bound state energies is not sufficient
to determine completely the model.

We come now to the discussion of the use of the
renormalized coupling constants. Let us consider the
Low equation

(ﬁkp HIIFH)) = (¢k;: H1¢k)
(o HIVXED i)
f — E + ie
+ z (¢ky * HI\P‘D)(‘P.D ) Hf¢i ) (2‘6)
b=1 E, — E,

¢, being the state describing free motion, and ¥{"
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the scattering state. They are normalized as follows:

(d’g’ ‘A{) = (\Ifk,'@‘k’) = aS(k - k')'

¥, is the normalized bound state eigenvector.

For our model the first term at the right-hand side
of (2.6) vanishes. We recall now the expression for the
T matrix

(b, BTG = L@ 1 p 1 i, @)
167%ew,0,)t
where
ﬁ (z —
D) = 575 NSRS o ) N
> gt H(z-—Z“”) ey —Z

f==1

p(w) = [(0* — pD¥4n] Y (o).

Moreover one immediately gets

and

L J@) 5 }: &, ¥, (28

 HY)
o HE) = 1 G s

where
¥ = { 10)
is the ith bare excited state, and |0} the vacuum state.
Substitution of (2.7) and (2.8) into (2.6) yields
1 12 kdo  fYw)
Do +i0) 4m*Ju o, — o +ic |D(w + i0)?

=1

+2

b=l

29
W, ~— 0

The residues of the function [D(z)]~* at the position of
the bound states are the squares of the renormalized
coupling constants gF of the model

2
z gz ‘FM) ‘.Fb)

EE ]

= lim (z — ©,) ——
z- D(Z)
= (g% (2.10)
We recall that D(z), in our case, is known in terms of
the parameters of the model, the bound state energies
and the phase shift:

[ﬁ = = 0)|(z =
D(Z) = =::,o - o1
2elle- zy)
o 4,
xexp[ wfy ] (211}

The quantities g2 are measurable quantities since they
give the strength of the coupling of a # particle with
the bth bound state of the system.
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Substitution of (2.11) into (2.10), therefore, yields
n new relations for the parameters of the model. These
relations are all independent since the Low equation,
which seems to connect the g among themselves, is
identically satisfied for any choice of the free param-
eters. If we consider, together with the previously
obtained relations among the parameters of the model,
the » so obtained relations, we have a total of
N, + 1 + Py + nrelations among the 2N, parameters
of the model. Let us compare these two numbers.

In case B’ we have from Eq. (2.2b) Ny=n + Py + 1.
Therefore we have in this case exactly 2N, independent
relations among the 2N, parameters of the model.

In cases 4 and B”, Ny = n + P, and we get a total
of 2N, + 1 relations among the 2N, parameters. This
means that, in general, the knowledge of only n — 1
of the renormalized coupling constants allows the
complete determination of the model. The value of the
last renormalized coupling constant is then fixed
automatically by the model, and only if it meets the
experimentally observed value, the physical situation
can be described in the framework of this model. This
is, for example, the situation which arises in the Lee
model when there is a normalizable state. As shown
in I, the parameters of the Lee model are in any
case completely determined by the assignment of the
phase shift and of the energy of the eventual bound
state. Much the same holds also for the multichannel
separable model considered in Sec. 5 of I.

3. POTENTIAL SCATTERING

In potential scattering it is known that,® for
potentials whose first and second absolute moments
are convergent, from the knowledge of the phase shift
d, over the full energy range and of the energies E, of
the n bound states, one obtains an n-parameter family
of potentials all of which lead to the same 4, and E, .
In particular, this freedom is due to the fact that the
normalization constants of the bound states

Ny = of—iky, D[y, (ks >0) (G

are not determined from the knowledge of 4, and E,.
Here y{®(r) is the normalized wavefunction [i.e.,
Jo dr(y®(r))? = 1] of the considered /-wave bound
state, and @,(—ik,,r) is the regular solution of the
l-wave radial Schrddinger equation at the energy of
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the bound state, determined by the boundary condi-
tion:
lim QI + DY r i lg(—ik,, r) = 1.
=0
Also in this case, however, the knowledge of the
renormalized coupling constants yields uniquely all
the normalization constants N,. We see this for the case
in which the Jost function, Fy(k), which is determined
uniquely by 6, and E, , is analytic in the whole complex
plane, but the interval (i |a|, ic0) and a pole in the
origin. This is, for example, the case of superposition
of Yukawa potentials with range 2 |al.
Defining the renormalized coupling constants
through the Low equation (2.6), we write

¥
~E im (4, HED. B

2 P

3.2)

Yi®)gy =

It is straightforward to see that the so-defined gF
appears as coefficient of the asymptotic bound state
wavefunction:

P(r) 72, &re

r—+ o

(3.9

On the other hand, the asymptotic form of ¢,(—ik,, r)
can immediately be derived from the equation of
definition of the Jost function

ek, r) = F(k) f(—k, 1) + F(=K)fi(k,r). (3.5)
We analytically continue this equation up to the point
ite ", we get
el —iky, 1) o F (iky)i'e ™",
and therefore,

3.6

N, = i'F(ik,XgD) ™ (3.7

We note that ik, may even lie on the interval (i |a, ic0)
since, for F(—ik,) =0, Fy(k) is not discontinuous
on crossing the imaginary axis at the point ik;.

Equation (3.7) expresses N, as a function of §;, E,
and the renormalized coupling constant gZ. There
follows that the potential H(r) is uniquely determined
from the knowledge of phase shift, binding energies,
and renormalized coupling constants.
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The modifications introduced by the specific forms of relativistic dynamics of many-particle systems
are shown to give rise to a different (with respect to the nonrelativistic case) manner to set the problems
involved in a tentative construction of relativistic statistical mechanics. Although the difficult problems
of relativistic dynamics are not solved, it is possible to define relativistic generalizations of phase space,
distribution functions, Gibbs ensembles, and average values. In particular, phase space is chosen for
convenience and is no longer related (as is usually the case) to the “initial data,” whose nature is yet
unknown. As a consequence, only those observables which depend on the variables characterizing phase
space give rise to easily computed average values. However, it is possible to enlarge at will the basic phase
space and to define subsequent densities from which average values may be calculated. [Example: The
calculation of average values of observables A(- - * x¥, u! - - -) needs only densities of the form N°(- - - x¥,
u# - - -) and observables involving acceleration variables need the enlarging of phase space so as to include
the latter. On this enlarged phase space, densities of the form N(- - - x, uff, ¥{ - - ) may be defined and
are used to compute average values, etc.] The notion of equilibrium is discussed and suggestions for
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reaching the solution of this unsolved problem are made.

1. INTRODUCTION

N the past few years, a large number of papers on
relativistic statistical mechanics and connected
topics have been published. There are many reasons
for such proliferation. One of the principal reasons
may be found in the probable appearance (and this
in the near future) of very high-temperature plasmas
('~ 0.5 x 10° deg) needed for thermonuclear fusion.
Furthermore, relativistic plasmas do exist in stars
(at least the electron component is relativistic as
indicated by synchrotron radiation) and thus a
relativistic statistical mechanics is necessary to treat
them in a suitable way. However, even a nonrela-
tivistic plasma needs a relativistic treatment when
radiation phenomena are considered. Indeed, Schwin-
ger®'? has shown that, in problems involving radiation
phenomena, the relativistic corrections are much more
important than the quantal ones, and this in a large
domain of frequencies (from radio wavelength to the
far infrared). Another important case where relativ-
istic effects should be taken into account is that of the
degenerate electron gas® whose Fermi energy is of the
order of mc?. Such a case, encountered in astrophysics
when dealing with white dwarfs, occurs even at zero
temperature. However, it also requires a quantal
treatment, while throughout this paper we limit
ourselves to a classical theory.
However, the above “practical” reasons should, in
general, not be considered too seriously. Indeed, the

1], Schwinger, Phys. Rev. 75, 1912 (1949).

2 J, L. Delcroix, in La théorie des gaz neutres et ionisés (Dunod Cie,
Paris, 1960).

3 B. Jancovici, Nuovo Cimento 25, 428 (1962).

domain of validity of nonquantal relativistic statistical
mechanics is not extremely large: from ~10° deg to
2 x 10° deg (the latter number referring to the
apparition of electron pairs which demand a quantum
theory). So, we believe that problems of classical
plasmas and radiation phenomena could be perfectly
treated only with relativistic corrective terms taking
“large velocities” into account. In this way, it is
possible to make use of the Darwin Hamiltonian* and
this possibility has been exploited by Krizan and
Havas.?

Fortunately, besides the pragmatical reasons given
above, there exist theoretical possibilities which are,
in our opinion, sufficient to justify relativistic statistical
mechanics. More particularly, if we consider that the
special theory of relativity is a part of the laws of
Nature, then it appears to be necessary to generalize
in a suitable way the totality of Newtonian physics and
hence statistical mechanics. However, besides these
philosophical demands, it should be remarked that the
theory of relativity implies a number of qualitative
features which do not exist in Newtonian physics.
From these particular features one may expect new
phenomena in the statistical domain. For instance, the
equivalence between mass and energy or the non-
instantaneous character of relativistic actions could
perfectly well be at the origin of new phenomena.
We see that this is actually the case (see Papers IT and
11D).

The various papers devoted to relativistic statistical

4 C. G. Darwin, Phil. Mag. 39, 357 (1920).

5 J. E. Krizan and P. Havas, Phys. Rev. 128, 2916 (1962); E. J.
Krizan, ibid. 140A, 1155 (1965).
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mechanics can be grosso modo divided into two classes.
In the first class we find the theories which are not
manifestly covariant, either because they do not
actually satisfy the principle of relativity (and they
are generally approximations) or because they need
a special proof of their effective covariance. In the
second class fall the theories whose covariance is
obvious at each step of the derivation.

In the former class we can include the classical
works by Jiittner® dealing with the equilibrium of a
relativistic gas (classical, Bose or Fermi gas). In 1939
a first attempt to build relativistic statistical mechanics
was made by Van Dantzig.” However, this attempt was
inconclusive, presumably because at that time rela-
tivistic dynamics of many-particle systems was not
sufficiently developed. The first results in relativistic
kinetic theory® are due to Lichnérowicz and Marrot®
(relativistic Boltzmann equation). However, it is only
very recently (and especially because of the develop-
ments of plasma physics) that attempts to build
relativistic statistical mechanics have been undertaken.
These theories start with the relativistic expression of
the energy, i.e.,

H; = {lp; — A, NP + m2} + V(x,, 1),

i=1---N
from which is derived the Hamiltonian

H=lZH,.+8iﬂf(82+J€2)d3x,

where the second term on the right-hand side of the
preceding equation refers to the field energy. Using
this generalized Hamiltonian, it is possible to derive
a relativistic Liouville equation for a pseudodensity
involving both fields and particles. Next, the theory
follows the classical developments and in particular
diagrammatic methods are used. These theories have
been studied extensively by Balescu, de Gottal, Hénin,
Mangeney, and Prigogine.’® However, besides a
number of conceptual difficulties (both mathematical
and physical) the transformation properties of these
theories are not yet completely clear and we no
longer consider them in this paper.

We now limit ourselves to the second class, those

¢ F. Jiittner, Ann. Physik. 34, 856 (1911a); 35, 145 (1911b); Z.
Physik 47, 542 (1928).

7 D. Van Dantzig, Nederl. Akad. Weetnsh. Proc. 42, 601 (1993b).

8 By “’kinetic theory”” we mean a theory based on a one-particle
distribution function and a kinetic equation.

# A. Lichnérowicz and R. Marrot, Compt. Rend. 210, 759 (1940).

10 R. Balescu, in 1964 Cargése Summer School (Gordon &
Breach, New York, to be published); Ph. de Gottal, thesis and
Physica 32, 126 (1966) (See Ref. p. 72); F. Hénin, Physica 29, 1233
(1963); A. Mangeney, thesis, Paris, (1964) and Ann. Phys. (Paris)
10, 191 (1965); L. Prigogine, in Statistical Mechanics of Equilibrium
and Non-Equilibrium, J. Meixner, Ed. (North-Holland Publishing
Company, Amsterdam, 1965).
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papers written in an explicit covariant manner.
Indeed, only the latter works contain mainly the
substantifique moelle of the methods which are used
throughout this series of papers. In this second class,
there are only a few papers devoted to relativistic
statistical mechanics.® In fact, they rather deal with
relativistic kinetic theory® or with equilibrium. The
methods which lead to such theories have essentially
been set up by Bergmann, Chernikov, Titeica, Synge,

Tauber, and Weinberg.!* They have been constructed
so as to suit the relativistic hydrodynamics first
established by Eisenhart, Synge, Lichnérowicz, Eckart,
and Taub.'? In such a way, various relativistic kinetic
equations have been obtained: Vlasov equation,'®
Boltzmann equation,’* Landau equation,'® and Fok-
ker-Planck equation.’® Unfortunately, the greater
part of these kinetic equations can hardly be justified?”
on the basis of relativistic statistical mechanics and
they are only ad hoc semiphenomenological equations.

Let us now briefly glance through the various
problems which arise in a relativistic generalization of
statistical mechanics. A first problem deals with the
covariance of the theory. We like to obtain a theory
which would be explicitly covariant at each step of the
derivation and of the calculations. In our opinion
such a procedure does not merely arise from esthetic
considerations. Indeed, in so doing we avoid an
explicit proof (and even several proofs: one by
manipulation) that the theory actually satisfies the

1 (a) P. G. Bergmann, Phys. Rev. 84, 1026 (1951); (b) Handbuch
der Physik, S. Fliigge, Ed. (Springer-Verlag, Berlin, 1960), Vol. 1V;
(¢) N. A. Chernikov, Dokl. Akad. Nauk SSSR 1, 103 (1956); (d)
S. Titeica, Studii Si Cercetari de Fizici 7, 7 (1956); (e) J. L. Synge,

The Relativistic Gas (North-Holland Publishing Company, Amster-
dam, 1957); (f) G. E. Tauber and J. W. Weinberg, Phys. Rev. 122,
1342 (1961).

12 .. P. Eisenhart, Trans. Am. Math. Soc. 26, 205 (1924); J. L.
Synge, Trans. Roy. Soc. Canada 28, 127 (1934); Proc. London
Math. Soc. 43, 376 (1937); A. Lichnérowicz, Compt. Rend. 211,
117 (1940); 219, 270 (1944); Ann. Sci. Ecole Normale Sup. 58, 285
(1941); C. Eckart, Phys. Rev. 58, 919 (1940); A. H. Taub, ibid. 74,
328 (1948).

13 p. C. Clemmow and A. J. Wilson, Proc. Cambridge Phil. Soc.
53, 222 (1957); B. Kursunoglu, Nucl. Fusion 1, 213 (1961); Yu. L.
Klimontovich, Zh. Eksperim. i Teor. Fiz. 37, 535 (1959) [English
transl.: Soviet Phys.—JETP. 10, 524 (1960)]; K. Goto, Progr.
Theoret. Phys. (Kyoto) 20, 1 (1958); G. E. Tauber and J. W.
Weinberg, Ref. 11(f); R. Hakim, Compt. Rend. 260, 3861 (1965).

14 N. A. Chernikov, Soviet Phys. Dokl. 2, 248 (1957); 5, 764,
786 (1960); 7, 397, 414, 428 (1962); Acta Phys. Pol. 23, 629 (1963);
26, 1069 (1964);27, 465 (1964); Phys. Letters S, 115(1963); W. Israel,
J. Math. Phys. 4, 1163 (1963); R. W. Lindquist, Ann. Phys. 37, 487
(1966); G. E. Tauber and J. W. Weinberg, Ref. 11(f).

15§, T. Beliaev and G. I. Budker, Soviet Phys.—Dokl. 1, 218
(1956); Yu. L. Klimontovich, Zh. Eksperim. i Teor. Fiz. 38, 1212,
(1960) [English transl.: Soviet Phys.—JETP 11, 876 (1960)].

( 16 Yu. L. Klimontovich, Ref. 15; R. Hakim, Orsay report Th/68
1964).

17 This is not entirely true. Indeed, Klimontovich!®:®® justifies
his equations with the help of a very interesting method which will be
used extensively in Paper II. However, his definitions and methods
are neither completely correct nor well established. We shall give the
correct proofs of these equations in Paper 11.
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relativity principle. Furthermore, it is in the essence
of the special theory of relativity to work in the frame
of Minkowski geometry without any need to introduce
objects extraneous to this geometry and to the one of
the system under study. For instance, no objects such
as spacelike 3-planes, ¢ = const, need be considered.
All is contained in the geometries of space-time and
of the system. A second problem deals with the
evolution of the system. In statistical mechanics,
time indeed plays a very particular role as, for
instance, in problems involving time scales, stochastic
processes, perturbations, etc. However, we see that
there is no canonical notion of evolution of a relativistic
system of particles so that we must find a scheme to treat
such problems as the ones referred to above. The third
kind of questions concerns relativistic dynamics from
which arise the main problems. These problems have
been discussed at length by Havas,'®* whose paper
contains also a quasi-exhaustive list of references on
relativistic statistical mechanics and connected topics
[R. Hakim, Ann. Inst. H. Poincaré 6, 225 (1967)].
It is commonly admitted that relativistic statistical
mechanics should treat both fields and particles in the
same way. However, this point of view neglects other
possibilities, such as the action-at-a-distance formal-
ism, and we see that it leads (as expected) to infinities
very difficult to drop into a statistical framework. At
this point, we want to emphasize strongly that we
have not solved (nor tried to solve) the dynamical
problems. We have only explicitly assumed a number
of plausible hypotheses concerning them. We want to
point out that these basic assumptions also exist
(although implicitly) in previous works.2?

This paper is devoted to a discussion of the basis
of possible ways out and difficulties of the problems
involved. We first start with a discussion of relativistic
kinetic theory, of which we give a helpful alternative
formalism (Sec. 2). Next, a brief (and necessary) sum-
mary of relativistic dynamics is given (Sec. 3). Section
4 deals with the statement of the main statistical notions
to be put (in our opinion) at the beginning of relativistic
statistical mechanics. In Sec. 5, densities on the phase
space previously considered are defined, while Sec.
6 is devoted to average values. Finally, in order that the
reader not be mystified, in Sec. 7 we discuss the un-
solved but important problem of equilibrium.

Paper II will contain several hierarchies of equations
for the densities defined in Sec. 5 of this paper
(exactly, for more general densities). In particular, a
possible treatment of nonquantal radiation problems

18 P, Havas, in Statistical Mechanics of Equilibrium and Non
Equilibrium, J. Meixner, Ed. (North-Holland Publishing Company,
Amsterdam, 1965).
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is given and applications to simple kinetic equations
are included. Paper III will be devoted to more
detailed applications and, in particular, to relativistic
hydrodynamics of plasmas.

We now list some of the notations and conventions
used in this paper. Throughout this paper we take
¢ = 1(cis the speed of light). The Einstein summation
convention is used for the Greek indices. The latter
run from O to 3 while the Latin indices (when corre-
sponding to tensorial indices) run from 1 to 3;
otherwise they can number particles (from 1 to N).
Capital Latin letters are used in order to number the
components of eight-vectors or of 8N vectors or
tensors. The Minkowski space-time is endowed with
the metric + — — — . Furthermore, in addition to the
usual mathematical symbols y, 3, &, <, etc..., we
use the following notations:

®, tensorial product;

@, direct sum;

A, exterior product;

<, order;

a, tensor whose components are o - - *;

6, Dirac measure:

d = d(x) ® 8(x1) ® 8(xz) ® 6(x3);

positive real numbers;
superficial uniform measure +1 on the
surface 2;
projector on the 3-space orthogonal to the
timelike 4-vector n,,

A*(ny) = g*" — n"n’,

n*n, = 1;
designate indifferently mou* or (when exist-
ing) the canonically conjugated momentum
of x#. There should not be ambiguities either
because of the context or of further specifi-
cation;
0(x), heaviside step function.

Rt,
ds,

A"v(nl)’

)

As usual, we denote by boldface letters the spatial
components of 4-vectors. There should not be ambi-
guities with the notation used for tensors per se.

2. PRELIMINARY REMARKS

Before considering relativistic statistical mechanics,
it seems worthwhile to discuss briefly relativistic
kinetic theory.

Outline of Relativistic Kinetic Theory
The relativistic one-particle phase-space’® (the
so-called u space) is an eight-dimensional space; its

19 We should say *‘state space” rather than “phase space.” This
point is explained in the remarks below.
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points have four space-time coordinates and four
momentum coordinates.?’ The distribution function
N(x,, p,) is defined in such a way that the expression

) = f dpN(x,. p,) - w2m - (%) - O(pp, — m®)

.1)
is the particle four-current. [In Eq. (2.1) we have
p* = mu* and, of course, 2m0(p°) - d(p*p, — m*) dp =
m(dyp[p°(p)).] From Eq. (2.1) it is easily seen that
N(x,, p,) is normalized by

f j#(x)dZ, = N, VE, @2
>

where X is an arbitrary spacelike three-surface and
N is the number of particles constituting the gas.
[In Eq. (2.2) dZ,, is the differential form with vectorial
values

iz, = iew dx’ A dx® A dx?,
where
+1 when (u»pl) is an even permutation of
(0123),
€upa = { —1 when (uvpd) is an odd permutation of
(0123),

0 otherwise.

