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A theorem analogous to t)1e Weyl branching law for the unimodular groups is derived for Sp(2n). 

I N the investigation of possible higher symmetry 
groups in elementary particle physics several 

authors have considered symplectic groups, as for 
instance Sp(6) in Ref. 1 and Sp(14) in Ref. 2. Beside 
this, these groups are of importance in nuclear 
physics.3 It may therefore be useful to have an analogy 
of the well-known Weyl branching law for the uni­
modular group SL(n),4 that is, to have a formula for 
the splitting of an irreducible representation of Sp(2n) 
under restriction to Sp(2(n - 1). 

Two special cases, Sp(6) ~ Sp(4) and Sp(4) ~ Sp(2), 
have been treated in Ref. 5, a general formula for 
the symplectic groups, however, as far as the author 
knows, has not yet been published. In the following 
such a theorem is formulated and proved. 

The irreducible representations D of Sp(2n) can be 
classified by n nonnegative integers {m1 ' •• mn } with 
m1 2 ... 2 mn 2 0 which determine a corresponding 
Young pattern (cf. Ref. 6). Write the space R2n , in 
which the group Sp(2n) of linear transformations acts, 

, H. Bacry, J. Nuyts, and L. Van Hove, Nuovo Cimento 35, 510 
(1965). 

2 H. D. Doebner and G. C. Hegerfeldt, J. Math. Phys. 8, 731 
(1967). 

3 Cf., e.g., B. H. Flowers, Proc. Roy. Soc. (London) A212, 248 
(1952). 

4 H. Weyl, The Theory o/Groups and Quantum Mechanics (Dover 
Publications Inc., New York, 1963). 

~ M. L. Whippman, J. Math. Phys. 6,1534 (1965). 
• H. Weyl, Classical Groups (Princeton University Press, Princeton, 

New Jersey, 1946). 

as a direct sum of a 2(n - I)-dimensional and a 2-
dimensional subspace R(2n-ll and R 2 , respectively. 
Then the subgroup of Sp(2n) which leaves R 2(n-ll 

invariant and acts as identity transformation in R2 is 
isomorphic to Sp(2(n - 1). We are now going to 
prove the following branching law for a restriction of 
D{m) to this subgroup: 

Theorem: On restricting a representation D(m, ... mn) 

of Sp(2n) to the subgroup Sp(2(n - 1) one has the 
following splitting into irreducible representations 
D{m," . .. mn_l") of Sp(2(n - 1): 

with m; , m; integers. 

Proof The characters X{m) of an irreducible repre­
sentation D{m) of Sp(2n) can be expressed as a function 
of the n independent characteristic roots €1' ••. , €n 

of an arbitrary matrix of Sp(2n): 

For the subgroup Sp(2(n - 1) one has with a suitable 
numbering of the roots €n = 1. Hence in order to 
prove (1) it suffices to establish the corresponding 
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formula for the characters, namely, 

82>(2nI
X

(£t' . '£,,1 I 
{mt'" m,,} £ .. =1 

X{m} can be written as the quotient of two determinants 
(Ref. 6, p. 218): 

IElt - E- lt . .• El" - E-l" I 
I£t .•. £ .. 1 - " (3) 

l{mt' .. m .. } - I n -n I -II' 
E -E , ..• ,€ -E 

where the ith row of the determinants in numerator 
and denominator are obtained by attaching the suffix 
i to the E'S and where 

I, = m, + (n - j + 1). (4) 

For the denominator in (3) one has 

= fr (El + E;!) • IE n-! - E-In-!I, ••• , E! - E-!I, 
i=1 

(5) 

which is checked by multiplying the ith row of the 
determinant on the right-hand side by (El + E;!) and 
then, starting with the last column, subtract each 
column from the preceding one. 