We denote by dX: dX = n% dZ,, where n% is the
normal unit to X.] Condition (2.2) implies the
conservation relation d,j#(x,) = 0. The expression

2mi(p°) - 8(p"p. — m*) - N(x,, p,)u* dZ, d,p

occurring implicitly in the normalization condition
(2.2) can be interpreted as the number of world lines
which will cut dZ centered at point x, with the energy-
momentum four-vector p, (modulo d,p). The reasons
for defining N°(x,, p,) through a current have been
explained by Bergmann'! (see also below).

The relativistic one-particle Liouville equation can
be obtained as follows. Let us denote by # the eight-
vector whose components are (u*, F*/m), where F* is
the external four-force acting upon the gas. The
eight-vector v (whose components are denoted by
n4, A =1---8) has a velocity character in x space;
hence an eight-current in u space can be defined by?!-22

J4(xg) = N(xp)  174(xp), (2:3)

20 In fact, the u space is a seven-dimensional space because of the
constraint p#p, = m?* (or any other one). However, it is preferable
to work in a flat eight-dimensional space rather than in a curved
seven-dimensional one. In the former case, the constraint p#p, = m*
is taken.into account by simply adding a ¢ factor as, e.g., in Eq.
(2.1) below.

21 XB (B =1-
space. When the coordlnates chosen are (xv , Pv)s then xp =
B=1-*+4andxg=pyforB=5""

324 depends on xp through its deﬁnmon

- 8) designates the coordinates of a point in u
xy for
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which satisfies the conservation relation®® (see Berg-
mann, Ref. 11a)

V  J4(xp) = V {N(xp) - WA(XB)} =0 (24

(where v 4 is the covariant derivative in an arbitary co-
ordinate system in u-space); when condition

V(xg) = 0 @.5)

holds, the relativistic one-particle Liouville equation
follows and it reads

74(xp) - 04N (xp) = (d/dn)N(xp) = 0, (2.6)

where 7 is the proper time. Using now the conventional
coordinates (x*, p*), Eq. (2.6) becomes

u*9,N(x,, p,) + F*(x,, u,)0/0p")N'(x,, p,) = 0.
Q2.7

Condition (2.5) is valid when (for instance) the
equations of motion of the particle can be cast into a
Hamiltonian form; this is the case when the external
force is due to an electromagnetic field or a “mesic”
(i.e., scalar) force field. In all that follows we always
bear in mind these two important cases.

The most general form of a kinetic equation that
N(x,,p,) should satisfy is obtained by adding an
ad hoc phenomenological term to the right-hand side
of Eq. (2.7)

W N + F*- (2op )N = C(V),

where F* is an external four-force. The right-hand
side of Eq. (2.8) is a collision term, which is nothing
but the variation of N° per unit proper time which is
due to collisions. This term must be such that p# and
m are collisional invariants.?* The left-hand side of
Eq. (2.8) is the variation of N° per unit proper time
which is due to the streaming. In order that Eq. (2.8)
actually be a kinetic equation, the collision term must
verify a number of requirements.?s In particular, the
relativistic form of the Maxwell-Boltzmann equilib-
rium distribution function, i.e., the Jiittner’-Synge
distribution

N(x,, p,) =

(2.8)

Np(x,)
4mm®K,(mé)
should be a solution of C(N) =0, when F# = 0.
[In Eq. (2.9) the notations are those used by Synge'?;

&* is the reciprocal temperature four-vector, K, is a
Kelvin function of order 2. Instead of Synge’s notation

exp [—&" - p,] (2.9)

22 With 9, = 9/9x4

24 S, Chapman and T. G. Cowling, The Mathematical Theory of
Non-Uniform Gases (Cambridge University Press, Cambridge,
England, 1960).

%t See, e.g., D. C. Montgomery and D. A. Tidman, Plasma Kinetic
Theory (McGraw-Hill Book Company, New York, 1964), p. 85.
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N, (which could be confusing) we have used Np(x,)
for the invariant world density of the fluid.]

In the same way C(N’) must be such that there
exists an H theorem. These requirements are satisfied
by the various kinetic equations indicated above
(except of course the relativistic Vlasov equation).
The connection of the covariant notations used in
Eq. (2.8) and the three-dimensional ones is straight-
forward and can be found in the literature.2

From the distribution functions obtained, for
instance, from a kinetic equation of the form (2.8),
one can compute the energy-momentum tensor of the
relativistic fluid under study as

T™(x,) = f dup2mb(p°) - 8(p"p, — MM N(x, , p,).
(2.10)

In the absence of an external force field this tensor
satisfies the conservation relation?’

3,T"(x,) = 0, (2.11)

which expresses the conservation of the momentum
four-vector for the fluid. In the case of an external
electromagnetic field F#'(x), this relation should be
replaced by

0, T (x,) = j(x,)F*'(x,). (2.12)
When the external force field is “mesic,” Eqs. (2.11) or
(2.12) should be replaced by

0,T"(x,) = Ap(x,) - 0°d(x,), (2.13)
where A is the coupling constant of the scalar field ¢
and p(x,) the invariant world density of the fluid
(more generally p is the source term of the scalar field).
The explicit knowledge of T*” implies the equations of
relativistic hydrodynamics. Moreover, the various
relativistic fluids can be classified according to the
form of T#'.»® The generalization to the case of an
external gravitational field is straightforward and has
already been given by Tauber and Weinberg!'’ and
by Chernikov.*

An Alternative Approach to Relativistic Kinetic Theory

Here we want to give an equivalent treatment of
relativistic kinetic theory so as to illustrate some

26 See, e.g., P. C. Clemmow and A. J. Wilson, B. Kursungolu,
Yu.L.Klimontovich,!® or Y. Aboniy, Cahiers de Phys. 18, 460 (1964).

27 In a recent paper, De Gottal and Prigogine [Physica 31, 677
(1965)] have suggested that Eq. (11) would no longer be valid as a
consequence of the occurrence of the interaction between particles
and should be replaced by 9, T#v = S¥, where SV is the contribution
of the field. In fact, this equation seems to be clear as a consequence
of the conservation of the energy-momentum tensor of the system
particles + fields:

au{T;‘::rt + Tfuizlds} =0.
28 A, Lichnérowicz, in Les Théories relativistes de I’électromag-
nétisme et de la gravitation (Masson et Cie., Paris, 1955).
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methods used in a forthcoming section. This section
is principally intended for pedagogical reasons, and
outlines in a simple case what is done in N-particle
problems.

A vparticle of proper mass m is described by its
eruations of motion assumed to be of the form?

m(du*[dr) = F*(x,, u,),
dx*/dr = u*,

Let us now consider an “observer” and assume that
he locates the position of the particle in u space as
being (x4, uf). If the Cauchy problem corresponding
to Eq. (2.14) is well set, then there exists a unique
trajectory in u space

(2.14)

2 o Y Hps B g
xB(r) = ) = X, 0, >0 or 7<0
ut(r) = ub(r; xfy , ub),

(2.15)
such that x#(0) = x4 and #*(0) = ut. In u space this
trajectory is determined by the sequence of points
xB(7) (r varying), and can be represented by the
density

R(x,, uy,; 7) = d[x, — x,(7; x4, ut)]
® O[u, — u,(7; x4, up)] (2.16)

normalized through the obvious condition

f f R(x,, uy;7) dgx dgu = 1. 2.17)
"

Let us now assume that the measures of the “observer”
are not very accurate and hence that the initial data
of the particles are random, their repartitions in
u space having the density Dy(x}, u4) normalized® by
f Dy(xh, ub) dyxy dauy = 1. (2.18)
I
[Equivalently, let us consider an ensemble (in the Gibbs
sense) of similar systems, i.e., with the same equations
of motion as Eq. (14), and ensure that the initial
measures are distributed according to Dy(x4, ub) - - - .]
It follows that, at a given proper time 7, the density in
i space is no longer R(x, ,u,; v) (ie., we have a
cloud of points rather than one point) but is rather
defined as its average value.

R(xv, Uy, T) = R(xv’ Uy Xyps Uy T)

is now a random function becausc of the random
character of (x,9, 4,0). Thus the density in u space is

29 See the remarks below. In particular this form excludes radi-
ating particles. We return to this question in Paper IL.

30°Of course, we implicitly assume that the constraint u#ud = 1
is included in Dy .
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defined by
D(x,, u,;7) = (R(x,, uy; 7))
=J‘R(xv’ Uy; Xyos> Uyos 7)
B

X Dy(Xy05 tyo) daXo dgtig. (2.19)

As a consequence, D(x,, u,; 7) is normalized on the
whole x space and not, as N'(x,, »,), on a submani-
fold™

f D(x,, u,; ) dyx du = 1. (2.20)
n

The cloud of points represented by D(x,, u,; 7) is
nothing but the cloud obtained by transforming the
initial cloud by the laws of motion. In other words,

D(x,,u,; ) = T ,D(x,, u,;0), 2.21)

where {7} is a representation in the space of densities
on u space of the transformation group (or semigroup
if we limit ourselves to = > 0) equivalent to the laws
of motion.

Deriving directly R(x,,u,; ) and taking the
average value of the result obtained, it is easy to find
a one-particle relativistic equation satisfied by
D (xv > Uy T)

9 Dx,, uy;7) + w8,D(x, , uy; 7)
or
mn
+ 2 )= Dex, ;1)
m Ju*

= 4 D(x,,u,;7) =0. (2.22)
dr
Of course, R(x,, u,; 7) also satisfies Eq. (2.22), in the
derivation of which we have implicitly assumed that??
(9/ou*)F*(x,,u,) = 0.
This assumption is verified in the case of electro-
magnetic forces.
From the formal solution of Eq. (2.22), one easily
sees that
F* 0
T, = exp {—Tliu“a“ + = (x,,u,) ——i|} (2.23)
m ou*
By adding to the right-hand side of Eq. (2.22) an
ad hoc collision term. several kinetic equations (for

instance, Boltzmann, Landau, Fokker—Planck equa-
tions, etc.) may be obtained.

Connection Between the Two Formalisms

Now, we prove two lemmas which establish this
connection.

31 N’ or D could indifferently be normalized to 1 or N.
33 This is nothing but Eq. (5).
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Time

N o An impossible path

\
[}
)
]
1

Space

FiG. 1. Visualization of lim D(r) = 0.

Lemma 1: The distribution function D(x,,u,; 7)
verifies
lim D(x,,u,;7) =0
[ad=1-}

in the sense of Lebesgue measure.

(2.24)

Proof. Let us consider the local “instantaneous”
density

p(x,,7) = f duD(x,, uy; 7).

From this density, we can calculate the number of
particles® within a finite Lebesgue—measurable four-
volume w < M*, and whose proper time is :

no(r) = f dyxp(x,, 7).

Then, because of causality which implies that, having
crossed o, a particle cannot return within (see Fig. 1),
we have
lim ny(r) =0, VYo < M
T2+
from which Eq. (2.4) follows. Q.E.D.
It is of course not the value of D which tends towards
zero. The convergence of D towards zero is intended
to be a convergence in the sense of measures.

Lemma 2: The distribution functions N°(x,, u,) and
D(x,, u,; ) are connected through the relation

N(x,, u,) =f

+o

D(x,, u,; ) dr. (2.25)

Proof. Let us first remark that from the random
density
R(x,,u,; ) = R(xg; 7)
we can define a random current similar to the one used

33 It is preferable to speak about the “‘number of particles within
" rather than about the *“‘percentage of particies within w.”
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in relativistic classical electrodynamics (i.e., the
Feynman current) by

Fhoon(x5) = f

along the traj.

dx4 - O[xg — xp(r, X50)]

=f_+: drd[xp — xp(r, xgo)y4(r). (2.26)

Using now the fact that (a) 54(r) depends on = only
through the intermediary of xz(r) and (b) J functions
occur in Eq. (2.26), we get

+o0
Thoen(eg) = 74 f dr8lxg — xp(r, X5o)]

-+ o0
=74 f R(xg, 7) dr. 2.27)

Taking the average value of both sides of this last
equality, we obtain

+o
F(xg) = 74 f D(xp, ) dr

= "IA ) "N’(xB))
from which Eq. (2.25) follows. Q.E.D.

(2.28)

It is now easy to show that the two given forms of
the one-particle relativistic Liouville equations are
consistent. Indeed, it is sufficient to integrate Eq.
(2.22) over 7 and to take Lemma 1 into account. Then
we get Eq. (2.7).

Discussion and Remarks 1

Here we discuss the conventional approach to
relativistic kinetic theory and indicate its main
characteristic features. The latter is found again later
when dealing with relativistic statistical mechanics.

(1) N(x,, p,)is actually not a density of probability.
Indeed, one can easily see that the zeroth-order
moment (in momentum space) has no direct physical
meaning and does not correspond to a normalization
of N; it is only through the first moment (i.e., the
current) that the one-particle distribution function is
normalized. In connection with this point it should be
emphasized [contrary to what is asserted by Goto,
Ref. 13, Eq. (3-9)] that the expression

f N(x,, p)S(BD, — m2mB(p) dyp  (2.29)

is never the invariant world density of the fluid under
consideration. This can be verified in the case of the
distribution function of the simple gas at local
equilibrium; we have

Nép(x,) . s
4mm*Ky(mé) 2mb(p") exp (K f p;)) op'p, —m’) dep
W\m

= Np(x,) m # Np(x,). (2.30)
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Of course, at the Newtonian limit, the right-hand side
and the left-hand side of the # in Eq. (2.30) are equal
since K; ~ K, when § — oo (which is equivalent to
c— oo: see Synge''®). Had we normalized N to
p(x,), the current would no longer have had the usual
form of

J(x)) = Np(x,(&[§) = Np(x,)a*(x,).

The fundamental reason for these features is that
relativistic kinetic theory is a statistics of curves rather
than a statistics of points. This has already been
remarked by Bergmann!!®? in his ““generalized statisti-
cal mechanics.” To specify this question more
precisely we have to discuss the question of phase
space. To this end let us consider the normalization
condition satisfied by N'(x,, p,),

[[2mo6" - s, ~ mty
;

- N(x,, pJu*dZ,dp=N. (2.31)

Equation (2.31) shows clearly that the distribution
function is normalized on a six-dimensional manifold,
which in fact is the effective phase space. This mani-
fold has not an invariant meaning because of the
arbitrariness of X. This effective phase space corre-
sponds to a possible set of initial data as in Newtonian
physics. In nonrelativistic statistical mechanics phase
space is indeed defined as the set of initial data, and
it has an invariant meaning with respect to the
Galilei group so that the possible trajectories of the
system lie therein. From a relativistic point of view
the possible trajectories lie in the state space, which is
just the “minimum” invariant space containing all
possible effective phase space. In the sequel this state
space is referred to as the phase space. It is now clear
that a relativistic ensemble (in the Gibbs sense) is
nothing but (a) the set of all possible trajectories of
the system (this manifold has actually six dimensions
as it should have), and (b) an invariant measure on this
set,34

To sum up, the distribution functjon is not a density
of probability but it allows one to obtain a density of
probability over each possible effective phase space.

Though N'(x,,p,) is not a density, a consistent
probability theory can be given in order to develop
this statistics of curves. Indeed, consider an open
subset A of an arbitrary spacelike three-surface  and
call C, the set of trajectories intersecting A. C,4
generates a o-field in the space of trajectories and we
can define a measure on this o-field according to

Mes (C,) = f (%) dS,,
Y L=3)

3 Invariant with respect to Lorentz group.
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and this measure is independent of X provided the
current j#*(x,) be conservative. The same argument can
also be applied in u space.

(2) Another remark deals with average values.
Following Bergmann'*** the average value of a given
function with tensorial values, namely (x,,p,) =
P(x,), is defined as

W) = [, DN ) 8By (2.3

or with the more usual system of coordinates (x,, p,):
bGx ) = [ [, BN )
z

x 2mO(p")o(p"p, — m*) dZ, d,p (2.33)

and hence () is biased by the choice of Z. Conse-
quently, average values have, in general, not a well-
determined variance.!!-3%-36

It should be emphasized that Eq. (2.32) or (2.33)
represents the flux of the current of “property ¢”
through E? or X, this flux being constant and
independent of =7 or X only when this current is
conservative, which is a very particular case.

Now if we look at Eq. (2.33) more closely we
remark that, although () depends on Z, the current
of property ¢ does not. This would suggest that
local average of ¢ could be defined in an invariant
way. Unfortunately, this is not the case and local
averages are again biased by X. Indeed, according to
Synge [Ref. 11, Eq. (241)] they are defined by

Px,) = J{}, x,) - me)[#0x0) - mi(xa),  (2.39)
where J* is the current of property ¢ and n%(x®) is the
normal unit to an arbitrary spacelike three-surface
2. Equation (34) shows that even local averages
are biased by X. This is of course in contrast with the
definition by Goto!? [Eq. (3-8)], itself due to the incor-
rect normalization of N,

However, as noted by Synge''® a local average could
be defined

$(xa) = J* (P}, %) I xD (3D} (2.35)

In fact, it could be argued that we do not need a
general theory of relativistic average values. Indeed,
what are needed are rather the currents of the various
properties ¢, e.g., j* or T#". In other words, we mainly
need hydrodynamical quantities, but this only shifts
the problem. In particular, there remain ambiguities
in the definition of the average four-velocity of a
relativistic fluid.

88 F. Halbwachs, Théorie relativiste des fluides ¢ spin (Gauthier-

Villars, Paris, 1960).
3¢ R. Hakim, J. Math. Phys. 6, 1482 (1965).
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It would certainly be interesting to have a rela-
tivistic statistical mechanics where densities are
actually densities of probability and where mean values
have a well-determined variance. Unfortunately this
seems to be hardly possible.

(3) In the relativistic framework there is no canoni-
cal notion of evolution of a physical system. This is in
fact a counterpart of the arbitrariness of the choice of
“physical space,” i.e., of a spacelike hypersurface.
The point of view adopted is a global one in which a
sub specie aeternitatis description of the system is
given. The history of the system is written in Minkow-
ski space-time once and for all, while *“physical
observations™ are related to spacelike three-cuts. As
we have already noted, this point of view leads to
building a statistics of trajectories (which constitute the
fundamental element representing the system) rather
than a statistics of points (which would be as arbitrary
as the chosen cut of the system). Of course, in order
to avoid difficulties occurring because of the am-
biguous® nature of the relativistic notion of simul-
taneity, we could choose a well-determined family
of spacelike hypersurfaces indexed by a parameter
(as, for instance, the family of three-planes ¢ = const).
Doing so, a conventional notion of evolution (and
hence a conventional form for relativistic statistical
mechanics) would be preserved. However, the theory
would include an element extraneous to the geometry
of space-time and of the system and could no longer
be fully covariant.

This absence of a natural and invariant notion of
evolution gives rise to conceptual difficulties® when
one wants to consider relativistic stochastic processes.*
We show in another paper*® how it is possible to
obtain such a relativistic theory.

This unfortunate circumstance also renders difficult
a tentative description of disintegrating gases occur-
ring, for instance, in high-energy astrophysics. A
quite different reason may be found in the derivation
of kinetic equations. Indeed, the derivation of kinetic
equations generally implies a change of scale of

37 The set of all spacelike hypersurfaces of A(* is not totally
ordered (for a *‘natural” order, of course). The word “‘ambiguous”
could be replaced by ‘‘relative.”

38 In particular, the use of the time coordinate as a parameter
describing theé evolution of the process, seems to be doubtful.
Indeed, such a notion would only define a stochastic process in a
given system of coordinates, while the definition would no longer
be the same in another system. This can be shown easily by the
mathematical definition of a stochastic process.

3 Such a study is necessary if we want to give a probabilistic
meaning to the various Fokker-Planck equations studied in the
literature. It is also needed if we want to establish a relativistic
theory of irreversible processes and in particular if we want to
obtain a covariant generalization of Onsager relations.

4* R. Hakim (to be published). See also Sec. 7 of the report
Orsay Th/107 (1965).
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time** (i.e., long time assumptions) and it would be
most surprising that such a change depends on the
method used to locate the temporal evolution of the
system. Therefore, we need a temporal notion of
evolution which would be intrinsically attached to the
system. We shall come back to these points in the
following and in Papers II and III.

Remarks and Discussion 2

(1) In the conventional approach to relativistic
kinetic theories, we essentially start with a congruence
of curves in u space, whereas in the proper time
approach we deal with points. The second approach,
which is completely equivalent to the conventional
one, is much closer to the classical considerations
and allows the application of standard methods.

It is clear, however, that the physically interesting
results such as the hydrodynamic quantities, will be
obtained from N(x,) and not from D(x,, 7). So, the
distribution D(x,, ) is nothing but a helpful inter-
mediary in the calculations. Nevertheless, the fact
that D(x 4, 7)is actually a density of probability allows
the obtaining of results concerning N'(x,) which
could hardly be found by reasoning directly on this
last distribution.

(2) In deriving D(x,, v) from R(x,, ) we have
assumed the existence of a distribution of the initial
values Do(x}, u)). In fact, it is sufficient to assume the
existence of an averaging operation () such that

D(x4,7) = (R(x4, 7)), 2.36)
which need not be specified further. In the sequel
we see that, in the absence of a complete solution of
the problems raised by many-particle systems, more
general densities can be defined without an explicit
knowledge of the nature of the Cauchy data; for
instance, it will be sufficient to assume the existence
of such brackets ¢ ).

(3) Note that the initial data (x4, p5) can be con-
sidered as distributed either in the whole u space or
only on an arbitrary hypersurface. Mathematically the
former distribution would correspond to a discon-
tinuous cut of the congruence of trajectories, while
the latter would correspond to a continuous cut.
Physically both cases are possible because initial
measures on the ensemble could perfectly be per-
formed nonsimultaneously.

(4) Let us emphasize that in R or D, (7, x,,, 4,) are
independent variables. Indeed, to see this property

41 See, e.g., R. Zwanzig, in 1960 Boulder Summer School (Intet-
science Publishers, Inc., New York, 1961), Vol. 3.
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we should bear in mind the definition of R:

R(xﬂ’ Uy T) = 6[xu - x,,(-r, Xu0> u,;o)]

® Ou, — u (1, x40, ty))-

However, in the same way as in conventional statisti-
cal mechanics, we could say in a fictitious sense that
w* = dx*[dr [instead of dx*(z)/dz = w*(2)].

(5) Let us note that it is always possible to set

D(xv’ Uy T) = b(xv’ Uy 7) ' 6(““";4 - 1)
while D also verifies the Liouville equation (2.22).
This is easily shown by introducing relation (2.36) in
Eq. (2.22) and taking into account #*F, = 0. This is,
of course, due to the fact that the constraint u*u, = 1
is also a constant of motion.

(6) In the case where we are only interested in the
future*? behavior of the system (i.e., 7 > 0), we have
no longer a conservation relation of the form
0,j*(x,) = 0. Let us assume indeed that the particles
of the system are for instance created at some points
in space-time which are considered as initial data.
Then the conservation of the number of particles read

82 fD(xﬂ, u,;7)dy + aufD(x”, u,;Du du =0,
r
>0, (2.37)

which, integrated over = from zero to infinity, leads to

2,7"(x,) = f Dy(x, u,) dau, (2.38)

where we have taken Lemmas 1 and 2 into account.
More generally, this point of view leads to source
terms in the various equations considered. Note that
it is only in such a case that we actually have a
semigroup {7,} and not a group. This point of view
is very helpful when we deal with a disintegrating gas
consisting of excited subsystems (e.g., atoms).

Let us now examine the case where the initial data
are distributed on a given spacelike hypersurface X.
We have the “nonconservation” relation

auj”(xv) = Po(xv)a):’ (239)
which at first sight could be most surprising. However,
it is easy to see that relation (2.39) does not violate
the conservation of the number of particles. Indeed
let us consider (see Fig. 2) a spacelike hypersurface §
situated in the future of Z and thus such that S N X =
& . As a result we have

apju(xv) IzveSCt'uture otz =0 (2.40)

since 6y = 0 for all points x ¢ . As a consequence the
number of particles crossing any set 4 < S is, as

42 “Future” with respect to the initial data.
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Fic. 2. Apparent lack of conservation of particles.

expected, equal to the number of particles crossing
the similar set on X. Of course, this is no longer the
case when S N X # & (see Fig. 2).

(D In writing Eq. (2.14) we have neglected the
radiation reaction (in the case of a charged particle).
If we take this last effect into account, instead of Eq.
(2.14) we would write the Abraham-Lorentz-Dirac
equations

du* du  (du,\ (du’
— = eF®¥u, ) Il udid § I Pudediy PYY 2
Mo gy = CFein e {d# (df)(df) }
while the u space would be a 12-dimensional space:
= ({x,}, {u,}, {y,}). In this generalized u space the
one-particle random density is of the form

Rl(x,n Uy Vys T) = 6[}’# - yu(T’ xouo)] ® R(xv s Uys T)’

where we have not indicated a yj dependence for
reasons which is given in a precise manner in Paper
IL. Hence the generalized R, is also averaged by means
of the same Dy(x}, u}) and yields a generalized one-
particle distribution function D¢(x*, w’, »*; v) which
verifies an equation similar to Eq. (2.22). However,
D€ no longer satisfies a Liouville theorem because of
the form of the equations of motion. From this D¢
we can obtain, after an integration over the proper
time, a N°¢. The normalization of this N°¢ is given in
Paper II where this formalism is studied in detail;
in particular, it allows (for instance) the construction
of an acceleration mechanism for the charged com-
ponent of cosmic rays by random force fields which
takes into account the energy loss due to radiation.

3. SUMMARY OF RELATIVISTIC DYNAMICS

In this section we briefly recall the starting points
and the main formulas of dynamics of relativistic
particles.

Before performing this program, we should bear in
mind that, within the framework of relativistic
nonquantal physics, only three kinds of fields of force
are actually known. Only scalar (or pseudoscalar),

HAKIM

vector, and tensor fields are known, which can be more
or less considered as describing respectively classical
nuclear forces, electromagnetic forces, and gravitation,
As usual, relativistic forces may be divided into ex-
ternal forces and interaction ones. Among the former,
there is no example of an external scalar field of force,
though we could perhaps consider some collective
effects of nuclear forces in the so-called neutron
stars.** We cannot consider the gravitational forces
as interactions because they are generally very weak
(although this assertion be trivially false in the
hypothetical case of collapsing stars* or even for
superdense stars). However, they may have some
important collective effects and hence generally act
as ‘“‘external forces.” For the sake of simplicity we
discard gravitational collective forces: they introduce
only minor modifications of the given formalism.
For instance, d, has to be replaced by V, which
involves derivatives of the metric tensor g+* itself
depending functionally on the one-particle reduced
density (this last statement is equivalent to considering
only collective effects of the gravitational field).

One-Particle Dynamics

The equations of motion of a particle imbedded
both in an external electromagnetic field and an
external “mesic” field are

‘%{mo + Ad(x,)Ju* = A9"H(x,) + eF*(x,)u,

(3.1)

or

{mo + Ad(x)) di ut = AN(u)0,b(x) + eF (e,
(3.2)

and they can be cast into a Hamiltonian form (see the
review article by Schay®).
A possible Hamiltonian is*

H = [(p" — ed")’[2(mo + A$)] — 32¢  (3.3)
and hence the canonical equations read
dx' _ OH _pf — ed
dr  9p, my+ ¢’
I
W OB _ o4+ i ar. (34)
dr 0x

[

43 G. Szamosi, in Varenna Summer School: High Energy Astro-
physics, 1965 (to be published). See the reference quoted therein.

44 K. Thorn, in Varenna Summer School: High Energy Astro-
physics, 1965 (to be published).

45 G. Schay, Jr., Nuovo Cimento Suppl. 26, 291 (1962). See also
A. Peres and N. Rosen (quoted by G. Schay, Jr.).

48 This Hamiltonian, which is merely formal and thus has no
definite physical sense, is, of course, not unique.
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In the above equations (3.1)-(3.4), ¢ is the ‘‘mesic”
field (coupling constant 4) and F** is the electro-
magnetic field (F** = 9#4® — 9°A4*, coupling constant
e). We have recalled these well-known properties only
to introduce canonically conjugated variables (x,, p,).
In fact we rather use the variables (x,,u,). Let us
also mention that the expression
i=N
H =3 H,
i=1
constitutes a formal Hamiltonian for a system of
noninteracting particles [H, is given by Eq. (3.3),
where all symbols are indexed by i].

(3.5)

Many-Particle Dynamics

Dynamics of relativistic interacting particles are
exposed in detail in three complementary books by
Barut,*” Rohrlich,*® and Rzewuski*® (see also Berg-
mann'?),

Essentially two different points of view can equally
be adopted. They are the action-at-a-distance and the
field point of view (for a comparison and a discussion,
see Havas®).

In the field point of view, we start with the equations
of motion derived for instance from the Hamiltonian
(3.5), to which equations for the fields are added; i.e.,

i=N -+ a0
OA4*(x,) = X 4me, 0lx, — x,(r)] dx¥, (3.6)
=1 ~00

9,4%(x,) = 0,

for the electromagnetic field and (for instance)

(3.7)

i=N +
Q0c,) + Migts) = 24 olx, = x,m) dr

3.8
for the “mesic” field.>* Now, Egs. (3.6), (3.7), and
(3.8) contain both field and particle variables. How-
ever, these equations also involve the self-fields and
therefore include divergences which have to be
eliminated with the help of the so-called “renormal-
ization of mass.” As we see in Paper II, in a statistical
treatment it is not easy to separate the effects due to
mass Tenormalization from other terms.’® It seems

47 A. O. Barut, Electrodynamics and Classical Theory of Fields and
Particles (The Macmillan Company, New York, 1964).

48 F, Rohrlich, Classical Charged Particles (Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, 1965).

49§, Rzewuski, Field Theory (P. W. N. Publ., Warsaw, 1964),
Part 1.

8¢ p_ Havas, Phys. Rev. 74, 939 (1948).

51 The equations of motion for fields and particles can also be
obtained from a variational principle.

52 E.g., A. Mangeney (Ref. 10) found a supplementary term in the
study of bremsstrahlung. However, it has been shown that this term
is not observable because it corresponds, in fact, to a finite term
which should be included in the experimental mass. [A. Mangeney,
(private communication).]
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also hardly possible to split the fields into self-fields,
radiation fields, interaction fields, etc.; we have only
one entity, the total field. Note also that in the field
point of view the mass m, appearing in the equations
of motion for the particles is the bare mass.

In the action-at-a-distance formalism there is no
field to support interactions and the equations of
motion are given a priori. For instance, in the electro-
magnetic case one may start from the Fokker varia-
tional principle®®

=N

88 = 6{m0 S f (tui)t dr
=1
+13e J f WUAG(xt — x) dr, d‘ri} =0, (39)

where G(x,) is a kernel specifying the interaction
under consideration. As a result the equations of
motion are very complicated integrodifferential ones
and hence most difficult to solve. For the sake of
comparison with the field point of view we adopt the
ideas developed by Bergmann!! according to which
in Eq. (3.9) m, is again the bare mass.%

Both approaches lead to the Lorentz—Dirac
equations and their generalizations to interacting
particles:

)

m(dufldr) =T} + eFlgu,,, i=1-"-N, (3.10)
where I'# is the radiation reaction term
dr? = dr; dr

1% = [mr, 225 4 u;‘}, (3.11)
m being the finite renormalized mass and t, the so-

called “noncausality” time®

Ty = §e2m. (3.12)
Note that Eq. (3.11) can also be rewritten as
# = mr A (u,,) duifdT,. (3.13)

@

In Eq. (3.10) F#; is the field due to all other particles
but the ith; it satisfies®®:
0)

9,Flz; =0,
h)
a M F f:;t = Z e

i#d

+00
O[xt — x(r)ldx}. (3.14)

—

53 A. D. Fokker, Z. Physik 58, 386 (1929).

84 In ali the following and in both points of view we consider only
retarded interactions. The questions of symmetry past-future, which
are discussed in classical papers (see Ref. 50 and quoted papers
therein) is irrelevant from statistical considerations. Furthermore,
they could perfectly be included in this paper. Therefore they are
dropped only for the sake of simplicity. Consequently we have
G(xy) = O(x0)0(xtxy) ot G(xy) = 0(x,)F(xkxy) if we consider “ex-
tended” particles.

55 We could avoid the procedure of renormalization.

¥
5¢ In the action-at-a-distance point of view FLY is such that the
arbitrary homogeneous solution of Eq. (14) is chosen as being zero,
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Equation (3.10) is obtained by splitting the self-field
due to the ith particle into

(Fo)™ = H{(Fi)™ + (Fla)™™}
+ HEF)™ — (F2)™™), (3.15)

the first term of the right-hand side of Eq. (3.15)
leading to the renormalization of mass while the
second term yields rigorously I'# .

Had we used symmetrical actions, then Eq. (3.10)
would have appeared as the result of the action of an
“absorber’ ® (complete or incomplete?®).

At this stage we want to emphasize that the Lorentz—
Dirac equations are not approximate equations, valid
to a given order in €2, as is sometimes stated. We must
also note that Eq. (3.10) are not the correct equations
of motion since they lead to the well-known non-
physical “runaway solutions.” To eliminate the latter
we can impose an asymptotic condition (or several

ones):
¥l
(4&) =0, i=1--N.

dr,

lim (3.16)

Tt
In Paper II we exploit Eq. (3.10), to which conditions
(3.16) will be added.

At this step it is absolutely necessary to note that
very important problems in either approach are not
solved.’® For instance, the existence and uniqueness
of solutions of the equations of motion are not known,
the exact nature of Cauchy data is not known, etc.

4. STATEMENT OF THE MAIN STATISTICAL
PROBLEMS

Basic problems in relativistic statistical mechanics
are of several sorts. Firstly, they are of dynamical
order: What are initial data (and hence phase space)?
To what extent does the non-Hamiltonian character of
relativistic dynamics permit the transposition of New-
tonian statistical mechanics ? Secondly, they are of sta-
tistical order: What may be called a “relativistic Gibbs
ensemble” ? How does one treat in a covariant way
the random character of the possibly existing fields?
Thirdly they are also relevant to measure theory (in
the so-called “operational” sense): given initial data,
how is it possible to obtain them experimentally (i.e.,
with a gedanken experiment)? In this section we set
these problems and try to give some insight into their
possible (and future ?) solution.

Initial Data—Observations and Measures

In Newtonian statistical mechanics probabilities are
introduced with initial data of the subjacent dynamical

57 J. W, Wheeler and R. P. Feynman, Rev. Mod. Phys. 17, 157
(1945); 21, 425 (1949).
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problem. These probabilities are introduced so as to
take into account the “nonaccuracy of the measure-
ments” of an observer at an instant considered as
being the origin of times. In the preceding sentence are
two key expressions which we should investigate in
order to see whether they could also be used with the
same meaning in the relativistic framework: “meas-
urement at a given time” and “observer.” In New-
tonian physics an “observer” is, at least in principle,
able to perform instantaneous measurements and
hence to have a global knowledge of the whole system
at a given time. Is this situation prevailing in special
relativity ? It is one of the aims of this section to
answer this question.

Let us now consider an observer® (i.e., a “punctual
physicist” moving along a timelike curve in space-time
and hence using “punctual physical apparatus’!)
and a many-particle system on which this observer
wants to undertake miscellaneous experiments. Natu-
rally this observer knows the nature of the particles
of the system, the laws of motion of these particles and
possibly of the fields. Before answering the question
of knowing how he proceeds, let us first remark that
the observer is not necessarily a Galilean observer
(i.e., his trajectory in Minkowski space-time is not
necessarily a timelike straight line). Moreover, let us
assume, as is conventionally done, that this observer
receives information only through electromagnetic
signals (or more generally through signals propagating
in space-time with the velocity of light). Of course, this
is not an essential hypothesis and we see below what
kind of modifications would be implied by signals
with a velocity less than that of light.

At a given instant of his clock taken as the origin of
times, this observer receives the signal emitted—or
reflected—(see Fig. 3) by the different particles of the
system and locates them in space-time. It is indeed
possible to locate space-time events only with time
measurements and using signals traveling with the
speed of light.%:0 The observer may receive in-
formation on the state of the fields®! on the backward
null cone I'~(0). Such a process is referred to as an
““observation.” Although it seems hardly possible to
imagine a thought experiment which gives an obser-
vation of the fields, we assume, however, that this is

%8 The notion of “‘observer” is not so clear as one generally
believes. For some people an observer is simply a Lorentzian system
of coordinates. For others, it reduces to a family of spacelike 3-
planes, etc.

9 3. L. Synge, Relativity: The Special Theory (North-Holland
Publishing Company, Amsterdam, 1958), Chap. 1.

0 Figure 5 shows that the observation of the event M has a
finite duration: in 0’ the observer emits signals which are reflected by
M towards 0. See Ref. 59 for a detailed analysis.

1 See the remark below.
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LOCAL TIME AXIS

BACKWARD NULL CONE
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F1G. 3. Location of particles in space~time.

actually possible. If we did not make such an assump-
tion, it would be impossible to describe completely
relativistic statistical systems. The process of observa-
tion is by essence nonlocal. On the contrary, the
measures affected by the observer are local processes
relative to the event of space-time where the observer
experiments. For instance, the field at point O (see
Fig. 5) can be measured (e.g., with a test particle,
whose interactions with the field are sufficiently weak
in order that they have practically no influence on the
system under consideration).

At this point, we may note that neither observations
nor measures can be performed instantaneously.®-52
In fact, the processes of observations and measures
start slightly before the event O taken as the origin,
say O’ (see Fig. 5). The point O’ can even be rejected
towards the far past when the system is infinite. At
any rate, the final results of observations or measures
give initial data lying on a null cone. This shows that,
given an observer, there exists a canonical slicing of
space—time by a family of backward cones whose
origins last on the trajectory of this observer (see Fig.
4). Therefore, the physical space at a given instant
(proper time) of a definite observer is never a spacelike
three-plane or even a spacelike three-surface but
rather a backward null cone. As a consequence, an
event M may be located by (see Fig. 5):

(a) the direction of the 4-vector OM;

(b) the proper-time interval between O and O'.
Unfortunately, these intrinsic notions (intrinsic mod-
ulo the observer who constitutes the only data extra-
neous to the geometry of the system and of Minkowski
space-time—however, in an operational point of view,
it is mecessary to introduce an observer) are of poor

82 E.g., a measure of the field intensity involves a test particle and

the observation of its motion during a finite (although possibly
small) interval of time.
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F1G. 4. A canonical “slicing” of space-time.

interest in the important case of electromagnetic
interactions. Indeed, in that case the null cone is a
characteristic surface of the Maxwell equations.
Consequently, the data of the electromagnetic field on
this surface are not sufficient to determine the future
field completely (and uniquely). This is a well-known
mathematical property: the Cauchy problem is not
well set when the initial data lie on a characteristic
surface. Physically, this could mean that such observa-
tions are incomplete by nature. We are thus led to
give up such an intrinsic slicing of space-time and
should use an arbitrary hypersurface to locate the
initial data of the statistical system under considera-
tion.

Let us also note that in the preceding discussion we
have implicitly assumed that the observer and the
physical system are not imbedded in a refractive
medium. If it were not the case, the situation would
be worse. Indeed, instead of obtaining initial data on
a null cone the observer would only get initial data
on a timelike conoid since light would propagate
with a lesser velocity (see Fig. 6). As a consequence,
the observer never has a complete knowledge of the
system (see Fig. 6). Furthermore, it is not sure at all
that the Cauchy problem on a timelike hypersurface
for the fields has a solution or even a meaning.

Fic. 5. Location of an event,
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This particle cannot
be observed.

timelike conold _,

Fic. 6. Example of a nonobservable particle when using
electromagnetic signals (in a dispersive medium).

At the beginning of this section we limited ourselves
to the use of signals traveling with the speed of light.
Had we used signals with a lesser velocity, the con-
ventional notion of a physical three-space (see Fig. 7)
would no longer have been preserved: initial data
would have been found in (and also on) the null cone
I'~(0) and hence would last in a four-dimensional
space.

Among the consequences of the preceding (brief)
discussion, we see that in the most important case of
electromagnetic interactions, it is necessary to intro-
duce an arbitrary initial spacelike three-surface on
which initial data are given. However, this scheme
leads to the notion introduced by Cattaneo,® of an
extended observer, i.e., an infinite family of local
observers (as the one previously considered) whose
trajectories are orthogonal® to the initial spacelike
hypersurface. In other words, we could use a fluid of

F1G. 7. Use of signals propagating with velocity less
than that of light.

82 C. Cattaneo, Nuovo Cimento 10, 318 (1958).
% This condition is not absolutely necessary. It implies the
regularity of the initial hypersurface X, i.e., 9u2o # 0.
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FiG. 8. Two Lorentzian observers.

reference.® Let us note that this notion of an extended
observer renders irrelevant the distinction between
observation and measure. Furthermore, from an
operational point of view, it seems difficult to relate
measures or observations of an extended observer to
usual notions using clocks, rods, and signals.

In the cases where the null cones are not character-
istic surfaces of the field equations, let us try to relate
the observations or measures of two Galilean obsery-
ers. We assume, without loss of generality, that they
pass through the same event S (see Fig. 8) where they
have synchronized their clocks. Let us assume now
that M and M’ are the origins of the proper times for
the two observers O and O’, respectively. First, we
remark that M and M’ are related by a proper ortho-
chronous Lorentz transformation. Therefore the
measure of a local quantity F - * * (M) by observer O
is related to the measure of the same local quantity
F: (M) by a Lorentz transformation.®® On the
contrary, the results of observations are global
quantities which cannot easily be interrelated since
they refer to different cuts of the subjacent physical
system. Let us note that when Lorentz transforma-
tions are considered, it is intended that the point S is
the fixed point.

Let us now draw some conclusions from this brief
analysis.

(a) At any rate the Cauchy data measured by an
observer are of the same nature as in Newtonian
physics (i.e., lying on a spacelike 3-plane ¢ = const
or even on a spacelike 3-surface; in a following para-
graph we see that the mathematical Cauchy data
could even be much more complicated).