We use the following identity which can be derived 
from Ref. 7, Chap. VII, Eq. (12.2): 

IEll - E- l1, •••• E l .. - E-l"l 

IEn-! - E-In-!I, ••• , E! - E-!I 

1 
=---:--~-.,..-----

IEn- 1 + E-In-I), ••. , EO + EOI 

X I (lE l1 ' + E-lt ', ••• , El .. ' + E-l .. ' I 
It>l t'>''' >1 .. >11 .. '1 

+ IElt' - E-11', •.• ,EI .. ' - E-I"'I), (6) 

the I; being half-integers. 
Now let En ~ 1 in (6). Then the last column and 

last row of the denominator on the right-hand side 
of (6) consist of 2's only, and for the sum one obtains 
(withj= l,"',n-I) 

I (I E~t' + Ejll', ••• , E~'" + Ejl .. ' I ) 
11>lt '>··· >/ .. >1/ .. '1 2, ... , 2 + 0 

=2· I j j' " , 

1 

E/t' + E-/t ' • •• E/ ... ' + E-:-I"'1 

It>lt '> ... >1 .. >/ .. '>0 2 " .. , 2 

(7) 
7 H. Boerner, Darstellungen von Gruppen (Springer-Verlag, 

Berlin, 1955); cr. also the English edition, Chap. VIII: H. Boerner, 
Representations of Groups (North-Holland Publishing Company, 
Amsterdam, 1963). 

since I~ runs from -(In - 1) to (In - 1) and the deter­
minant is even under I~ ~ -/~. 

From Eq. (12.5) of Chap. VII, Ref. 7, one can 
deduce the following relation (with j = 1, ... , n - 1; 
I; half-integer, J; integer): 

I 
Elt' + E- /1' • •• E/,,' + E-/ .. ' I 

i " " j 

2 ,"', 2 

I 
En-I + E-(n-I) ••. E~ + EO I 

' j , " j 

2 ,"', 2 

1 
= IE'.'-f - E-In- fl '" Ei - E-i ! , , , " , 

Combining Eqs. (3), (5), (7), and (8) one gets [with 
Ij = mj + (n - j + 1)]: 

82>12nI
X

I£1o .. '.1) _ 1 '" 
{m} - n-I £., , 

2 II ( 
i _l. It>lt'>''' >1 .. >1 .. >0 

Ej + Ei -) 
i=1 

X I 
It'>h''>··' >In_l''>ln' 

X !Elt" - E- lt", ••. ,El .. - 1" - E-I .. - t "!, (9) 
!En- i _ E-(n-~I, ..• , E! - E-!I 

where Ii, I; are integers, I; half-integers. Similar to (5) 
one has 

= IEn- 1 - E-(n-II, ••• , EI - E-I !. (10) 

With (3) and (10) and Ii = I; + 1, Eq. (9) becomes 
82>(2nI

X
(£1o ....... _10 11 _ '" 
{m} - £., 

1121t>122 "'21,,>0 

'" S2>(2(n-II)X«1 
" £.." {ml'" .. mn_l"} , 

It >ll 212 > ... >/ .. -t '21 .. 
(11) X 

where 

m; = 1; - (n - i), i = 1, ... , n - 1. 

Putting 

m; = ~ - (n - i + 1), i = 1, ... , n - 1, n, (12) 

and summing over m;, m; instead of Ii' I; in (II) one 
arrives at Eq. (2), which is equivalent to (1). 
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.T.he .Fresnel equation is deriv~ i!l general relativity using .th7 clas~ical method applied by Levi­
Cl~ta In ~he stu~y of a nonrelatIVlstlc theory of el~tromagnetIc mductIon. For the description of the 
arusotroplc medIUm the theory proposed by Quan IS adopted. The study of the Cauchy problem is 
also presented and the convergence of results assures us that the equation proposed is the good one. 

I. INTRODUCTION 

I N general relativity, we study the propagation of 
an electromagnetic wave in a medium with general 

electric and magnetic anisotropy. For the description 
of the anisotropic medium we adopt the theory 
proposed by Quan.1 The Fresnel equation of wave 
normals is obtained by the application of the classical 
method, which consists of analyzing the discontinuity 
of the first derivative of the electromagnetic field 
!",p, once applied by Levi-Civita in the study of the 
same question in anonrelativistic theory of electro­
magnetic induction.2 

Essentially, we study a special type of singular 
regions of the 4-space of general relativity. These 
singular regions are assumed to be 3-spaces 1:3 
(called hypersurfaces of discontinuity), such that 
across them the electromagnetic field is continuous, 
but the first derivative may not be continuous. 
Across 1:3 all the other physical quantities are 
supposed to be well behaved and in particular the 
metric tensor gf1./l and its first derivatives are assumed 
to be continuous throughout. In the last section the 
study of the Cauchy problem for Quan's theory is 
presented. 

The scheme followed in the paper generalizes the 
work on singular hypersurfaces made by Quan, l 

Saini,3 and others, with the restrictionlhat only the 
electromagnetic shock waves are studied. 

As far as the author knows, a general covariant 
Fresnel's equation is not presented in the literature.' 
Recently, using semiclassical methods, the author 
studied the Fresnel equation for vacuum polarization5 

and the desire to confront this result with the equation 

1 P. M. Quan, Problemes actuels en thiorie de la relat/vite (Revue 
d'Optique, Paris, 1959), p. 61. 

I T. Levi-Civita, Caracter/stiche dei Sistemi differenzjali e propa­
gazione ondosa (ZanicheJli, Bologna, 1931). 

8 G. L. Saini, Proc. Roy. Soc. (London) A260, 61 (1961). 
« cr., for example, L. D. Landau and E. M. Lifshitz, Electrody­

namics of Continuous Media (Pergamon Press, London, 1960). 
6 H. F. Kremer, Phys. Rev. 139, B254 (965). 

for a phenomenological theory motivated his interest 
on the subject. 

Throughout the paper, the Latin indices have a range 
1, 2, 3 and the Greek indices a range 1, 2, 3, 4. The 
usual rules of the tensor algebra are used, (for example: 
A[~B/l] :=. i(Af1.B/l - APBf1.), and the partial and covar­
iant derivatives are denoted by a a; and V"' respectively. 
The permutation symbol is Ef1.PylJ and 

Itpy6 _ (I I)! f1.py6 - (I I)! 'YJ = - g E , 'YJ,,/lyl> = g €«/ly6 • 

II. FUNDAMENTAL EQUATIONS 

An electromagnetical induction is defined in a 
domain of the 4-space V4 of general relativity when 
there are two antisymmetric tensor fields, !"p and p",p. 
called electromagnetic and induction field and two 
nonsingular matrices [€~], and [,u~], called induction 
matrices, for which 

U"'- PI' ua Ppll - E/lJpa; , 

I'*Uf1. p * Uf1. J/la; = ,u/lPpa; , 
(1) 

where V" is the 4-velocity of the charged medium 
defined in the domain. 

The notation employed is 

h/l := (E, B), P"'P:= (D, H), 
(2) 

f«~ = tria;PyoF", P:p = !'YJf1./lyl>p16
• 

If we introduce the 4-vectors, electric and magnetic 
fields and inductions, defined by 

(3) 

the constitutive equations (1) may be written 

D/l = €~Ep, Bp = ,u~Hp' (4) 

It is seen that the matrices [€~] and [.u~] represent 
two automorphisms of the vector space tangent to V4 • 
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If we represent by [A.~] and ['l"~] the inverse transforma­
tions of [e~] and Lu~], 

(5) 

we get for the constitutive equations (1): 

I" U" - , y U" * U" - Yf* U" Jp" - ApPy" , PP" - 'l"p Y'" . (6) 

The two fields /"p and p"p are supposed to satisfy the 
Maxwell equations 

V"f*"P = 0, 

V",p"p = JP, 

(7a) 

(7b) 

where the 4-current JP is related to /"p by the con­
stitutive equation called Ohm's law 

JP = aUJP" + bUP. (8) 

In the last equation the scalars a and b = UpJP are 
respectively the electrical conductivity and the excess 
charge. 

In what follows, it is useful to consider the inverse 
relations of (3): 

and 

(9a) 

(9b) 

p"p = 2D["UPl - 'YJ"P,JVH/lUy, (lOa) 

P:P = 2H["Up1 + 'YJ",p/lyD/lUv. (lOb) 

With the aid of Eqs. (lOa), (3), (1), and (6) we 
obtain p"p as a function of /"p and /"p : 

p"p = 2g'*UPle:fp"U" + 'YJ"pya'l":f;/lU/lUy' (11) 

The last equation is a generalization of the well: 
known equation valid for an isotropic medium (e~ = 
~e and 'l"~ = fl-l~): 

p"p = (l/fl)!"P + 2[(1 - efl)/fl]Uaf'*UP1. (12) 

III. FRESNEL EQUATION 

The equation of wave normals for the electro­
magnetic theory with inductions, may be obtained 
by the application of the method of Levi-Civita.2 