(b) The initial data measured by an observer are
not always sufficient to fully determine the ulterior
behavior of the physical system.

8 With some conditions on the congruence of ‘“‘observers.”

% Only when F'--(SM) is invariant in the strict sense, i.c.,
F"'=F"'(SM)2.
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{c) It is not at all clear whether the mathematical
Cauchy data® can actually be measured.

(d) Points (a), (b), and (c) above suggest a choice,
as fundamental random data to be introduced in
relativistic statistical mechanics, of the trajectories of
the particles and possibly the fields rather than “initial
data.” Indeed, a fully invariant viewpoint should be
independent of “observers,” systems of coordinates,
etc. As a consequence, only the complete trajectories of
the particles of the system are at our disposal to be
chosen at random. Furthermore, such a point of view
is in agreement with the one considered in the rela-
tivistic kinetic theory. However, one runs into the
trouble that it cannot be directly related to con-
ventional ideas according to which probabilities have
to be introduced ab initio.®® We come back to these
questions in the following.

Statement of the Fundamental Statistical Problem

The preceding discussion has suggested that from
an operational viewpoint “initial data” of the system
are not always complete. If the basic statistical
problem is to be well set, then what should be
“randomized” is the “mathematical® Cauchy data.”
Henceforth we limit ourselves to these “mathematical
Cauchy data,” always bearing in mind that the prob-
lem of knowing how they could actually be measured
remains open. In this section we mainly deal with
the field point of view although we do not completely
forget action-at-a-distance.

For the sake of discussion we consider only the
example of a system of identical particles interacting
through a scalar potential ¢ satisfying Eq. (3-8).
Naturally the main results of the discussion remain
valid for electromagnetic interactions. Setting now
(see Sec. 5)

Ry, t4,37) =‘§fﬁ{xg — %(M] @ 81, — ),
. (4.1

Equation (3.8) can be rewritten as

+00
O¢ + My = 2] d-rfd,,uRﬁx,,, u,;7), (4.2)

7 In this paragraph we have made some hypotheses on the nature
of Cauchy data (i.e., data of the fields and of the particle variables
on a spacelike 3-surface, for instance). They are discussed below.

88 We must note that in Newtonian physics trajectories are also
random although their statistical character is related to the random
initial data.

8% So far, nobody has been able to specify the nature of these data
so that what follows consists of merely plausible assumptions.
However, we see in the following that for the sake of statistics,
the specific form of the Cauchy data is not absolutely necessary.
What is needed is an averaging operation or more precisely the
assumption of its existence. This assumption is in fact a very weak
one, existing more or less implicitly in all statistical mechanics, and
is independent of the precise nature of initial data. Of course, in
Newtonian statistical mechanics, the explicit knowledge of the form
of initial data renders explicit the averaging operation.
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while the equations for the particles are again

m{dul|dr;) = AA"(u,)0,$(x,), i=1---N. (4.3)
Now let us come back to the initial-value problem and
try to set it in a form similar to the Newtonian one.
To this end we assume that initial data are given on
a spacelike three-surface.” If ¢ were an external field
then the solutions of Eq. (4.3) would depend on 6N
initial data (x%,, u%). In the same way, if the motion of
the particles were completely known [i.e., if the right-
hand side of Eq. (4.2) were known], it seems a priori
that we should have to solve a relatively simple
Cauchy problem for Eq. (2). In fact it is not so. In-
deed the source term of Eq. (4.2) does not vanish in the
past of %, and therefore the Cauchy problem has no
meaning!™ A way out of this difficulty is the follow-
ing. Since the physicist is interested only in the future of
3, , one may assume that interactions are switched on
on X, . Therefore the source term actually vanishes in
the past of Z, and hence the Cauchy problem has a
meaning. Such an assumption is therefore necessary
if we want to preserve a form similar to the Newtonian
one for the initial-value problem. Such a drastic
assumption is implicitly contained in the work quoted
in Ref. 10, where electromagnetic interactions are
dealt with.

For the sake of a further discussion we assume the
validity of the two following hypotheses which are
themselves studied later.

Assumption 1: Interactions are switched on on Z,,
the source of interactions vanishing *“‘before” Z,.

Assumption 2: The initial data of the system con-
sists (on Zy) of the 6 N particular data (x%, u%) and
of the usual field data (¢,, Od,) (where 0, =
nk, 0,$, is the normal derivative of the field on ).
Note that this last hypothesis is only a plausible one.

Under these assumptions the Cauchy problem for
Eq. (4.2) is easily solved and we get

D(x,) = J; {A(x, — x,)0@y(x,)
—'aA(x, — x)®(x0)} dZ,

+oo
+4 f f AGx, — X)R(x) , ) 7') dox’ deu’ d,
o (4.4)

70 For a sufficiently regular spacelike hypersurface, there always
exists a system of coordinates such that its equation is x° = 0,
Because of the fact that physics is independent of the chosen
coordinate system {provided it preserves the normal hyperbolic
character of the metric of space~time), the most general “initial
physical space” is an arbitrary spacelike hypersurface and thus there
is no reason why we should limit ourselves to spacelike 3-planes.

71 This is a mere mathematical property. Mrs. Y. Bruhat-Choquet
(private communication),
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where A(x,) is an appropriate Green function of Eq.
(4.2).

At this stage we can adopt several viewpoints and
they are, of course, somewhat related.

(a) The initial field on Z, and its normal derivative
are given and not at random. In such a case we have
only to deal with the particle aspect of relativistic
statistical mechanics since the field variables can be
completely eliminated. This point of view leads to a
relativistic Klimontovich hierarchy'® (for the scalar
interaction, of course) which is studied in Paper II.
Equation (4.4) shows that the field ¢(x,) is a random
field because it functionally depends on the random?
density R, . This field, although initially not correlated
with the initial particular data, does not remain
uncorrelated with the particle variables. It can also be
remarked that the first term of the right-hand of Eq.
(4.4) (which involves the dependence on ¢, and O¢,)
is a solution of the homogeneous Klein-Gordon Egq.
(4.2) and hence will play the role of an external force
field in the equations of motion of the particles.

(b) The initial field on X, and its normal derivative
are chosen at random. In such a case the field ¢ is
random, both due to the random distribution R, and
to the initial field data. This point of view has been
adopted by a large number of authors. It can be
summarized by saying that it deals with a random
Cauchy problem. Here also, there are several possi-
bilities: either the initial data of the field and of the
particles are correlated or they are uncorrelated. In
the latter case everything occurs as if we were con-
sidering the preceding point of view except that the
system is embedded in a random external force field.
More precisely, let us assume that our ultimate aim is to
obtain a kinetic equation; then we first derive (with
the help of various approximations and hypotheses)
a kinetic equation in a given external force field and
next remember that this force field is random. Thus
we have random kinetic equations which can be solved
(at least formally) with different techniques.”

If, in order to be more “realistic,” we want to get
rid of assumption 1 and to know the behavior
(statistical or not) of the system in the future of Z,,
we must give up the conventional form (i.e., similar
to the Newtonian one) of the initial-value problem.
We may, as above, assume that the initial data of the
particles are distributed on X, while the field (and its

72 “Random” because of the random character of the “initial
data” of the particles.

78 R. Kubo, J. Math. Phys. 4, 174 (1963); G. Adomian, Rev.
Mod. Phys. 35, 185 (1963); See also the simple example treated in
Sec. 7 of the preliminary report, Orsay Th/107.
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normal derivative) can be written as

¢(xp) = ¢+(xp) + ¢_(xp) + ¢1n(xp)’
where ¢+ is the contribution to ¢ of R, for + > 0, ¢~
is the contribution due to the past (+ < 0), and where
¢, is an arbitrary solution of the homogeneous
equation (4.2) and represents more or less an
initial radiation field.” More precisely,

+ 00
¢t(x,) = A*J; de dguRy(x,, u,; 1),

¢ (x,) = A*f_owfdr dguR,(x,, u,; 7).

In this scheme what is random? First of all the initial
data of the particles are again chosen at random on
Z,. Secondly, the past of the system can be chosen at
random. For instance, if we assume that there is no
initial field, then this “random past” is entirely
included in the random function Ry(x,, u,; 7) (With
7 < 0). In order to be compatible with the initial
particular data, this random function should satisfy
some consistency conditions; e.g., R, should be such
that

lrl—r}; <R1(xp s Ups T)> = Dl(xp H up)|acpe)3°

<0
be verified.” Note that this function is random not
only because of the random character of the initial
particular data but also because of the random
character of the past of the system. ¢, may also be
chosen at random with or without correlations with
the Cauchy data of the particles. Whether this kind of
initial-value problem is consistent with the one
developed above or not is questionable, as remarked
by Havas and Rohrlich. In our opinion, this last point
of view corresponds more deeply to the principal
features of relativistic interactions, and in particular to
nonlocality. Furthermore, it appears to be more

physical.

Finally the preceding discussion suggests the
abandoning of the idea to set the initial-value problem
in a form similar to the Newtonian one. For instance,
if we want to remove assumption 1, then the Cauchy
problem for the field can be set only at infinity.47-48
In that case, we get

$(x,) = A fﬁA(x,, — X)R(x, )3 7)

X d‘T’ d,‘x’ d4u’ + ¢ln(xp) (4'5)

74 It would be a radiation field only when dealing with electro-
magnetic phenomena.

> For the moment there is no need to specify more precisely
D,, () etc., (see Secs. 5 and 2). Furthermore the meaning of these
quantities is intuitively clear.
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which clearly shows that only two elements are at our
disposal to be chosen at random: (a) the incident
field ¢, and (b) R,, or more precisely the entire
trajectories of the particles of the system. Of course,
these elements can be correlated or not. It seems,
however, that it is more “‘physical” to consider ¢,
and R, as being uncorrelated.”® It may be remarked
that this last point of view also includes action-at-a-
distance (with ¢;, = 0). In our opinion only this last
point of view has a fully invariant meaning and there-
fore we adopt it henceforth.” It has also the great
advantage to avoid the explicit knowledge of the
solution of the initial-value problem.

Remarks on the Statistical Treatment of Fields

The preceding paragraph indicates that in general,
random fields are dealt with (or random variables in
functional spaces when dealing with R,). For instance,
¢o and 0¢, may be considered as random variables in
the Hilbert space £3(M*), e.g., when the field energy-
momentum is finite. [Indeed, in that case we have

PH(E,) = f T* (o, 3 dE, < 00,

where 7*¥, the momentum-energy tensor, is a positive
definite quadratic form in ¢, and d¢,, which property
implies that (¢g, 0,) € {L3(MH)}*2] In the same way
Ry(x,,u,;7) is a random process™ in the latticed
Banach space of positive measures™ in H*,
Unfortunately only very little is known on measures
in functional spaces. For instance nobody has yet
been able to obtain a nontrivial®® Gaussian measure
in Hilbert space.®! A usual treatment consists in doing
a statistics of field oscillators, at least in the electro-
magnetic case.’? However, this procedure is mathe-
matically not well defined. [For instance, this point
of view leads naturally to a Gaussian measure in
Hilbert space, which measure is known to be such
that u(£*) = 0.5 However, it would be most interest-
ing to find the reasons why such a point of view (which
is obviously incorrect in the case of a Gaussian
measure) leads to physical results. The problem is
open. An element of answer would perhaps be the

%6 The discussion on this question given above in points (a) and
(b) can equally be repeated.

77 Unless there is an explicit statement of the contrary.

78 Note that it is not R, which is physically interesting but rather
JRy dr and that this last quantity does not constitute a random
process in the above Banach space but a random variable.

79 See, e.g., P. Courrege, Théorie de la mesure (Centre de Documen-
tation Universitaire, Paris, 1964).

80 I e., such that u(£%) # 0.

81 See, e.g., M. Zerner, in 1965 Cargése Summer School (W. A.
Benjamin, New York, to be published). (See also the references
quoted there.)

82 A5, e.g., in the first work on these questions: W. E. Brittin,
Phys. Rev. 106, 843 (1957). See also the papers quoted in Ref. 10.
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following: practically “reduced measures™ involving
one or two or a few oscillators variables are actually
used to obtain physical results and never the complete
“measure” (which has no mathematical meaning).]
Another treatment, which is used in what follows, is
inspired from turbulence theory. It consists in
assuming that the complete statistical properties of a
random variable in a functional space & are known
when all the ““‘moments” are given. In other words, the
statistical properties of the random variable f'€ ¥ are
assumed to be known when the infinite sequence

(f)EJﬁ, (f®f)eJ€®2,'--,(f@--~®f>eJ€®",---

is given. This treatment rests on the analogy with
random variables®® in R¥. This method has been used
to a large extent in turbulence theory3? and by Klimon-
tovich in dealing with electromagnetic fields.
However, it is not sure at all that the above sequence
determines a random element in X. This is also an
open problem.

So, we assume that the knowledge of the sequence

(R" @415 pg=1,2--"
in the field point of view (or of the sequence

(RPY); q¢=1,2---

when dealing with action-at-a-distance) is sufficient
for the complete characterization of the statistics
occurring in the problem.

Phase Space—Gibbs Ensemble

In this paragraph we mainly discuss the action-at-a-
distance point of view. As a consequence, the results
obtained remain valid in the field case but only for
each realization of the incident field.

(1) Let us first examine the question of phase space.
The same remarks as the one effected in Sec. 2 on
u space are valid mutatis mutandis. In particular,
phase space will be a state space rather than the space
of initial data as usual. It is a space which renders easy
the description of the system; it is suggested by (a)
the u space used in relativistic kinetic theory and
(b) the form of the equations of motion. Denoting by I'

83 It is well known that the moments of a random variable in R¥
determine (modulo weak conditions almost always verified in
practice) its density of probability (with respect to a given measure).
However, a random variable in R¥ does not necessarily possess
moments of all order. Consequently if we limit ourselves to random
variables possessing moments of all order, we would eliminate an
important class of random variables. Hence, it is probable that the
“moment method” in the case of random elements in functional
spaces, is not completely general.

8 G. K. Batchelor, The Theory of Homogeneous Turbulence
(Cambridge University Press, Cambridge, England, 1953).

8 yu. L. Klimontovich, Zh. Eksperim. i Teor. Fiz. 34, 173
(1958) [English transl.: Soviet Phys.—JETP 7, 119 (1958)}.
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this phase space, we thus have

T =", (4.6)
where
u=Mx U “n
or
= Mt x VH, (4.8)
with
1 —_ 1
yt=lu,: %% + } 49
{ e (49)

according to whether the constraints (4.9) are included
in the densities or not. Definition (7) is preferables¢
because it implies a flat # space and hence a flat
I" space. [In the case where gravitation is also taken
into account, it has been recognized by Chernikov
that the general relativistic x4 space is a fibre bundle

p=U P(x),
zey?

where % is the Riemannian space-time manifold and
P(x) is the fibre above x, i.e., the particle momentum
space. Note also that the structure group of the P(x)’s
is nothing but the orthochronous proper Lorentz
group. Even in the case of special relativity, u space
(and also I' space) may be considered as a fibre
bundle. However, this structure plays no important
role. In Newtonian physics, phase space is also a
fibre bundle: the tangent bundle to the manifold
“configuration space.”’]

(2) As for the Gibbs ensembles, they are defined
exactly as in Sec. 3. They consist of (a) the manifold of
solutions of the equations of motion and (b) a positive
measure of total mass one over this manifold (or more
precisely over a o-field defined on this manifold).

At first sight this definition of a Gibbs ensemble
seems to imply an a priori knowledge of the solutions
of the equations of motion. Actually, it is not so.
For instance, if we deal with the random density®’
Ry(x,,u,; 7; w), we should bear in mind that the
physically interesting quantity is (see Sec. 5):

Ry, 1,7 0)) = f Ry(x,, 1,73 ) dp(w), (4.10)

where u(w) is the measure over the manifold of
solutions. Consequently we try to obtain equations
verified for each realization of the process R, [or
equivalently x#(r;, w), i = 1 - - - N] and next take the
average value so as to get equations satisfied by the

8 We could use the 4-momentum p# = mu# instead of the 4-
velocity.

# Let x{(r;, w) be a solution of the equation of motion of the
ith particle. @ denotes an element of the so-called ‘‘sample space”
of the theory of probabilities. For instance, w may represent the
Cauchy data. There is no need to specify w further. In R; we have
made the w dependence explicit.
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moments of R,. It is therefore not necessary to
specify precisely the averaging operation () or,
equivalently, the measure u(w). It is sufficient to assert
their existence. This is the very essence of the Klimon-
tovich method,? which we use in Paper II.

Here again the comparison with Newtonian statis-
tical mechanics is similar to that performed in the
discussion of Sec. 2. The point of view developed here
is not so far from the Newtonian one as one could
believe. In both cases a Gibbs ensemble is defined as
above. However, in the classical case y(w) (and w) can
be explicitly given.

(3) In the I' space of the system the entire history of
the collection of the N-interacting particles is con-
stituted by a N-dimensional manifold. This manifold
consists of the intersection of the N cylinders generated
by the N trajectories of the particles. Let M, be this
manifold. It can be represented in a parametric way
with the help of N parameters, namely: s, ‘- sy.
This situation is by no means similar to the classical
case where the system under consideration is repre-
sented in the nonrelativistic I' space by a one-
dimensional manifold. In the relativistic framework
this circumstance is due to the absence of a universal
time. Let us specify this point more precisely. The N
trajectories of the particles are described, as we have
already noted, by N parameters. Therefore we can
write

x(1)=t13".ax?V=tN9

X; = Xy(t), "+, Xy = Xp(ty),
where we have chosen the N times of the N particles
as parameters. However, within the framework of
Newtonian physics, there exists a universal canonical
parameter, which is the same for all the particles.
This parameter is the usual time. This is equivalent to
imposing the (N — 1) relations:

(1D

and hence the representative manifold is simply a
curve.

As a consequence, this shows clearly that within the
relativistic framework there is no canonical notion of
the evolution of a system. [Imposing relations (4.11)
as is done in Ref. 10 or any other ones amounts to
choosing a curve on the manifold My describing the
system. However, this choice is as arbitrary as the
curve chosen.] Note also that relativistic statistical
mechanics may be considered as a statistics of mani-
folds exactly as relativistic kinetic theory is a statistics
of curves.

fhmty= ' =1ty=t

8 Yu. L. Klimontovich, Zh. Eksperim. i Teor. Fiz. 33, 982
(1957) [English transl.: Soviet Phys.—JETP 6, 753 (1958)].
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(4) Let us now briefly discuss the field point of
view. For each realization of ¢, the preceding dis-
cussion remains valid. Here again a Gibbs ensemble
will be (a) the manifold of solutions of equations of
motion (including those for the fields) and (b) a positive
measure of total mass unity over this manifold. As to
phase space, since (in our approach) it is chosen for
reasons of practical order, we may either adopt again
definition (6) or enlarge it so as to include the fields:

phase space = I' x {space of the fields}. (4.12)

This is just a matter of convenience. Now w appearing
in Eq. (4.10) also involves the random character of the
incident field.

(5) Finally we must point out that in either approach
our phase space has been chosen for reasons of
convenience which are discussed in the following
sections. It is not imposed by initial data. In particular,
phase space could perfectly be enlarged®® and this
possibility is exploited in Paper II.

On the Non-Hamiltonian Character of
Relativistic Dynamics

In our opinion,® it is absolutely unnecessary to have
a Hamiltonian formalism in order to build statistical
mechanics (Newtonian or relativistic). A Hamiltonian
formalism only introduces simplifications and a
Liouville theorem from which a Liouville equation is
derived. To establish statistical mechanics, it is
sufficient to start with (a) the equations of motion,
(b) the conservation of the number of particles in an
ad hoc phase space. These ideas are illustrated in
Paper II. It seems that the main problem in the
absence of a Hamiltonian formalism® concerns the
definition of statistical equilibrium. However, it
seems to us that this problem is not typically a
relativistic one and also exists in classical statistical

8 In nonrelativistic mechanics, phase space is generally con-
sidered as being the space of all possible initial data. Fortunately it
is also the most convenient one to describe the system. However,
we could enlarge it so as to include acceleration (or other) variables.
As a consequence, densities including acceleration variables would
be needed, but by virtue of the form of the equations of motion, this
dependence would be trivial: it would be only through & factors
such as 8(F — my). It is not to such a trivial possibility that we
refer (see Sec. 5 and Paper II).

90 This opinion is not universally accepted. For instance, P.
Havas and R. Balescu (private discussions) do not completely agree
with this point of view. Conversely, R. Kurth, Axiomatics of
Classical Statistical Mechanics (Pergamon Press, Oxford, 1960),
agrees with his opinion.

1 By “‘Hamiltonian formalism” we mean that (a) the equations
of motion have a Hamiltonian form and (b) there exist canonical
variables such that the Hamiltonian has actually the meaning of the
energy of the system. Indeed P. Havas [Nuovo Cimento Suppl. 5,
363 (1957)] has shown that the equations of motion of non-Hamil-
tonian systems (such as the one consisting of a particle submitted to
a friction force —fv) may sometimes be cast into a Hamiltonian
form. However, the Hamiltonian obtained has in general no physical
meaning.
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mechanics. We return to the definition of statistical
equilibrium in a later paper.

5. DENSITIES AND RELATED QUESTIONS

In this section we define densities on the I' space
considered above and examine some properties
(normalization, equations, etc.) which they verify.
In Sec. 2 we have given two formalisms, first a
formalism of geometrical character and next a proper
time-dependent one. Here we rather consider the
inverse order. Both formalisms are mutually illumi-
nating.

Proper Time-Dependent Densities

The k-particle microscopic random density is defined

as

" Ty)

= 3 TIobt - szl @ ot — ulr)] 6.0

oo dy d=1
with
i, # iy, Va#f<k i,=1---N.

Obviously, R; depends on the “initial data” w through
the factors x*(r) and u%(v) (which represent the
trajectory of the ith particle in its own u, space). The
“initial data” being chosen at random, R, is a random
function. R, represents the random joint density of
particles reaching (x*u¥) at “times” ; (with i < k).

Let us remark that definition (5.1) is valid in the
relativistic case as well as in the classical one. In the
latter, we obtain the multi-temporal distributions
already considered® by Klimontovich (Greek indices
then go from 1 to 3 while the 7,’s are to be considered
as usual times). The density R, is normalized through

f Ruxk, ul -+ 3 xby ubymy - o)
X Xpp
t=k
x TTdu = k! CY. (5.2)
=1

Reduced distribution functions of order k£ are now
easily defined as *“‘average values”:

s Tk))a
k<N, (53
where the brackets { ) have been discussed in Sec. 4.

The factor k! C% has been chosen so that the D,’s are
normalized to unity. For instance, one has®

NI Dy(x4 7y 7y) = (Ry(x*5 1y 7a)) (5:4)

92 Although not so explicitly.

9 x4 stands for (x{, u*,---, xf, uf) or any other system of
coordinates in I" space. The slight ambiguity of notations (the same
as in Sec, 2) is not confusing.
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from which one may verify® that

..... Boome o ...
Dy(x}, uff; 35X s Ups Ty Tx)

= f Ce DN(xA
8(N—k)times

We also have
NDl(xua u”; T) = <R1(x Il, u“; T))
= (ot - xten 0 o1t — wi) )
=1
(5.6)

as expected. In the same way one can obtain another
important density

<
-
3
2
N
a
F
h
[
Q.

Tapy-
(5.5

N(N — 1)Dyo(xf, uf; x5, ug; 71, 72)

= <R2(xllf ’ ullla xg’ ug; T1, 72)>

= ;j Olxt — x{(r)] © d[uy — ui(m)]

® O[xp — x4(12)] © O[uf — u‘;(—rz)]>. 6.7

More generally, D, may be calculated either from R,
or from D, (p > 0,k + p < N).

Remarks

It is possible to define other kinds of distributions
by considering mean values of random products of the
form

Rl(xlllui‘ o« xlllulll; 1-1 .. T[)
B b oo B PPN
® Ra(xl U xaug, 71 ‘Tq).

In this way we could generate the reduced distributions
D,,, plus “mixed” distributions such as the density
of probability that we have a particle in the state
(xtu¥) at “time” 7, -, while particle k£ is in the
state (x4 uf ) at “time” 7, and undergoes transitions
through states (xjuf) at “time” 7, ,- -, (xfulf
at “time” 7, etc. The latter distributions are used in
Paper II. Let us now give a simple and important
example. To this end let us consider the average

value (R, ® R,). We have®

(R ®Ry) = <Zj:

-(3)+ )

% To show this property, it is sufficient to pass through the inter-
mediary of the random densities and to take the average value of the
final result, Of course, we use the mathematical property

@ =50

which is assumed to be valid.

98 I et us indicate that the similar formula given by Klimontovich
[Ref. 15, just after Eq. (5.6)] is incorrect. For comparison it is neces-
sary to integrate Eq. (5.9) over 7, and 7.

5.8
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The first term of the right-hand side of Eq. (5.8) is
nothing but N(N — 1) times D, while the second term
is

NPy, = <Z> = <Z 8lxt — x{(0)] ® 6wz — ui(ry)]

® O[x; — x{(7)] © O[uz — ui-‘(fz)]> (59

and represents N times the probability that a given
particle be in the state 1 and next the same particle be
in the state 2,

(2) It must be pointed out that the various prop-
erties occurring in this paragraph are merely formal
since the Dirac measure is not absolutely continuous
with respect to Lebesgue measure and hence has no
density. However, these formal definitions can easily
be justified on the basis of correct mathematics.

(3) The “physical meaning” of these densities could
be specified as follows. Let A be an elementary®
Lebesgue—measurable subset of I'. Then,

na(ry* " Tw) =J;DN(TI e7y)dl
[where we have used the shorthand
Dy(xA; 7y -+ 7y) = D7y -+ 74)]

represents the probability that particle 1 bein 6, < y,,
particle 2 be in 0, < m,, -, particle N be in
Oy < uy, while their proper times are respectively
Tis ", TN -

Let us emphasize, however, that, as in relativistic
kinetic theory, the proper time-dependent densities
are not “physical.” The “physical” densities are
rather the proper time-independent ones studied in
the following.

(4) Let us assume for a moment that the 6 N usual
initial data (x%, u4;i=1-- N; x¢ € Z;) are actually
sufficient to determine (in an action-at-a-distance
formalism) the complete behavior of the system.®?
In other words, by a given point x4 in I' space
passes only one manifold My(x4). Consequently,
there exists a one-to-one correspondence between
couples of points belonging to the same manifold
My, when using the proper time parametrization, i.e.,

Xy Ty =T, .. %k xé, xit € My,
where {T, ... }is a group (or semigroup) equivalent
to the laws of motion. This is completely similar to

the one-particle case (see Sec. 2). Now, if we denote by

96 By ‘‘elementary,” we mean: A =4d; X -+ X Oy, where J;
is a Lebesgue-measurable set in u, space.

%7 This seems to have been shown by J. Rzewuski e al. (see Ref.
49) in a nonphysical case, the case which consists in considering
finite world lines. See also the remark by P. Havas (Ref. 18).
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Dy(x4;0---0) the distribution of initial data, then
(as usual) Dy(x4; 7, -+ 7y) can be defined by the
following conditions:

(a) D‘V(XA’ L TN) = 7-;'1. . -TNDN(x643 0 e 0)’
(b) DN(xA’ T TN) 2 0, V(Tl PPN TN) e R+N,

©) IDN(an 7Ty dll =1,
r
V(ry - r7y) € RN,

One can show that, under the validity of the assump-
tion effected in this paragraph, this definition is
consistent with the one given above.-

(5) Let us now consider whether there exists a
relativistic Liouville equation for a system of N
particles. To this end let us consider the case of a
system of independent particles. In the same way as in
Sec. 2, we obtain by derivation of R, and after taking
the average value,

9 F* . .2
E_;Dk"'uraka'i';:(xzsuz)a__u:,Dk:O:
i=1--k
> (5.10
k=1---N, ( )

where F* is the external force field. In particular, this
shows that D, does not verify a Liouville equation
but rather N one-particle Liouville equations. We find
this property again by using the more sophisticated
geometrical techniques given in the next paragraphs.
The reason why this property occurs is the absence
of a universal time. Indeed, in nonrelativistic physics,
instead of Ry(x,, t - - ty) we have Ry(x4,2° 1),
and thus the derivation with respect to now only one
t connects all the one-particle Liouville equations
between them.® Had we used the covariant notion of
evolution defined by

TS Ty=""" =Ty =T,

then we should have found a nontrivial Liouville
equation. More precisely we should have found an
equation of the form

F! 9
2 Dalai )+ S+ o)

or m Ju,
X Dy(xq;7---1)=0.

However, in doing so we lose information on the
system and the knowledge of the new Dy is not

98 [ classical physics the same situation occurs. Only densities
involving one-time are generally used. This is due (in part) to the
instantaneous character of Newtonian forces. However, in problems
of fluctuations, many-time distributions may be used [see, e.g.,
N. Rostoker, Nucl. Fusion 1, 101 (1960)].
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completely equivalent to the knowledge of the details
of the motion of the individual particles.

Heuristic Considerations

Let us assume provisionally that the system under
study is constituted by a collection of N noninteracting
particles. In that case we have

Dy(x43my -+ 1y)

= Di(x{, uf; 71) ® * -+ ® Dy(xly, uly; 7).
Integrating now each D, over its own proper time,
we obtain

+o0 ~+ o0
f S d.rl. “d‘TNDN(xA;‘Tl' . 'TN)
-0 —a0

=N
= @ Nu(x, uf) = Ny(x4). (5.11)

i=1

It follows that the normalization of N y(x )

f +. . f +N’N(xA)uf1 N ul;\;v
L;XVy IyXVN
X dZ, - dZ, day o duy =1, (5.12)

where X, (i=1,---,N) is an arbitrary spacelike
three-surface imbedded in Minkowski space-~time AG?.

From this example we could define the “time”-
independent densities as

Ny, uy -+ x5 u)

— - I A
—f D, (xuy Xgs Uy Ty Th)
k times

X dry - dm, (5.13)

where the N, (x#ut - « - x2u¥) are normalized by

“ e T IR et T o
f . f a(xeud - - - xiug)
IIXVy XV

X ubt -yl dS, o dE, dauy o dgy, = 1.
(5.14)

Note that the reduced “time”-independent densities
could as well have been defined through the relation

Noy(xug - - - xjuy)

_ . Ay s,
=[ e e
I 41XV r41 IyXVH

X dZ o dZ, dgtgyy c  dauy. (5.15)

The consistency of definitions (5.13) and (5.15) is
easily verified by passing through the intermediate
step of the random densities and taking into account
the properties of the Dirac distribution.

The normalization condition (5.14) considered for
k = N, shows that, as expected, the actual phase
space of the system is a 6N-dimensional manifold

Uty

.
He+1
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which involves N arbitrary spacelike three-surfaces.
Moreover, this shows that the N°,’s may be considered
as the distribution functions which generalize to many
particles, the ones ordinarily used in relativistic
kinetic theory.

In order that the reduced “time”-independent
densities should not actually depend on the arbitrary
2’s, it is necessary (and also locally sufficient) that
the tensors

xr)

E+1 r
T T d¢u1 e d“u’_ (516)

MR 2 BB, BB, LB P
JHErLTT " Br(clly xbul; xt.,

should verify a number of conservation relations.
These tensors can be called the generalized currents.
The relations satisfied by these tensors are obviously

amjum"'l‘f““"(xi‘u’l‘ s XUl Xkt X)) =0
(5.17)
with
k<i<r<N.

Relations (5.17) are in fact integrability conditions of
the differential forms

Jl‘k+1"'l‘i"'l‘r dz“
i

(without summation on the index 7).
These conditions are equivalent to

(3/6Z)N, =0, with i<k <N.

Furthermore, they express the fact that the N°’s are
independent of the chosen X,’s and of the way from
which they have been calculated (K > ).

Geometrical Definitions®®

In order to deal with a more general point of view,
let us start directly with the relativistic ensemble of
manifolds M, previously considered (at the end of
Sec. 4). As in the relativistic kinetic theory, it is
possible to give an invariant definition of N\ (x4)
only through the intermediate step of a generalized
current in I' space, namely

JaAi(x ) = Np(xA) - g4 Ay (5.18)
with
§A1"'AN(XA) — 5;41 ® " ® fﬁ”
and where &£ is the Ath component of the 8 N-vector
E,=000---@n,® - ®0 (N factors),

% In this section we adopt the field point of view but we reason
once a realization of the field is given. See the remarks after this
paragraph. Note that the results obtained are also valid in the action-
at-a-distance formalism.
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where % has already been defined in Sec. 2 while the
index i of ¥, refers to the ith particle.

The tensor &41-4x is, in a sense, a generalized
velocity in I space since it is “tangent” to the mani-
fold My, passing through the point x4 € I'.

Let now SN be an arbitrary 7N-dimensional mani-
fold cutting all the manifolds My of the ensemble.
Moreover S™Y must be such that it cuts each My in
only one point. Hence Ny(x4) is normalized to 1
through :

f Ny(xd) - g4 dngs, ., =1, (5.19)
SUV

where dS, .. , is the element of a 7N-dimensional
b N

surface imbedded in an 8N-dimensional space (i.e.,

in T' space).

At first sight it seems that condition (5.19) would
imply a 7N-dimensional actual phase space. However,
we must bear in mind that, in general, we have also
N relations between the components of the momenta.
In such cases, the actual phase space is, as expected, a
6N-dimensional manifold. Equation (5.19) is written in
a fully covariant form (i.e., covariant with respect to
arbitrary changes of coordinated in I space taking the
(+ — — —) character of the metric of M* into
account. However, it reduces to Eq. (5.12) with the
coordinates [- - - x¥, uf - - -)].

In order to express the conservation of particles in
I" space let us now state and prove Proposition 1.

Proposition 1: The differential form “‘numerical
flux of particles” J41 """ 4x(x4) dS, ... , is a closed
form:

d{J4r An(x4)dS, ... 4,} = 0.

Proof: Let us consider the tube T generated by an
open connected set'® A, of an arbitrary surface
STV satisfying the above conditions, and the manifolds
My, cutting A;. This tube comprises an 8 N-volume.
The frontier of this tube is a (8N — 1) manifold. The
quantity

fJAl"'A”(xA)dSAI...AN,
Ay

which is the flux through A, of the generalized current,
represents the probability that the system be in a state
characterized by a point in I" space belonging to A, .
Let us now cut T by another 7N-manifold S7¥ and let
A, be

A, =B N SY.

The physical condition that A, and A, contain the

100 For the topology induced on §7¥ by that of I".
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same number of systems reads!?!
Ay A4
J;J VAN dSy, .4y
1

= f J4dn(x ) dS, .. (5.20)
Ag

Note that the integral occurring in the right-hand side
of Eq. (5.20) has a meaning since A, is open (for the
topology induced by that of I" on S7¥) and hence is
measurable (for the measure induced on S}V by
Lebesgue measure in I" space).

Let now ZN be an arbitrary measurable manifold
imbedded in the frontier of G [this is of course possible
since the frontier of G is a (8N — 1) manifold] in such
a way that the 7N-dimensional manifold

AUZNUA =V
def

encloses a (7N 4+ 1) volume. Let us assume for a
moment that such £™’s can be found (this is in
general not true). Then condition (5.20) can be
written as

LWJAI“'AN(xA) dSy,...qy =0  (520)

since
J;HVJAI‘ ’ 'AH (xA) dSA1 oAy = 0.

Indeed, the differential form induced by J41 "4
X dS4,...q, on L™ vanishes identically since
J4 "4y js “tangent” to X while dS, ..., is
“orthogonal” to it. Therefore condition (5.21) implies
that the differential form J41" "4y dS, ..., be a
closed form:

At A (xAy dS, =0, (522)

This latter condition is merely a local condition so that
we can get rid of the assumption of the existence of
" in the following way. To this end it is sufficient
to take for A, a small neighborhood of a point x
in IT" space, and a small A, near A,. Then, it is easy
to show that there exists an infinitesimal T™N with
the required properties.10? Q.E.D.
Equation (5.22) is equivalent to the conditions

U, Ja o Ac Aty — 0 j=1---N, (523)

101 Because of the fact that A, and A, are cuts of G, which is
invariant under {T7,...,y}. Note that in the field point of view
{T,.l...,N} actually exists but for each realization of the fields. In
other words {T;,...ry} is, in the field point of view, a random group
(or semigroup).

102 In order to show this possibility, it is sufficient to give sets of
R®¥ having the same properties as A,;, A,, si¥, S7¥, © etc., and
next to take a homeomorphism and map these sets into A;, Ay, §77,
G etc. Fortunately, in R®¥ we can easily find such sets by taking
“cubes” and sections by planes.
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where the caret denotes the antisymmetrical part of
J41-+-4y Equation (5.23) can equivalently be written
as

V NN d&B(x) Ao A EF(x)} =0,

i=1-N (524
or

=N )
Zl (=YW N (x IV 4 £85(x )
AEBxD A NER(x,) + 04 N n(x)EM(x.4)
A A E;“i(xA) A A E}‘Q”(XA) =0. (5.25)
Remarks and Discussion

(1) The requirement of condition (5.22) or of the
equivalent Eqs. (5.23), (5.24), and (5.25) is nothing
but the relativistic form of the conservation of the
number of particles of the system [i.e., Eqs. (5.24) are
nothing but continuity equations in I' space]. There-
fore we see a first important difference with the
nonrelativistic case.

(2) Instead of conditions (5.23) we could have
imposed the simpler relations

Q J4 A ANx ) =0, i=1--N. (526)

However, it would be stronger than Eq. (5.23) since it
would also imply the vanishing of the divergence of the
symmetrical part of J41***4x. In fact, only the anti-
symmetrical part of J41":*4x is physically relevant!%®
since the differential form dS, ... 4, is (by construc-
tion) completely antisymmetrical. We might perfectly
have defined the generalized current as being

JAIH.AN=~.N)N£‘{11A"'A§§{7N

instead of Eq. (5.18). [Note also that despite the
symmetrical definition of J4r:4x, this quantity is
actually not symmetrical. The only symmetry property
of J41" " 4x(x ) is the following!®:

JAT A Ay ANy Lyl iyl iy

= JAl"'Aj"'Ai"'sz(xllluI;. S xbub - xtul - xRk
V@i, j)) < N,
which is not

JAI.”Ai.'.AJ‘..AN(XA) = JAI"'AJ"'Ai"'AN(xA).]

Relations (5.23) or (5.26) may be simplified further
and yield the N relations

Va{NnEf}=0; A4;=1---8N, i=1---N,
(5.27)

103 See Sec. 6.
104 Of course, this symmetry property holds only when we deal
with identical particles.
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which [in the system of coordinates (- - - x¥u¥---)]
reduces to
0Ny} =0; A4,=1---8, i=1--*N.
(5.28)
When relations
Oumii=0;, A;=1---8, i=1--N (529

holds, then the N equations (5.28) reduce to N one-
particle Liouville equations. Therefore, we can never
have a Liouville equation, though a relativistic
Liouville theorem be true. Indeed, we have
=N
ANy =>nfi- 0, Nydr, =0 (5.30)
i=1
since each term of the preceding sum vanishes
identically. Therefore we find again results obtained
in a much simpler manner with the proper time-
dependent formalism.

(3) In the preceding paragraph, we used the most
general 7N manifold cutting the various My of the
ensemble. As a consequence we obtained N equations
of continuity in I' space. Nevertheless, we might as
well have chosen as S™V a manifold of the form

S¥N=EW x Ut x -+ x Uy

with E3% < M4V, In such a case, continuity equations
read

Byt e, ) =0, =1
or
Q™ I, -, XR) =0, i=1"""N (532

according to the choice of Eq. (5.23) or (5.26),
respectively,10°
On a surface Z3V of the type

=21x...

Ny(xy) is, in a sense, the relativistic analog of a
classical many-time distribution. In the case where

L, =%,==3y="5,

then, on E3V = (Z)¥, N’y is similar to a single time
distribution. These similarities are much more
convincing when the surfaces X, are chosen to be
spacelike 3-planes.

(4) Allthe preceding results are valid in the field for-
malism when we are given a realization of the incident
field. However, they are not completely general and we
see in Paper II how to modify them.

N (5.31)

X 2y

105 Tn Egs. (5.31) and (5.32) we have used for the currents in MA¥
the same symbol J already employed for the current in I" space. How-
ever, the argument of these tensors is sufficient to avoid a possible
confusion.
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Reduced Densities

Exactly as in the first paragraph of this section, we
can obtain various reduced densities. For instance we
have

Ny_1 = Ny(xJn? dZ(N) (5.33)
2 <, ® )

(where the index A4 goes from 1 to 8 and where 74
has been defined in Sec. 2). Note that in Eq. (5.33)
d2 (N) is the differential form ‘“‘element of surface”
corresponding to a surface imbedded in u® (W), itself
corresponding to the variables referring to the Nth
particle.

In order that N’y_, should not depend on Z(?, the
following conservation relations must hold:

Vo Ny i(xtul)} = 0 (5.34)

(4;=1---8; i=1---N), and they are nothing
but Eq. (5.28). Of course, other reduced densities
can be obtained in the same way. More generally, one
has

P T
Nou(xf, uffs 3 Xl o uk)
i=l—-k

f(N’z(xl,ul; cegxd uf) A ¢idsy, ...

X Z7(l—k) o Ms(l—k)(l’ , l—-k),
with

A;=1,-+,8=k); i=1,---,(-k)
and where the ¢:s are defined in a way similar to
that of £+, the difference being only in the number of
components.

The independence of the N.’s (a) from the N’)’s
through which they have been obtained, (b) of the
various surfaces 27¢~%)  implies a number of con-
servation relations; these relations are, however,
automatically verified when Eq. (5.28) holds. In the
same way, one may find the form of integrability
conditions in A#¥: they are Eq. (5.17).