In the domain of existence V4 of /"p, we define a 
hypersurface of discontinuity ~3 

(13) 

to which corresponds at a given moment a wave 
surface which separates V4 into two distinct regions. 
The discontinuities tlCoyf,.p) and tl(OyP"p) of the first 
derivatives of f,.p and p"p across ~3 must satisfy the 
so-called "conditions of geometrical compatibility" 

tl(Vy/"p) = tl(Oyf,.p) = A"poy'l", 

tl(Vyp"p) = tl(Oyp"p) = Kapoy'l", 

(14a) 

(14b) 

A"p and K"p representing the "discontinuity tensors." 
The derivative of (11) gives 

V p"p = 2ga["uPlePU"V • y a yJ pA 
+ 'YJ"PAa'l":U/lU"Vyf;/l + 1p~P, (15) 

where the quantities 1p~P are independent of the deriv­
atives of f,.p and /"p . 

If we calculate the discontinuity of V yp"P across ~3 
with the use of (15), and taking into account that 
/"p and /"p are continuous across ~3 we have 

tl(Oyp"P) = 2ga["uPle:U"tl(oyfp,,) 

+ 'YJ"P"a'l":U/lU"tl(oyf:/l)' (16) 

Since not all the 01''l" are zero, we get from (16), 
(14a), and (14b): 

K"P = 2ga["uPlePU"A + 11"PAa'l"PU/lU A* (17) a P" ./ a A P/l 
with 

A;/l = !'YJP/l<;N; = I'YJP/lE;g'''g;YAAv' (18) 

The relation (17) between K"P and A"P depends only 
on the relation between f,.p and p"p, that is, on the 
constitutive equations. 

These tensors must also satisfy other conditions 
imposed by the field equations of the theory. These 
conditions, called "dynamic compatibility conditions," 
are obtained from (7a) and (7b): 

'YJPY6EAY60p'l" = 0, (19a) 

KP"op'l" = O. (19b) 

With the aid of (17) and (18), Eq. (19b) can be 
written in the form 

(2g"[PU"le~ua + l'YJP""v'YJ6/lEsgEPgSaU/lu,,'l"~)Apaop'T = O. 

(20) 

We note that (19a) admits the solution 

Apa = QaOp'T - QpOa'T, (21) 

where Qp is an arbitrary vector. Taking into account 
gauge invariance, we see that 

Apa = qaOp'l" - qpOa'l", (228.) 

qa = Qa + koa'T, (22b) 

with k, an arbitrary constant. With the condition 
04'l" :;!: 0, we can always choose k so that q, = 0 and 
we adopt this gauge. 

If we substitute (22a) into (20) we get 

M"Ppaq 0 'TO - = 0 a P p' , (23) 

where 

M"Ppa == 'YJP<XA.v'YJ6/lESU/lUA'T~gEPgSa + 4gA[PU"le~ual. 
(24) 
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With the definition 

H '«' = M IZ/1p,,::l ~ - VpTVpT, (25) 

Eq. (23) may be written 

HlZtrq,,=O. (26) 

These equations forming a linear and homogeneous 
system (26) are not independent because HIZ" satisfies 
the trivial identity 

(HIZ"q,,)oIZT == 0. (27) 

Since 04T ¢ 0, we can express the fourth equation 
(26) as a linear combination of the three others and 
the system is reduced to 

(28) 

The effective existence of discontinuities of 0r!lZ{J 
across ~a implies q. :;i:. 0, that is, 

det ,H''', = ° (29) 
or 

(30) 

This is the general covariant Fresnel equation for 
a medium with electric and magnetic anisotropy. 
If the medium presents electric anisotropy but is 
magnetically isotropic [T~ = (1/.u)~~], the last equation 
assumes the form 

det 1[(gPPgas _ gaPgPs) + (gap _ .ugAae~)UPUS 

_ (~a. _ .ug"ue1)UPUP + (g/1. _ .ug)./1e1)UPUa 

- (gPP - .ugJ.PeP)UaU10pTOpTI = 0. (31) 

For the complete isotropy (also e~ = ec}~), we have 

det l(gPPglZS - gaPgps)OpTpOTI = 0, 
where 

(32) 

glZP == glZP _ (1 - f..u)UIZUP. (33) 

Developing Eq. (32) we get the simplest form 

glZPOIZTOpT = 0. (34) 

Finally, it is easy to show that the well-known 
equation4 

det I1tSo",To"'T - OaTOsT + 1]la.ue:04To,,TI = ° (35) 

is obtained if we consider a Minkowski space (glZ/1 = 
1]1Z/3) and a frame moving with the medium. 