Currents in I" Space Connection with the ‘“Time’’-
Dependent Densities

In the relativistic phase space we can define the
generalized random currents as being

+ 00 00

Random (xA) f 5 d‘l'l ceedr N(N !)_1
X 1) ® - ® Ef(ry)
i=Ni;=N
P> TT ot — xt(r,)]
i=1 i;=1
® Ofuf — ul(r,)] (5.35)
+0 +00
Ef dry dryRp(xq; 7"

. TN)Efl(Tl) R ® E?IN(TN)-
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Then, using the properties of the &’s occurring in Eq.
(5.35), we get

Random (xA)
+o0 “+ o0
®£K47Nf d7'1"'dTNRN(xA,T1"'TN)
—® —®

which proves, after taking the average value of both
sides of this last equality and comparing the result
with the previous definition of J41 - “4x, that

~+oo +o0
f_ .. f Dy(xq 1" 7y)dm - 'd'TN = N'n(x4)

as is expected. Of course, this is the same argument
which has been applied to distributions D, and N
at the end of Sec. 2.

6. AVERAGE VALUES

In this section we generalize the average values
discussed at the end of Sec. 2. The same troubles as
those already indicated also occur (mutatis mutandis).
Once average values are defined, entropies for the
reduced densities are obtained in a straightforward
way. This allows us to derive the canonical distribution
of a relativistic simple gas as an illustration of the
whole formalism.

Assume that the system possesses a property
represented by a certain tensor B"l'jj'v‘;(x“‘). Then we

can define the local flux 3 apu Py -

x4) as

Bt ) = [ BN )
p+N
Xufre - uffdu, - duy. (6.1)
In fact, we should skew-symmetrize the indices

p1** py of the tensor By ex(xh - - - xk). How-
ever, as we have already indicated in Sec. 5, the
symmetrical part of 3 (in the indices p; * - - py) plays
no role in the following integral (6.2). The total amount
of the quantity B‘v':.'.'.'v';“(x ,) through the 3N-dimen-
sional surface Z%V, will be the total flux'% through this
arbitrary surface!®’ of the tensor 3:

Vafy -
v

(Bl tn(x g = f Bl O, L, (62)

and, in general, will depend on E®N. When the
property Bj: ;jjﬁ;(x 4) is a permanent property of the

108 The conventional definition of average values is, of course,
found anew when we take as E%¥ the 3N plane. r, = const; - ;
ty = const.

107 Arbitrary, but *‘spacelike.”
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system, then the local flux B satisfies the integrability
conditions:

a 33111

Flapl"'ﬂi"'PN(xlll .

xp)=0 (i=1---N).
(6.3)
As an example, let us consider the local flux of the

energy-momentum four-vector of a fluid consisting of
identical particles. We have

=N
B¥(x,) = > muf
i=1
gsupl"'PN(xi‘ e x“N)
=N
= Zl mu”u:l ot uﬁ,N‘N’N(xA) d4u1 e d4uN
i=
= meu’l‘u'l"u’;* C o uRIN (X)) dauy - - - dyuy

and the total energy-momentum four-vector of the
fluid considered on a 3N-dimensional surface E3V is

Py
= fomu’l‘u{" cee uféVN’N(xA)dEpl pylatty " dguy
=3N
= N[fmu W Ni(xpt) dZ,, dguy
I
= f TH(xy) dZ,, (6.4)
Iy

[In deriving Eq. (6.4) we have used the properties of
“reduction” of Ny to N;: X, is a three-dimensional
spacelike surface imbedded in E3Y and depending on
the variable x{ only.]

Entropies

Given a reduced distribution function at fixed ¢ and
of order k, its entropy at time ¢ is generally defined as
being the average value of its logarithm,08

Consequently, we take as the entropy of the distri-

bution N, the average value of log N, on a surface
=3k -

S,E™) = —A f GO dE, L, 4> 0, (65)

108 We say ‘“‘generally” because the entropy (in the sense of
information theory) is not defined unambiguously [either for a
continuous random variable or even for a discrete one which depends
on an external parameter: see, e.g., B. Mandelbrojt, IBM research
note NC-107 (1962)]. Furthermore the entropy of a measure is
always defined with respect to a subjacent measure. In statistical
mechanics this subjacent measure is almost always the Lebesgue
measure. Here we are concerned with this last point of view, a
possible generalization being straightforward.
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where 4 is an arbitrary positive constant!®® and where
a’1 - %t is the k-entropy flux tensor given by

1 .'pk(xl;..-xz) _—_flog.N’k

X Nt - uftdgu, - dgy,, (6.6)

as it should be. Hence, the entropy of Ny is

SyEN) = —2 f log Wy(x)
x Ny(x Qb 4 g, (6.7)

When the k entropy of a physical system is constant,
then the associated entropy flux tensor satisfies con-
servation relations:

9,0 H(xtx) =0, i<k  (68)

Equation (6.5) and (6.6) are the generalization of the
entropy and entropy current given by Tauber and
Weinberg, by Chernikov, and by Israel:

Si(Z) = —4 f ot dz,, (6.9)
z
H(x,) = f log N, Nt dgt.  (6.10)
So an H theorem is expressed by stating
d,0* <0, (6.11)

Remarks and Discussion

(1) Local average values may be defined as being

B Hapyt P J

pry TV
vg/ay {Jﬂl"'PNJ

PPN

(Bt

@y =, Vi< N

(6.12)

This definition is the natural generalization of Eq.
(2.35) and it suffers the same troubles. In particular,
it seems to be hardly possible to give them a form
similar to the nonrelativistic one.

(2) In Sec. 4 we mentioned that our phase space
might be insufficient and thus should be enlarged.!® Let
us now explain this point. It is clear that our preceding
statistical notions (I" space, densities, average values)
only permit the calculation of average values of those
quantmes which depend on the variables (- - - x*,

-+). If we want to calculate the average value of
a quantity depending, for instance, on acceleration
variables, then phase space would have to be enlarged
so as to include them. It would be a 12N-dimensional
space. Of course, subsequent densities on it would have

Pl"'PJV}

10% ] depends on the system of units chosen. It is in general equal
to the Boltzmann constant k. It also depends on the basis used for
the log.

110 In such a case, densities are also insufficient and should be
generalized so as to be densities on the enlarged phase space.
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to be defined: they are straightforward generalizations
of the definitions given in Sec. 5. In practice we know
only quantities depending on (-- - x#, u?--+). How-
ever, when dealing with radiation phenomena,
acceleration variables should be taken into account.!!
These questions are studied in a detailed manner in
Paper II.

(3) Because of the fact that Dpy(x4; 7 - 7y) is 2
true probability distribution, one might think that
average values could be defined as usual: i.e., as
(By:ll%

;(xi‘a uf - xy, u1‘<7)>(rl ceiry)

=LB:,‘:#;()CA)DN(XA; T ’TN) dP.

However, these mean values depend on the adopted
parametrization. Therefore they must be considered as
unphysical. However, they have some interesting
consequences. For instance we can compute the mean
value of x4 (4 = 1 - - - 8N);itis a function (x4),, ...,
of the N proper times, which determines a mean
manifold in I' space. In the same way we can define
the “center of mass” 112 of a relativistic fluid when we
know its “instantaneous” distribution D,(x,p,; 7), by

(), = f x*Di(x*, p*; 7) d.
u

In A* this equation defines a mean world line whose
points are the centers of mass of the fluid at different
“times.” Of course, this mean world line is not unique;
it depends on the initial data and on the parametriza-
tion. Let us remark that this lack of uniqueness of the
center of mass, due to the arbitrariness of the param-
etrization, is a kind of “temporal” counterpart of
the arbitrariness of the “physical space,” i.e., spacelike
3-manifolds. Indeed it is well known!'® that, in
general, the center of mass of a relativistic fluid
depends on the three-surface where it is computed and
hence is largely arbitrary.

In this connection it is interesting to note that we
have a kind of “Ehrenfest theorem” which reads

(dfdr(x"), = (u*),,

(dfdr)u"), —< >

and which may easily be proved in the one-particle
case. 1

111 For instance, theradiation field is proportional toF &7 a{utp¥ —
uvpr}, where p# can be expressed in terms of (xy, uy, v) (see Paper
81

112 Neither the expression ‘‘center of mass’ nor ‘““center of gravity”
nor ‘““barycenter” is appropriate. See, e.g., J. L. Synge, Ref. 59.

113 See, e.g., C. Moller, The Theory of Relativity (Clarendon Press,
Oxford, 1952), or J. L. Synge, Ref. 59,

114 In the case of interacting particles, its proof needs some weak
conditions on the nature of interaction,
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An Illustration of the Formalism

As a simple application of the above formalism let
us derive the canonical distribution of a relativistic
gas of noninteracting particles, at local equilibrium.115
To this end, we assume!?® that such a distribution can
be obtained (a) from the maximization of the entropy
while (b) the average total momentum-energy and (c)
the number of particles within the gas, are given.
Since we are dealing with local equilibrium conditions,
(a), (b), and (c) have to be replaced by their local
equivalents. They are

(@) &log Ny, = 6{6“""“”U"1...,‘N} =0,

(b) (P, =B, s (6.13)

(c) (Mg, =T U, s

where

) N A O 7 _“‘v}—i |wv.-=mv ,

Vi <N,
i=N
B =S m|dauycc dugutult o ugN .

i=1

Introducing now five x,-dependent Lagrange multi-
pliers log 4, £,, conditions (a), (b), and (c) lead to

a{um...,,ﬂ J' gty - dgugul -+ - WXy

i=N
x [logJ\f’N —log 4 + mZu{-‘Eﬂ]} =0
i=1

(6.14)
and finally we obtain

i=N

Ny(x,) = A exp ‘—5,, S mu;‘}. (6.15)
=1

This result is, as expected, consistent with the Jiittner—

Synge distribution.

Let us remark that contrary to the nonrelativistic
case we can define another kind of canonical distri-
bution: instead of the conservation of the four-
momentum of the gas we can impose the conservation
of the total mass of the gas. Then instead of relation
(6.15), we should find

Ny = A exp [—s{izszouqﬂ. (6.16)

i=1
We discuss the case of interacting particles in Sec. 7.

115 Since the notion of a box is not a covariant concept, the uni-
form density in configuration space is not normalizable. Conse-
quently we limit ourselves (and this is not an essential limitation) to
the case of local equilibrium, which case allows the normalization of
the distribution function.

118 In general, the canonical distribution may be obtained from
the microcanonical one. However, on the basis of information theory
arguments [see, e.g., E. T. Jaynes, Phys. Rev. 106, 620 (1957)] the
canonical distribution may also be derived.
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7. AN UNSOLVED PROBLEM: EQUILIBRIUM

In this section we discuss the possibility of defining
relativistic equilibrium states. We also suggest ele-
ments for a possible solution of this unsolved problem.

A Preliminary Unsolved Problem: What is
Equilibrium?

(1) Let us consider a nonrelativistic system of
particles whose equations of motion are given
mydv;/dt) = F(x;,v;t), i=1---N. (7.1)
Assume now that the initial data (- - - x,q, V9, * * %)
are chosen at random so that we actually deal with
statistical mechanics. When may such a classicalsystem
be considered as being in an “equilibrium state™? If
the equation of motion (7.1) can be cast into a
Hamiltonian form,” then the usual definitions of
equilibrium apply*?: We first define a microcanonical
distribution with the help of the physically interesting
constant of motion, next the canonical distribution is
derived for a subsystem.!!® At this point it should be
emphasized that the equilibrium distributions obtained
are both integrals of motion and solutions of the
continuity equation in phase space (by virtue of the
Liouville theorem). It should also be pointed out that
the notion of temperature is closely related to the
choice of the energy as constant of motion to be
introduced in the microcanonical distribution.

(2) When Eq. (7.1) cannot be set into a Hamiltonian
form,® then the situation is by no means so “simple.”
It seems indeed hardly possible to define equilibrium
states as is shown from the following. [Let us consider
the trivial example!!® of one particle acted on by a
friction force and performing (for simplicity) a one-
dimensional motion:

m(dv/dt) + Bv = 0; dx/dt = v (B is the friction
coefficient).

117 D. Massignon, Mécanique statistique des fluides (Dunod Cie,
Paris, 1957).

118 A, 1. Khinchin, Mathematical Foundations of Statistical
Mechanics (Dover Publication, Inc., New York, 1949).

119 This example only illustrates this point. One might argue that
nonconservative forces do not exist in nature. However, this is not
completely correct (cf. the Lorentz equation taking radiation
reaction into account). One might also say that nonconservative
forces are nonconservative only at a macroscopic level and that there
will always exist either a conservative model at a lower level or
possibly a larger system responsible for the energy nonconservation.
In our opinion, these arguments are irrelevant when dealing with a
theoretical problem: Newton’s second law allows any choice of
velocity dependent forces and thus we have to face (from a theoret-
ical point of view) such a general case. Furthermore such systems
do exist in nonquantal relativity and hence the problem should be
solved.
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The main properties of this system are
(a) solutions:

{v(t) = v, exp {—pt},
x(t) = xo — B volexp {—p1}, —1].

(b) Phase space: {xo} X {vo} (two dimensions).
(c) Constant of motion: mv 4 fx = const.
(d) Ergodism:

lim
T4

1 (7T a _
?L[”(‘)] dit=0, q>0.

Microcanonical distribution cannot be defined be-
cause the constant of motion (c) has no direct physical
meaning. The explicit form (a) of the solution of the
equations of motion indicates that, anyway, the
velocity tends to zero at infinity in times; consequently
all possible densities at £ = +co will have the form

(e) p(x,v)

= {arbitrary positive function of x} X &(v),
which agrees with property (d). However, although
p(x, v) satisfies the continuity equation

(f) §p+vip+a£{—ﬂvp}=0
v

ot ox

in phase space, it is no longer a constant of motion,
ie., (d/dt)p # 0. Note also that energy is not well
defined.]

Furthermore energy is not always defined and so
the notion of temperature fails. The above example
shows, however, that statistical equilibria (if not
thermodynamical)**® might be defined.

Finally we stress that the question of equilibrium
is not a specifically relativistic one and should be
solved first in a classical framework 1%

(3) What might be expected from an equilibrium
state? First an equilibrium distribution should satisfy
the continuity equation whether there exists a Liouville
theorem or not. Next it must be stationary in time and
perhaps also invariant under space translations. {Let
us come back to the above example. These conditions
only imply that p should verify

(0/0v){Bvp} =0

120 We distinguish between *‘statistical equilibrium” and “‘thermo-
dynamical equilibrium,” so the microcanonical equilibrium is a
statistical equilibrium (arising only from mechanical considerations)
while the canonical one arises also from considerations extraneous
to mechanics (occurrence of macroscopic parameters).

121 The situation can be even worse if we consider the possible
existence (at least theoretical) of the so-called ““hereditary systems”
whose study was first initiated by Volterra [V. Volterra, Sur les
fonctions de ligne (Gauthier-Villars, Paris, 1928), ‘and J. Math.
Pures Appl. 7, 249 (1928)]. The action-at-a-distance formalism
furnishes an excellent example of such a system.
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or
pv = const,
which yields

p = const/v + (another const) X (v)

and finally since p is to be positive and normalized to
unity, it follows that p = d(v).] However, these con-
ditions are not sufficient by themselves in spite of the
chosen example, which is much too simple. Unfor-
tunately we do not know what conditions should be
added.’®® Anyway an equilibrium distribution is in
general not a first integral of the motion.1%

Relativistic Equilibrium in the Field Point of View!2!

The notion of equilibrium used in the field view-
point by a number of authors!®1% is far from being
completely clear. Indeed, apart from usual infinities
which occur in dealing with electromagnetic phenom-
ena,'® there always remain the divergences due to
the self-fields. Furthermore, infinite bare masses are
involved in the equilibrium pseudodistribution ob-
tained and therefore its physical meaning seems to be
troublesome.!%?

However, the use of the so-called field oscillators
may be considered as a heuristic tool. In particular, it
is interesting to note that the canonical distribution for
a blackbody indicates that the electromagnetic field is
a Gaussian random process with zero average value
and a spectrum given by Planck’s law.

This suggests a definition of the equilibrium for the
radiation field!?® by assuming:

(a) F®,; is a2 Gaussian random process invariant
under space-time translations.

(b) with: (Fiy) = 0, du(Fiy) = 0, du(FLt) = 0.

(c) with: Fourier transform of (F&y; ® Fi%)~
{blackbody spectrumy}.

In actuality, the notion of thermal equilibrium seems
to have only a weak meaning when radiation is
considered especially due to the absence of classical
photons. It is, however, usual to speak about “the
equilibrium of the field,” etc., notions which might

122 perhaps a condition of maximization of entropy would be
sufficient to select the “equilibrium distribution” among the solutions
of (0/ovI{Ff} = 07

123 We return to the discussion of equilibrium in a future paper.

124 In all that follows we consider only the case of electromagnetic
interactions.

125 ph. de Gottal, Physica. 32, 548 (1966).

128 They are irrelevant here since they also occur in the classical
case.

127 Note that the microcanonical ensemble for the system
(particles + field) cannot be defined, both because of mathematical
impossibilities and because of the invariance requirements.

128 And not for the total field. In fact, it is difficult to separate all
different kinds of fields. We show, however, in Paper 11 that this is
actually possible for the radiation field.
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have a sense only within the framework of quantum
electrodynamics.

Equilibrium in the Action-at-a-Distance Formalism!%*

(1) In Paper II, we give several hierarchies either
verified by the distribution functions Ny, N, etc., or
by generalized similar densities; i.e., relations of the
form

ALN)1=BN2+EP2,
C«-N’2=D¢N)3+"',

relating these densities (4,---, E are operators).
These hierarchies are generalizations of the well-
known BBGKY chain. If we impose now that these
densities should be invariant under space-time
translations, if we impose that .N°; should be the
Jiittner-Synge distribution, then the hierarchy ob-
tained might be considered as an equilibrium hierarchy
similar to the classical one. In so doing, we have
computed the relativistic correlation function!?®® at
order 1 in €® of a gas at equilibrium. However, it is
not clear whether or not higher orders can also be
calculated (see Paper II for a discussion and the
details).

(2) A possible way out of these difficulties consists
in assuming that canonical equilibrium?!16 is obtained
as in Sec. 6 from a maximization of entropy (subject
to the constraints arising from the knowledge of the
number of particles of the system and its toral
momentum-energy). However, in so doing, we obtain
a very complicated functional expression from which
we have not yet been able to derive the equilibrium
densities.

In conclusion, (a) the notion of equilibrium gives
rise to unsolved problems even in a classical theory,
(b) equilibrium densities should verify one of the
hierarchies given in Paper II and which are, in a sense,
something similar to the classical continuity equation,
(c) equilibrium densities have to be invariant under
space-time translations,'® (d) it is perhaps possible to
start directly with canonical equilibrium, In such case,
temperature!®! is defined as in Jiittner-Synge distri-
bution.

128 This calculation is needed in order to obtain a relativistic
generalization of Guernsey kinetic equation: R. L. Guernsey, Phys.
Fluids 7, 792, 1600 (1964).

130 A¢ local equilibrium we have to impose a weaker condition:
their invariance under a one-parameter transformation group
whose orbits are timelike.

131 It is not at all sure that the relativistic notion of temperature
has a sense. In particular, its definition through Jittner-Synge
distribution may be questioned since this density has never (and for
good reasons!) been proved on the basis of microscopical considera-
tions as it is the case for the usual Maxwell-Boltzmann distribution.
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APPENDIX. MICROCANONICAL ENSEMBLE
(CASE OF THE PERFECT GAS)

Let us consider a perfect gas in the absence of
external forces. Its random distribution function is*32

i=1 j=N
xi=zN ,l;I1 6{xm. = X0, — m_lp,u"’j} ® ‘5{Pu0¢, - Pm'}'
(AD

Such a system is conservative so that the total momen-
tum-energy 4-vector of the gas does not depend on the
manner through which it is calculated. Therefore we

have
i=N
Pt =y ph, = const.

=1

(A2)

It follows that the microcanonical distribution is
obtained by averaging R, over the initial data
(-+-x,ph-++). The average operation should be
uniform in configuration space A*V and in the acces-
sible momentum space. We then get

i=N
Ny, iy -+ - xk, pi) = const 6{P" = pé‘} (A3)
=1

or, taking into account the N constraints plpi = m?
we have

NG, pls 05 x%, pR)
i=N i=N )
— const a{Pﬂ -3 pg} ® TT 8{ptpi — m220(pY),
=1 =1

(A4)

where the constant is to be fixed by the normalization
condition

L' ""BN — f» » p‘{l pf’lVN e
J = Ny—=—=—d;p dipy,
m m
(AS)
{Juoay JMMM}WN = p, = constant density.

[Since J#1---#¥ is a constant tensor, the usual
normalization

fﬂl"'ﬂwdz,,l...m =1
is no longer valid. We might, however, define a

132 In the following we use the variables (- -+ x¥#, p# = mutt - - )
instead of (- - - x¥, ub+- ),
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“local microcanonical ensemble” which would be nor-
malizable; to this end it is sufficient to make the five
constants which are at our disposal (i.e., pys, P¥),
x,~dependent.]

Equation (A3) essentially agrees with the one already
given by Lurcat and Mazur'®® in another context.
However, their distribution (which is in fact a phase
space factor, useful in the statistical model of pions
production) is not correctly normalized (i.e., through
a current). This is the reason why their final result
(the canonical distribution) is not correct, if considered
from the point of view of relativistic statistical
mechanics.1

Let us check that N’y actually leads to P* as the
total energy momentum 4-vector for the gas. As in
Sec. 6, we calculate the generalized momentum-energy
tensor:

=N
BEL R =f. J‘N*"{g,p:} .