IV. CAUCHY PROBLEM 

We now consider the full system Einstein-Maxwell 
equations, where the functions (], [f.~1, and [.u~] are 
supposed to be known. The field variables are now 
glZP' h p , b, and UIZ and the Einstein equation deter­
mines glZP and UIZ. 

Given on a three-dimensional manifold Va (whose 
local equation we take as .x4 = 0) the field h/1' we try 
to determine the values on Va of oJ,.p. 

According to the field equation (7a), we have on 
Va: 

1]UvPo4fvp + <p\C.d.) = 0, (36) 

where q,A depends only on the Cauchy data (C.d.). 
This equation gives, for A. = k, the values of 04!ii 

on Va. 
For A = 4, (36) gives <p4(C.d.) = 0, which repre­

sents a condition that the Cauchy data must satisfy 
on Va' 

The other group of the field equations (7b) may be 
decomposed in the system: 

_M i44k04f4k + 1J'1(C.d.) = (]UIZPI1. + bUS, (37a) 

1J'4(C.d.) = (]Uf1.f41Z + l>U\ (37b) 

where 1J'« is also known because of the Cauchy data. 
If Va is not exceptional (det I Mi44kl :;i:. 0), Eq. (37a) 

may be solved for o4f4k' [We note incidentally that 
(37b) determines l>.] 

The characteristics of the Maxwell system are the 
manifold solutions of 

(38) 

With the aid of the coordinate transformations 
defined by 

for which 

(39a) 

(39b) 

M a'4'4's' - aa'a4'a 4'a s'MaPPs = 0 7'0 TMaPps (40) -".pps Pp' 

we get the covariant form (30) obtained in the last 
section. 

This convergence of results assures us that the 
equation obtained is the good one. 
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The principle of compensation of dangerous diagrams (PCDD) postulated by Dogoliubov to determine 
the coefficients in the canonical transformation to quasi-particles in superconducting systems is derived 
from four different criteria (1) the expected number of quasi-particles in the true ground state is a mini­
mum, (2) the one-particle density matrix and the two-particle amplitude determined from the DeS 
ground state are equated to the true ones, (3) the expectation value of an arbitrary operator is simplified 
by diagonalizing its quadratic part, and (4) the starting point for the dressing of the quasi-particle is 
chosen in the most convenient way. The condition obtained for the PCDD is then expressed in terms of 
quasi-particle Green's functions. The ladder diagrams are eliminated by examining an integral equation 
for the Green's function describing the creation of two quasi-particles from the vacuum. Finally, the 
condition obtained here for the PCDD is compared with the condition obtained previously. 

1. INTRODUCTION 

THE principle of compensation of dangerous diagra~s 
(PCDD) PO'stulated by BogO'hubO'vl to' determme 

the cO'efficients in the canO'nical transfO'rmatiO'n to' 
quasi-particles (QP) in supercO'nductivity theO'ry has 
been O'f cO'nsiderable interest since Henley and Wilets2 

shO'wed that the secO'nd- and higher-O'rder terms in it 
were very impO'rtant fO'r nuclear matter. The PCDD 
states that the cO'efficients in the canO'nical transfO'rma­
tiO'n shO'uld be determined by setting the sum O'f all 
the diagrams describing the creatiO'n O'f a pair of QP 
frO'm the vacuum equal to' zerO'.I.a It had previously 
been thQught that the cQrrectiO'ns to' the lowest-Qrder 
diagram were negligible,4 but Henley and Wilets2 

shO'wed that the energy gap equatiO'n sO'metimes did 
nQt even have sQlutions if the higher-Qrder terms in 
the PCDD were included. 

This result seems somewhat strange at first, be­
cause BO'gQliubov et al.5 have shown that the BCS 
mO'del6 with pairing fQrces is asymptQtically exact 
in the limit of infinite vQlume. This prQblem has 

* Present address: Department of Physics, Northeastern Univer­
sity, Boston, Massachusetts. 