= P¥. jmc#¥

$=N Pfg
11 (“‘) dsp;
m

fml
(A6)

132 B Lurgat and P. Mazur, Nuovo Cimento 31, 140 (1964),
134 In particular their normalization leads to an incorrect factor
K, in the Jiittner-Synge distribution (instead of X,).

REMI HAKIM

from which follows the total energy-momentum12

Plor = Pﬂf*]m“'mdzm“'#ﬂ
as expected.

Note that the averaging operation () is simply
obtained from N°y. Had we considered the case of
interacting particles, the situation would have been
inextricable and another difficulty would arise.
Indeed, instead of Eq. (A2), we should have a much
more complicated expression [see Ref. 49, Eq. (7-96)
and following] and furthermore the averaging
operation would not be simply obtained from Ny
because of the richer content of { ). Indeed it seems
that, at any rate, Cauchy data are not merely
(* * * X4, Uy * - -) for interacting particles.

135 Note that this average value coincides with the local one. The
difficuity of the nonnormalizable character of Ny is only apparent
and is due to the inadequacy of considering a uniform measure over
RY¥ as possessing a density with respect to Lebesgue measure.
Indeed, a uniform probability measure is such that: u(R¥) = 1,
#(A) = 0, VACRY (with A: u measurable). Anyway, we may always
assume a xy dependence in pg.
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The primary aim of this work is to find the canonical (i.e., simplest) form of antilinear operators
which is the analog of the diagonal form of linear ones, as well as to obtain that class of antilinear
operators which corresponds to the class of normal, i.e., diagonalizable, linear ones. To achieve this
aim two basic tools are used: polar factorization of an afbitrary antilinear operator into a linear,
Hermitian, positive, semidefinite, and anti-unitary operator 4, = #,U, = U, H,, and representation of
antilinear operators by antilinear matrices, which are products of a matrix factor transforming by
unitary congruence transformations and the operation of conjugation which is the same for all antilinear
operators and all bases. The canonical form is defined as the simplest form of the matrix factor. The
criteria of simplicity are: a quasi-diagonal form with smallest possible submatrices, a maximal number
of zeros in them, and as many positive numbers as possible among the nonzero elements. It is found that
the analog of the diagonal form of linear operators is the second-order canonical form consisting of a
diagonal part with nonnegative elements, which is as large as possible, and of two-by-two submatrices
with zeros on the diagonal and with at least one positive element. The operators having this form are those
whose polar factors can be simultaneously canonical, taking for the anti-unitary factor, essentially the
Wigner canonical form. These antilinear operators are called normal ones, and they can also be defined
by the following relations between the polar factors: [H;, H,]_ = 0 and [H,, U2]_ = Oor by the single
commutator, [A4,, (/ﬁ)’]_ = 0. A simple procedure to obtain the canonical form of a given normal
antilinear operator is developed. A few applications of the results obtained are outlined. They belong to
different fields such as electric network theory, quantum mechanics, and self-consistent Hartree—

JUNE 1967

Bogoliubov theory.

INTRODUCTION

HE only well-known example of an antilinear

operator (hereafter AO) used in quantum physics
is that of time reversal. Therefore, AO’s are not a
standard tool of theoretical physicists, and it seems
desirable to begin with a short summary of basic
definitions.

AO’s are those operators in a complex vector space
which anticommute with pure imaginary constants,
commute with real constants, and preserve summation,
ie., )

Afxla) + B1B) = a*4, |a) + f* A4, |b),

where a, § are complex numbers, |a), |b) are vectors,
and the index a on 4, denotes antilinearity.

In a unitary space, the adjoint operator of 4,, A},
which is also antilinear, is defined by!

(al (A7 16)) = (b (4, |a)) = [(b] 4 |a]".

As in the case of linear operators, Hermitian and
skew-Hermitian, AO’s satisfy Al = 4, and 4! = —4,,
respectively. Unitary AO’s (more often called anti-
unitary operators) are defined by

((al OO, b)) = Kal(0;0, 1b)]* = Ka | )1
which leads to U} = U7

a

* Present address: Institut de Physique Nucléaire, Faculté des
Sciences, 91 Orsay, France.

1 For notation, see A. Messiah, Quantum Mechanics (North-
Holland Publishing Company, Amsterdam, 1962), Vol. II.

The theory of anti-unitary operators has been given
an equally firm ground as that of unitary linear
operators in a paper by Wigner.?

Studying the variational objects of the Hartree—~
Bogoliubov self-consistent theory in nuclear physics,
we found it necessary to deal with AQ’s which are not
unitary, but skew-Hermitian.® Hence, we have
investigated a few basic problems in the algebra® of
AQ’s, inspired by Wigner’s paper? and making use of
the analogy with linear algebra.?

The treatment of this paper has been restricted to
finite dimensional complex unitary vector spaces V,
for the sake 'of simplicity.

I. POLAR FACTORIZATION OF ANTILINEAR
OPERATORS

Generalizing the polar factorization of a complex
number into a nonnegative number and a phase
factor, one may write every AO in polar form, i.e., as
the product of a linear Hermitian, positive, semidefinite,
and anti-unitary operator:

4, = A,0,. 6))
Polar factorization in the reverse order is also possible

2 E. P. Wigner, J. Math. Phys. 1, 409 (1960).

3 F. Herbut and M. Vuji¢ié, Antilinear Operators in Hartree—
Bogoliubov Theory (1967) (to be published.).

4 We use the word algebra here in the same sense as it is used in
the term linear algebra, and not as a closed algebraic structure.

5 A. 1. Mal'cev, Basic Linear Algebra (State Technical Press,
Moscow, 1956). i
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with the same anti-unitary factor:
A, = U,H,. 1)

First, we give a proof for (1). We observe that
A is uniquely determined as 414, , which is a linear
Hermitian, positive, semidefinite operator, i.e., one
with nonnegative eigenvalues. It is known that there
exists a unique operator of the same kind which is its
square root,

t
Hy = (44" @
It is easy to see that H, and A, are isometric, i.e.,

12 1)l = 14a 101, |x) € V,,

where || |x)| = (<x|x))5 is the norm of a vector.
Isometry of a linear and an antilinear operator
always implies the existence of an anti-unitary
operator which connects them in the sense of Eq. (1').
To see this, one has to notice that isometry requires
coincidence of the zero-eigensubspaces (null spaces)
of A, and H,, ie., (4, = 0) = V(H, = 0), and,
consequently, 4, and A, define the same inverse
classes (we call an inverse class the set of all those
elements which a linear or antilinear operator maps
into the same image). The set of inverse classes is a
linear space isomorphic to the subspace of images
(range) of H,, R(H,), and anti-isomorphic to the range
of A,, R(4,). As a consequence, we have a unique anti-
isomorphism, U, mapping R(H,) onto R(4,): if
la) € R(H,) then there is a vector |b) such that
la) = H, |b), and by definition U |a) = A, |b). The
isometry between 4, and H, has the further conse-
quence that ow preserves the norm, i.e., it is a unitary
anti-isomorphism.

If 4, is nonsingular, then R(4,) = R(H) =V,,
and U, of Eq. (1') is unique and equal to UM. If 4, is
singular, then we take an arbitrary unitary anti-
isomorphism, U®®, mapping the orthogonal com-
plement of R(Hz) lie., V(H,=0)] onto that of
R(A,), and define U, so that U, |x) = OW [xV) +
U@ |x®), where |x)€ V,, and |xV) and |x®) are
its components in R(H,) and in V(H, = 0), respec-
tively. Actually, in Eq. (1') U does not act at all,
and one could write Eq. (1) as A‘a = UWA,. Though
U is not determined by A4,, it is introduced in order
to obtain U, defined in the whole space.

Having proved (1’), we now turn to Eq. (1) by
writing (1) in the form A4, = (U,A,0)U, and
observing that U,A,U! is a linear Hermitian, positive,
semidefinite operator which we denote by H,, i.e.,

H1 = UaﬁzUl- 3

Though, in general, U, is not unique, a, always is,
because a more detailed analysis could show that
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U@ actually gives no contribution in Eq. (3). Anyway,
the uniqueness of H, is obvious from the fact that

A} = 4,4, @
which follows from Eq. (1).

In order to clarify the relation of U® and U® to
H,, we notice that R(4,) and R(H,) coincide, which
means that 0% maps R(H,) onto R(#,), and U®
maps V(H, = 0) onto V(H, = 0).

We have discussed the factorizations (1) and (1') in
the whole space. For application below, let us point
out that if a subspace and its orthogonal complement
are invariant for 4,, then they are also invariant for
A} . This follows from the fact that if a subspace is
invariant for a linear or antilinear operator, then its
orthogonal complement is invariant for the adjoint
operator.

We have an immediate corollary when 4, commutes
with 4 linear Hermitian operator A and thus reduces
in its eigensubspaces, i.e., when each eigensubspace
of H is invariant for 4, . In this case the polar factori-
zations (1) and (1) can be performed separately in
each eigensubspace, and then also the polar factors
commute with A.

At last, we want to point out that having reduced a
complex object like an AO to the product of two simple
and well-understood operators, one is able to analyze
the complexity of the AO through the relation that
exists between the polar factors. Another tool which we
make use of in our analysis below is the representation
of AQO’s by antilinear matrices.

II. REPRESENTATION OF ANTILINEAR
OPERATORS BY ANTILINEAR MATRICES
Now we are going to use the standard factorization®
of an AQ, 4,, into a linear and a conjugation operator
to obtain a representation of 4, in the space of column
vectors. For that purpose we write

4, = (4.RKP, O]
where R(9) is defined as that AO for which all the
vectors of a given basis (Q) are invariant. K(9) is
obviously an involution, ie., (K@) = 1. If (Q) is

an orthonormal basis, K{ is anti-unitary.

The reverse factorization is also possible:

A, = KK, )

The factorization in Eq. (5) is basis-dependent in
the sense that the conjugation operator K!@ is
defined by the basis (Q). In this basis the linear factor
A,R9 is represented by the matrix (4, K@), . The
antilinear factor R!{® is represented by an operatlon
K which consists in complex conjugating all matrices to
the right in matrix multiplications.
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4, itself is represented by (4,K{?’),K, which is
more complicated than an ordinary matrix, because
K, though a very common operator in the space of
column vectors, is not expressible as a matrix. We
refer to such products of a matrix factor and con-
jugation as antilinear matrices. Since K is one and
the same for all AQ’s, every AO is essentially repre-
sented by its matrix factor. The latter can be put in
polar form,® so that its Hermitian and its unitary
factor (the latter together with K) represent the corre-
sponding polar factors of 4,.

The set of all linear and antilinear operators in the
abstract space is represented by the set of all ordinary
and antilinear matrices in the space of column vectors,
when a basis (Q) is specified. One should notice the
following peculiarities when dealing with such an
extended set of operators: Multiplication is always
defined and the product belongs to the set; the sum,
though always defined, belongs to the set if and only
if both terms are of the same kind, i.e., linear or
antilinear. The direct or Kronecker product, however,
is not uniquely defined unless all factors are of the
same kind. Namely, the direct product of an AO,
A, , and of a linear operator, B, 4, ® B, acting on a
vector |x) ® |y) = 1/p |x) ® p|y), where p = |p| e’/
is any complex number other than zero, would give
A, |x) ® Bly),and also (4, |x) ® Bly)), which shows
that the image has a completely arbitrary phase.

In the rest of this paper, we consider representations
of AO’s only in orthonormal bases; therefore, we now
discuss a few specific properties of antilinear matrices
in connection with such bases. Hereafter, every basis,
unless otherwise stated, is assumed to be orthonormal.

The elements of the matrix (4,K(?’), are obtained
by the following formula:

(m| (A,Ri) In) = (m] (4, |n)), (6)

where |m), |n) € (Q). This is due to K9 |n) = |n).
These matrix elements are obtained from 4, in the
same way as those of a matrix representing a linear
operator.

In transition from one basis to another, the whole
antilinear matrix transforms by a unitary similarity
transformation:

S(4,R\@)oKS™ = S(4, R KS"

= S(4,K:?)SK,
where S is the matrix of the transition operator from
the new basis to the basis (Q), and S is its transpose.
The matrix factor itself transforms by a unitary

congruence transformation

S(A KPS, )
The matrix representing a linear operator trans-
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forms as a mixed second-rank tensor in arbitrary
bases, whereas the matrix factor of an AO transforms
as a twice contravariant tensor only in orthonormal
bases.

There is no need to investigate the transformation
properties of K because it is the same operation in the
space of column vectors for any choice of a basis in the
abstract space.

AO’s can also be represented by antilinear matrices
in the space of bras. For this purpose Eq. (5') is more
convenient.

We mention a few most important examples of
antilinear matrices. If two AO’s are mutually adjoint,
their matrix factors are mutually transposed. If an
AO is nonsingular, then the matrix factor of its
inverse operator is the conjugate inverse of the matrix
factor of the AO. The matrix factors of Hermitian and
skew-Hermitian AOQO’s are symmetric and skew-
symmetric, respectively, unlike the representing
matrices of the linear operators of the same kind. It
should be noted that Hermitian and skew-Hermitian
AQ’s give a geometrical, i.e., basis-independent
meaning to symmetric and skew-symmetric matrices.
The matrix factor of an anti-unitary operator is
unitary, like the matrix of a linear unitary operator.

Dealing with antilinear matrices is almost as simple
as with ordinary matrices, because all the difference is
due to the unique operation K, which must be taken
into account. In the following, we find representation
of AO’s by antilinear matrices as useful as matrix
representation of linear operators usually is.

III. CANONICAL FORM OF ANTILINEAR
OPERATORS

One of the most important problems in linear
algebra is to find the spectral form of linear operators.
Essentially it means replacing the operator by the
direct sum of constants. This can be done for normal
operators, i.e., for those which commute with their
adjoints, and only for them. An alternative and more
convenient approach to this problem is to diagonalize
the representing matrix by a suitable unitary similarity
transformation. Most important applications of linear
algebra in physics are based on this reduction to the
simplest, i.e., canonical, form.

It is very likely that the canonical form of AO’s will
also play an important role in applications. A few
examples to support this are given in Sec. V and in
subsequent papers.

An AO has the canonical form, i.e., acts in the
simplest way on a basis, if and only if the representing
antilinear matrix in this basis has the simplest form.
We call such a basis canonical.
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Since the conjugation K is always the same, the
simplicity of an antilinear matrix depends only on its
matrix factor. Therefore, the problem amounts to
finding a suitable unitary congruence transformation
which will make the matrix factor canonical.

We want to stress that we are looking for the
simplest form of the matrix factor with respect to a
limited class of bases, namely, the orthonormal ones.
Taking into account the larger class of all bases, i.e.,
the transformations S(4,K!? No(S™H* (S arbitrary,
nonsingular), one would obtain for some AO’s a
simpler form of the matrix factor, but that is beyond
the scope of this paper.

It seems natural to take the following three criteria
for the canonical form of the matrix factor: firstly, it
should be quasi-diagonal with as small submatrices as
possible (the submatrices on the diagonal correspond
to invariant subspaces for the AO); secondly, within
these nondiagonal submatrices, the largest possible
number of zeros should appear; thirdly, among the
nonzero elements, one should have as many positive
numbers as possible.

We are going to approach the problem of finding
the canonical form of an AO by using the canonical
forms of its polar factors. In doing this, two steps have
to be distinguished: first, finding the simplest form of
the factors, and secondly, the analysis of their mutual
relationship, which decisively affects the canonical
form of the AO itself.

The simplest form of the linear Hermitian polar
factor is, of course, the diagonal form. As to the
anti-unitary polar factor, its normal form has been
given by Wigner.?

To express Wigner’s result by an antilinear matrix,
we use Eq. (6) and obtain that the matrix factor in the
normal form is quasi-diagonal having on its diagonal
a unit submatrix (corresponding to the subspace where
the anti-unitary operator U, is an involution) and
two-by-two submatrices of the form

0 (v}
wt o /)
corresponding to the subbases |#*), |u), which consist
of eigenvectors of U? with the eigenvalues u*, u,
always appearing in pairs. When ¥ = —1, then, by
convention, (—1*)¥ = —j.
Merely changing the phases of some vectors of the

basis giving the above matrix factor, one can achieve
the canonical form of U,, which instead of (8) has

o)

®)

®
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the unit submatrix being unchanged.® This form we
call the Wigner canonical form of anti-unitary operators.

Wigner’s method is based on the diagonalization of
U2 prior to the selection of the canonical basis for
U,. Among the eigenbases of U? there is none which
could give a simpler form than Wigner’s canonical
one. Namely, in any eigenbasis of U? only those
vectors which correspond to the eigenvalue I may
give nonzero diagonal elements in the matrix factor
of U,, as follows from

| (U, [w)) = u* (ul (T, lu)).

Therefore, wherever u 7 1, one must have nothing
but zeros on the diagonal.

It remains to be shown that only eigenbases of U?
can be canonical for U, . To that purpose we derive the
Wigner canonical form using the above general
criteria.

By the first criterion, the canonical form must be
diagonal wherever possible. Changing the phases of the
basis vectors and using antilinearity, the diagonal
elements can be made positive, and because of uni-
tarity they all have to be 1. Thus, the corresponding
basis elements are eigenvectors of U? with the eigen-
value 1. So, two-by-two nondiagonal submatrices are
allowed only in the orthogonal complement of the
subspace where U, is an involution. Since these
submatrices are unitary, they can have at most two
zeros and both of them must be on the diagonal. If
we required both nonzero elements to be positive,
they would both be 1, which would imply that the
corresponding vectors are still in the subspace where
U2 = 1. Therefore, the two-by-two submatrices in the
canonical form cannot be simpler than (9). Squaring
the antilinear matrix so obtained, one concludes that
U? is diagonal, i.e., the canonical basis is necessarily
an eigenbasis of U2.

To see how one should select a canonical basis for
U, out of the eigenbases of U2, we briefly describe,
following Wigner,® a procedure consisting of three
parts.

(1) In the subspace where U, is an involution, one
takes an arbitrary normalized vector, and adds to it
its image by U, with subsequent normalization, unless
the sum is zero, when one takes the vector itself
multiplied by i. If the subspace is more than one
dimensional in the orthogonal complement of the

® One can also achieve the form having

1 0
instead of (8), which is as simple as (9). We choose (9) because for

u = —1, it is the known canonical form of skew-symmetric unitary
matrices under unitary congruence transformations (cf. Sec. VA).
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first-basis vector so obtained, the procedure is re-
peated, etc.

(2) In the subspace where U2 = —1, i.e., where U,
is a skew involution, an arbitrary normalized vector
is taken and it is paired with its image by U, in reversed
order. If the subspace is more than two dimensional,
another normalized vector orthogonal to both
previous ones is taken, and the above procedure is
repeated, etc. This subspace is necessarily even dimen-
sional,

(3) When u ## 1, —1, a basis is chosen in the eigen-
subspace of U2 with the eigenvalue «, and each element
of it is paired w1th its image by U,, which necessarily
belongs to the eigensubspace with the eigenvalue u*.
These pairs in the order [u*), |u) give the submatrices
(9). Though u and u* play essentially symmetrical
roles, we have only one of them in the submatrices,
depending in whose eigensubspace we make the
arbitrary choice of an orthonormal basis.

It should be noted that the choice of a canonical
basis for U, is not unique. The group of transforma-
tions connecting one canonical basis with all the
others has been given by Wigner.2 Every canonical
basis gives one- and two-dimensional invariant
subspaces for U,, which are also nonunique. The
only unique invariant subspaces for U,, made use of
in the above procedure, are the eigensubspaces of
U? with the eigenvalues 1 and —1, and the direct sums
of the eigensubspaces with the eigenvalues » and u*,
whenu # 1, —1.

The Wigner canonical form itself is unique except
for the order of the submatrices on the diagonal and
conjugation within each submatrix.

Having discussed the Wigner canonical form of
anti-unitary operators in sufficient detail, we may turn
now to the problem of finding the canonical form of
more general AO’s. Using the method of simultaneously
canonical polar factors, we show that this is possible
for AO’s whose polar factors are simply related to each
other.

The simplest mutual relation of the polar factors is
their commutation. It is obviously equivalent to
A, = H,, as well as to [4,, 4]]. = 0 [see Egs. (1),
(19, (2), and (4)]. The class of AO’s satisfying this
relation we call proper normal AO’s.

From the commutation of the polar factors of a
proper normal AO it follows that every eigensubspace
of the Hermitian factor is invariant for the anti-unitary
one. In each eigensubspace, one may find a Wigner
canonical basis independently. All these together form
a canonical basis in the whole space. In this way, for
a given proper normal AO, a canonical basis is that one
which is simultaneously an eigenbasis for the Hermitian
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JSactor and a Wigner canonical basis for the anti-unitary
Jactor.

The canonical matrix factor of a proper normal AO
is in general the direct sum of a diagonal matrix and of
several two-by-two matrices. The diagonal submatrix
corresponds to the subspace, where U, is an involution
and has only nonnegative diagonal elements, which
are eigenvalues of the Hermitian factor. The two-by-
two submatrices are of the form

0 &
(hu 0)’
where 4 is an eigenvalue of the Hermitian factor, and
u 5 1 is an eigenvalue of U2,

So far we have not yet proved that this form is
indeed canonical for proper normal AQ’s. This proof
is given at the end of Sec. IV for a class of AO’s which
contains the proper normal ones.

To the proper normal AO’s (A, = H,) belong as
special cases, the anti-unitary operators (for which A,
is the identity operator), the Hermitian AO’s (whose
Uf;l) is an involution) and the skew-Hermitian AQ’s
(U skew-involution).

For all proper normal AO’s, U, is the direct sum of
U%, which acts in R(#,), and U® acting in
V(H, = 0). It is convenient to choose U® always to
be an involution (see Sec. IV).

We have defined the proper normal AQO’s as those
which commute with their adjoints. In this respect
they are the analogs of the linear normal operators.
But the proper normal AQO’s can also be defined by
their canonical form, and regarding this form they do
not correspond to the diagonalizable linear operators.
Because we consider the nature of the canonical form
as the basic property of a class of operators, we now
search for the analog of the linear normal ones.

Inlinear algebra the diagonal canonical form defines
the normal linear operators. Since their diagonal
elements are complex in general, it is possible to
obtain the most important subclasses of linear normal
operators (Hermitian, skew-Hermitian and unitary
ones) by restricting the diagonal elements to be real,
pure imaginary, or of unit modulus, respectively. In
contrast to this, in the case of AO’s, only Hermitian
ones can be diagonalized (as follows from U2 = 1).
Furthermore, their canonical form consists of non-
negative elements exclusively, and it cannot be further
restricted. This form we call the first-order canonical
one. Since the corresponding class of AO’s is too
narrow, one should not consider the Hermitian AQ’s
as the analogs of the normal linear operators, nor the
first-order canonical form as the analog of the diagonal
one for linear operators.

(10)
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As a starting point in finding this analog, one
should take the Wigner canonical form of anti-unitary
operators, because the polar factorization reveals their
fundamental role. With respect to the three criteria for
the canonical form, the Wigner one exhibits the
following properties.

It is first-order canonical wherever possible. The
nondiagonal part consists merely of two-by-two
submatrices. Each of these has both diagonal elements
equal to zero, and at least one off-diagonal element is
positive [cf. submatrix (9)].

Beside these, the Wigner canonical form has two
more properties, which are further restrictions due to
the specific nature of anti-unitary operators and are
not imposed by the three criteria.

All the diagonal elements in the first-order canonical
part are equal to 1, and so are the off-diagonal
elements in the first rows of the two-by-two sub-
matrices; the off-diagonal elements in the second
rows u are of unit modulus, which cannot take the
value 1.

Abolishing only the latter two specific restrictions,
i.e., allowing any nonnegative numbers instead of the
I’s and any complex numbers instead of the u’s, we
define the second-order canonical form as the following
quasi-diagonal matrix:

hy

0 n

e O
€8y

where j + 2k =mn, all |u| =1, and all A, ', A" > 0,
Notice that if any of the A’ equals zero, then the
corresponding 4"z > 0. This is required by criterion
3 and can always be achieved. The matrix elements
are written in polar form to anticipate their origin as
the products of eigenvalues of A, or H, and U2,
Since (11) is not more complicated, according to the
criteria, than the Wigner canonical form, and, on the
other hand, contains the canonical forms of all proper
normal AO’s as special cases, we consider it as the
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natural analog of the diagonal form of linear normal
operators.”

We call normal those AO’s which have the second-
order canonical form as their simplest form. We study
their properties in the next section.

IV. NORMAL ANTILINEAR OPERATORS

Having defined the normal AQ’s by their canonical
form, we now search for an alternative definition in
terms of the polar factors.

The Hermitian polar factor H; of (11) is uniquely
determined and turns out to be diagonal. If (11) is
singular, the unitary polar factor is not unique. We
use this nonuniqueness in order to make it as simple
as possible. To that purpose, we take every 4, ', or
h” which is zero with a phase factor 1. In this way one
immediately obtains the unitary factor in a form which
may differ from the Wigner canonical one only by
having submatrices (9) with ¥ =1 as well. This
generalization of the Wigner canonical form, which
we call the second-order canonical form of an anti-
unitary involution, is a consequence of our definition
of the second-order canonical form in general, in which
we have given up all accidental restrictions not con-
tained in the three criteria. This is justified below,
where we show that the normal AO’s can be defined
in a very simple way.

Referring to the above slight generalization of the
Wigner form as to the canonical form of U,, we say
that the class of normal AQ’s is the widest class of
AO’s whose polar factors can be put simultaneously in
canonical form.

We now derive the necessary conditions for the
polar factors of a normal AO.

Since

e o) =0 w)le o= (o)l #)

H, is diagonal in the same basis, and so

A, ] =0. (12)
Similarly,
[A,, U5 =0, (13)
[A., U;]- = 0. (14)
As a consequence, besides Eq. (3) we also have
A, = U010 15)

The matrix representing 42 is diagonal and to the

7 We went beyond the canonical form of the proper normal AO’s
because, due to the commutation of the polar factors, it also has
two specific restrictions with respect to the second-order canonical
form. Namely, in the submatrices (10) the two eigenvalues of the
Hermitian polar factor coincide, and # £ 1.
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two-by-two submatrices of (11) corresponds

WH'u* 0
0 AWHul

Obviously, it follows that the polar factors® A and
U of A2 satisfy H = A, H,, U = U2, and

[4,0]. =0, (16)
i.e., A2 is a linear normal operator.
At last, we have
[ﬂlﬂ2a 0(1]— = 05 (17)

which follows from Eqgs. (3), (15), and (12).

Now we show that the conditions (12)-(15) are
also sufficient for an AO to be normal.

In order to obtain the Wigner canonical form of an
anti-unitary operator U,, one first diagonalizes U2.In
case of a proper normal AO, 4, = H,0,, A, = H,,
one diagonalizes A, and U? as a first step. Now we
begin by diagonalizing A, , #,, and U2, simultaneously,
which is possible because they all commute [see Eqs.
(12), (13), and (14)]. Actually, we need only the com-
mon eigensubspaces of these operators, in which we
proceed to find the vectors of a basis canonical for U,
as well.

To that purpose we break up the whole space into
two mutually orthogonal subspaces. The first is the
direct sum of all those common eigensubspaces where
the eigenvalues of A, and H, coincide, i.e., where 4,
is proper normal. The second is its orthogonal
complement, and we say that there A, is improper
normal. In the first subspace, the procedure is the
same as described in the previous section. To obtain a
procedure in the second subspace, it is important to
notice that, besides the fact that U, of any AO maps
an eigenvector of H, into one of A, with the same
eigenvalue [which follows from Eq. (3)] for those
AO’s which satisfy Eq. (15), it is also true the other
way round, i.e., H; |x) = &' |x) implies Hy(U, |x)) =
k' (U, |x)). Thus, a common eigenvector of A, and A,
with the eigenvalues 4" and A", respectively, is taken
by U, into another common eigenvector of the same
operators, now corresponding to the eigenvalues
h" and A', respectively. This has the consequence that
to each common eigensubspace corresponds another
with exchanged eigenvalues of A, and H, and with
the conjugate eigenvalue of U2. Now we choose an arbi-
trary basis in one of them, e.g. |/'A"u),, i =1,2,...,m,
and in the other we take that basis which is the image
by U, of the first one, ie., [F"A'u*);,i=1,2,...,m.

It is easy to see that in the basis obtained in this
way, when its elements are arranged so that each of
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them is next to its image by U,, e.g. |h"h'u*);, h'h"u);,
the matrix factor of A, has the desired canonical form.

It should be observed that our procedure for the
improper normal part of 4, is fully analogous to
Wigner’s procedure? for u % 1, ~1, though here both
u =1 and ¥ = —1 may occur. Besides, in this part
of the space the diagonal form of 4, is never achieved,
not even where u = 1.

It is of interest to find among the above four
necessary and sufficient conditions [Eqgs. (12)~(15)] the
smallest number of independent ones.

One immediately obtains (14) and (15) from (12)
and (13). To show the mutual independence of the
latter two, one may take two simple examples of
antilinear matrices, e.g.,

h o 0\ /001
4,={0 n o]l1 o o]k,
00 m/ \0 10

1 1\(k ©
1 1/\o

where h # 4’ in both cases, 4, satisfies (12) and not
(13), and A vice versa.

Therefore, one can say that the polar factors of an
AO can be brought simultaneously into the canonical
forms if and only if they satisfy (12) and (13). We have
thus obtained a second definition of normal AO’s.

It is important to replace the above two relations by
conditions on A, itself, because one would like to
recognize whether a given AO is normal or not
without having first to calculate its polar factors.

We are now going to show that normal AO’s can be
defined as those which satisfy only one relation,

(4, (4] = 0. (18)
This condition can be easily obtained from Egs.
(12) and (13) if we write 4, in (18) in polar form.
Actually, we use Egs. (12) and the adjoint of (13),
together with (17).
In order to show that (12) follows from (18), we
take the latter and its adjoint to obtain an equation
which is equivalent to the former,

[4AL AJA) = 1A}, A3). = 0.
To derive Eq. (13) from Eq. (18) we use the follow-
ing argument. We first show that

(A, 4% =0, 19

and that 4?2 is a linear normal operator. Therefore,
(13) can be derived separately in the range of 4? and
separately in its zero manifold. In the former U2 is the
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unitary polar factor of 42 and, as a consequence of
Eq. (19), it commutes with A, . In the zero manifold of
A? ,we are able to achieve 0% = 1 which will obviously
commute with A;.

To prove Eq. (19), we observe that its equivalent
[A2, A%]_ = 0 follows immediately from Eq. (4) and
the adjoint of Eq. (18). The linear operator A2 is
normal if [42, (4])?]_ = 0, and this is a corollary of
Eq. (18). Consequently, the range and the zero
manifold of 4?2 coincide with those of its Hermitian
polar factor H, i.e., with R(H) and V(H = 0), respec-
tively. Using Eqgs. (18) and (12) we derive [ =
A AN = A AJATA, = A2A2 = (A ) e,

A=A8H,=1H,. (20)

Furthermore, Eq. (18) implies that 4, commutes with
A2, thus

[4,, Al.=o. @10
From the argument near the end of Sec. I, we also have
[Ua’ H]— =0. (22)

From Egs. (19) and (22) we conclude that R(H)
and V(H = 0) are invariant for both A, and 02.

In R(A) the unitary polar factor of 42 is unique and
can be obtained with the help of Egs. (20) and (22),
A2 = (Uaﬁz)(HIUa) = A0, ie

= 042, (23)
Since A; commutes w1th both factors in Eq. (23), Eq.
(13) is valid in R(A).

Turning now to V(H = 0), we notice that the
arbitrary U® has both its domain V(H, = 0) and its
range V(H = 0) inside this subspace, because of
A = H,A,. We now restrict the arbitrariness of
U so that U2 in V(A = 0) will become the identity
operator. To this purpose we break up V(H = 0) into
three mutually orthogonal subspaces,

V(H=0)= VA, =0 A,
+ V(A #0=H,) + V(#, = A, = 0).

From Eq. (22) one may conclude that U also reduces
in V(A = 0). Since it always maps R(Hz) onto R(H,),
here it maps V(H, = 0 # H,) onto V(H = 0 = H,).
All we have to do now is to choose U® to act as
(0®)1 in mapping V(H, # 0 = H,) onto

V(Hl — 0 # Hg),

and separately in V(H, = H, = 0) as an arbitrary
involution. Thus, Eq. (13) is obtained in the whole
space.

We want to point out that the above choice of
U® amounts to taking the undetermined phase
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factors equal to 1 when any one of the h, #’, A" is zero,
because V(H = 0) corresponds exactly to the totality
of these submatrices.

It is now established that commutation of an AO
with the square of its adjoint, i.e., Eq. (18), is a necessary
and sufficient condition for the AO to be normal.

Obtaining the second-order canonical form implies
finding one- and two-dimensional invariant subspaces
for a normal 4,, and essentially 4, is replaced by the
direct sum of its components in these subspaces.
However, these subspaces are not unique. The unique
ones are firstly, the common eigensubspaces of H,,
H, and U2, V(h, K, u), with h = k' and u real, and
secondly, the direct sums V(h, h', u) + V(#', h, u*) in
all other cases. We have based our procedure for
selecting a canonical basis for 4, on breaking up the
space into these unique, invariant, and mutually
orthogonal subspaces, in analogy with Wigner’s
procedure? for anti-unitary operators.

At last, it remains only to be shown that the second-
order canonical form of a normal 4, , achieved through
the canonical forms of its polar factors, is indeed its
simplest possible form according to the general
criteria stated in the previous section.

The diagonal submatrix of the second-order
canonical form with nonnegative numbers corresponds
to that invariant subspace where 4, is Hermitian, i.e.,
to

=>V(h="h,u=1).
k=0

This subspace is uniquely associated with 4, and any
diagonal submatrix of 4, achieved by whatever
method necessarily corresponds to a part of ¥, .

Further, we have a number of nondiagonal two-by-
two submatrices with three zeros in them. Their
totality corresponds to

Vo= 3[V(h,0,u =1) L V(0, h,u = 1)].

The nonzero elements are positive, and such matrices
cannot be made simpler. One cannot achieve a larger
number of such submatrices by some other method,
because any of them has to correspond to a part of
Vs, which is immediately seen when these submatrices
are written in polar form.

The totality of the remaining nondiagonal two-by-
two submatrices corresponds to the orthogonal
complement of V, + V,, where 4, is necessarily
nonsingular, as it is clear from the fact that all
determinants of these two-by-two submatrices are
nonzero. Namely, although the determinant of a
matrix is not invariant under the unitary congruence
transformations, its being zero or not is an invariant
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property, and it can be taken as a necessary and
sufficient criterion for singularity or nonsingularity of
A4, as it is the case for linear operators. Therefore, in
this part of the space, two-by-two submatrices obtained
by any method cannot have more than two zeros and
they must be both on the diagonal. The polar factors
of such matrices, which are immediately obtained by
writing the matrix elements in polar form, are seen
to be canonical, and so the nonzero elements cannot
be made simpler.

This analysis shows that polar factorization,
leading to the diagonalization of H,, H,, and U2, is
the natural way to obtain the canonical form of a
normal AO.

V. APPLICATIONS

We outline a few applications of AO’s in different
branches of physics, mathematics, and electric
network theory. In most of them, polar factorization
and the canonical form of normal AO’s prove very
useful tools.

A. Electric Network Application

According to Youla,® “The problem of finding a
canonic form of an arbitrary matrix under the group
of unitary congruence transformations is not only of
mathematical interest but of the utmost importance
for applied electrical engineering network theory . . ..”

We have already seen that one can associate a basis
independent object with any matrix transforming
under the unitary congruence transformations. This
object is an AO in the abstract space V,, (see Sec. II).
Therefore, AO’s are the natural geometrical inter-
pretation of such matrices. Since we have defined the
canonical form of an AO as the canonical form of its
matrix factor, all our results are directly valid for the
matrices under unitary congruence transformations.

We have mentioned that to Hermitian and skew-
Hermitian AO’s correspond symmetric and skew-
symmetric matrices, respectively. Our results coincide
with the classical ones® on the canonical forms of
these matrices. The results of this paper on the second-
order canonical form give the solutions of the above-
mentioned network theory problem for considerably
larger classes of matrices.

The Wigner canonical form should be interpreted
as the canonical form of a unitary matrix under
unitary congruence transformations.

To proper normal AQ’s, correspond matrices satis-
fying the condition

AAt = (41 4)*,

8 D. C. Youla, Can. J. Math. 13, 694 (1961).
I, Schur, Am. J. Math. 67, 472 (1942).
101, K. Hua, Am. J. Math. 66, 470 (1944).

(24
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which defines the class of conjugate-normal matrices, as
we may call them. It should be observed that this
property is unitary congruence invariant in the sense
that it is valid for any unitary congruence transform of
A, in contrast to the property A4 = A4, which is
unitary similarity invariant. Unitary, symmetric and
skew-symmetric matrices belong to the class of
conjugate normal ones.

To normal AO’s, correspond matrices for which the
following relation is valid:

AA'A = AA4'4, (25)
and we may call them congruence-normal matrices.
Conjugate-normal matrices belong to them as a
special case. The class of congruence-normal matrices
is the largest class of matrices for which we have
found the canonical form, and they may be considered
as the analogs of the class of normal matrices under
unitary similarity transformations, because relation
(25) is a necessary and sufficient condition for a matrix
to have the second-order canonical form under the
unitary congruence transformations. [See the end of
Sec. III and Eq. (18).]

We intend to give a more detailed discussion of our
results on the canonical form of congruence-normal
matrices in matrix language, and applications to
electric network theory in a separate paper later.

B. Connection of Antilinear Operators with
Two-Particle Wave Vectors

A column vector representing a two-particle wave
vector |pt2) in a basis which is obtained as a direct
product of a one-particle basis with itself, can be
written as a matrix which transforms as a twice
contravariant tensor, i.e., under unitary congruence
transformations. This enables us to establish a one-to-
one correspondence between the unitary space of all
AO’s and the unitary space of all two-particle wave
vectors. This correspondence turns out to be, what we
call, an extended isomorphism, because it connects all
the known operations in these two sets, including
even those for which they are not closed. This
extended isomorphism permits transfer of any prob-
lem from one set to the other, and consequently, its
solution where it is more convenient. The canonical
forms of two-fermion and two-boson wave vectors are
thus readily obtained from the canonical forms of
skew-Hermitian and Hermitian AO’s, respectively.

This extended isomorphism, and the use of AO’s in
defining orthogonal and symplectic subgroups of the
unitary group, as well as application of AO’s to the
problem of the canonical form of a two-particle
interaction are described in a separate publication.

11 R, Herbut and M. Vuji€i€ (to be published),
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C. Transposition and Conjugation of Linear Operators

We have analyzed two factorizations of AO’s, the
polar and the standard one (see Secs. I and II, respec-
tively). In general, the standard factorization cannot
be of any help in finding a canonical basis for a
normal AQ, because its antilinear factor is defined as
an arbitrary involution, with no regard to the nature
of the AO. On the contrary, in the polar factorization,
both factors depend crucially on the AO. For Her-
mitian AQ’s and only for them, the polar factorization
is a special case of the standard one. Now we discuss a
widely used example of these operators: the adjoining
of linear operators, in order to illustrate the relation
between the two factorizations.

Let V. be the space of all linear operators which act
in ¥,. The operation of adjoining, O,, in V., is
obviously an antilinear operator and furthermore an
involution. Unitary metrics in ¥, can be defined by
introducing the following scalar product!2:

(A, B)=tr A'B, forall 4, BeV,.. (26)

Having introduced unitary metrics in ¥,:, one can
easily see that 0, is anti-unitary. Being also an involu-
tion, it is a Hermitian AQ. Its canonical basis is any
set of n? orthonormal [in the sense of Eq. (26)]
Hermitian linear operators acting in V.

It is interesting to note that the same metrics in
V,: can be obtained by the requirement that the basis
in V,,z

lesel, (27)

associated with an orthonormal basis le}), - -+, le,) in
V, should also be orthonormal. None of the associ-
ated bases can be canonical for 0,, since (le;)(e,])f =
le;{e;l for i 5« j are not self-adjoint.

However, the associated bases (27) (and no others)
can be used to generalize the matrix concepts of
transposition and conjugation to the corresponding
operations for abstract linear operators. Namely, if
we choose a basis in V,, e.g., (¢), and form its
associated basis (Q) in Vs, then the standard factors
[Eq. (5)] of O, for the basis (Q), when represented in

Lhj=1,""",n,

12 J, von Neumann, Ann. Math. 41, 94 (1940).

F. HERBUT AND M. VUJICIC

(Q), are the transposition and the conjugation of
matrices which represent linear operators from V.
in the basis (g). Therefore, it is natural to interpret
the standard factors of O, themselves as transposition
and conjugation of linear operators. Obviously, these
concepts are basis-dependent, as it is always the case
with the standard factorization.

D. A One-Particle Operator Approach to
Hartree—Bogoliubov Theory

The results of this work have another interesting
application in the variational theory of Hartree-
Bogoliubov.? Namely, because of its transformation
properties, the pairing tensor in this self-consistent
theory can be interpreted as the matrix factor of a
skew-Hermitian antilinear operator #,. We call the
anti-unitary polar factor of &, the pairing operator, and
it is a generalization of the time-reversal operator as
far as its role in this theory is concerned, because in
the special case of the BCS theory, the anti-unijtary
polar factor of 7, is just the time-reversal operator.
The Hermitian polar factor of 7, is a simple function of
the one-particle density operator. So, the polar factors
of £, become the main variational objects of Hartree—
Bogoliubov theory. Since the pairing operator is a
skew-involution, the elements of its canonical basis
display the well-known pairing property, which is
inherent in every Bogoliubov-Valatin transforma-
tion,13

Our operator treatment of the kinematical and the
dynamical quantities (self-consistent fields) should
offer new possibilities for finding workable approxi-
mations within the theory of general linear canonical
transformations. These problems are discussed in a
separate paper.?
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