1 N. N. Bogoliubov, Zh. Eksperim. i Teor. Fiz. 34, 58 (1958) 
[English trans\.: Soviet Phys.-JETP 7,41 (l958)}; Nuovo Cimento 
7,794 (1958); Usp. Fiz. Nauk SSSR 67,549 (1959) [English trans!.: 
Soviet Phys.-Usp. 2,236 (I959)}. 

2 E. M. Henley and L. Wilets, Phys. Rev. 133, BII8 (1964); 
Phys. Rev. Letters 11, 326 (1963). 

3 N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A 
New Method in the Theory of Superconductivity (Academy of 
Sciences of the USSR Press, Moscow, 1958) (English trans!.: 
Consultants Bureau, New York, 1959); Fortschr. Physik 6, 605 
(1958). 

4 V. V. Tolmachev and S. V. Tiablikov, Zh. Eksperim. i Teor. 
Fiz. 34, 66 (1958) [English trans!.: Soviet Phys.-JETP 7,46 (1958»). 

& N. N. Bogoliubov, D. N. Zubarev, and Yu. A. Tserkovnikov, 
Zh. Eksperim. i Teor. Fiz. 39, 120 (1960) [English trans!.: Soviet 
Phys.-JETP 12, 88 (1961»); N. N. Bogoliubov, Physica 26, SI 
(1960). 

G J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108. 
1175 (1957). 

recently attracted a great deal O'f attentiO'n because it 
is Qne O'f the few nO'ntrivial examples of an exactly 
sO'lvable mO'del in quantum field theO'ry.7 However, 
since Henley and Wilets2 were investigating nO'n­
pairing forces in general it is nO' cO'ntradictiO'n that they 
O'btained the result that the secQnd- and higher-Qrder 
terms in the PCDD are impO'rtant. TO'lmachev and 
TiablikQv4 calculated the secO'nd-Qrder term in the 
PCDD fQr a pairing type interactiQn and PQinted Qut 
that the term was Qf higher Qrder in the cQupling 
cO'nstant than the O'rder of validity of the mO'del 
HamiltQnian in the theQry Qf supercQnductivity. 
The BCS theQry has alsO' been applied to' finite nuclei8 

where it is nO't exact, and therefO're it is impO'rtant to 
investigate the fO'undations O'fthe PCDD and the effect 
Qf higher-order terms. 

The PCDD was originally PQstulated to' remO've 
some terms in the perturbatiO'n expansion of the 
ground state energy that could be divergent.1•3 

Since the expansion itself was nQt guaranteed to' 
cO'nverge,2 this argument was nO't very cO'nvincing. 
However, it was shQwn that the PCDD corresPO'nded to 

(1.1) maximizing the O'verlap between the true and 
the BCS ground state vectO'r,9 

(1.2) eliminating twO' QP states frQm the true 
ground state vector,9 

7 R. Haag, Nuovo Cimento 25, 287 (1962); H. Ezawa, J. Math. 
Phys. 5, 1078 (1964); L. Lep)ae and H. Umezawa, Nuovo Cimento 
33, 372 (1964); c. T. Chen-Tsai, Chinese J. Phys. (Taiwan) 3, 22 
(1965). 

8 A. Bohr, B. R. Mottelson, and D. Pines, Phys. Rev. 110, 936 
(1958). S. T. Beliaev, Kg!. Danske Videnskab. Se)skab, Mat. Fys. 
Medd. 31, No. 11 (1959); L. S. Kisslinger and R. A. Sorenson, Kgl. 
Danske Videnskab. Selskab, Mat. Fys. Medd. 32, No.9 (1960); 
M. Baranger, Phys. Rev. 120, 957 (1960); V. G. Soloviev, Kg!. 
Danske Videnskab. Selskab, Mat. Fys. Skrifter 1, No. 11 (1961); 
C. J. Gallagher, Jr., and V. G. Soloviev, Kg!. Danske Videnskab. 
Selskab, Mat. Fys. Skrifter 2, No.2 (1962). 

9 D. H. Kobe, Phys. Rev. 140, A825 (1965). 
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(1.3) diagonalizing the quadratic part of the reaction 
operator (Brillouin-Brueckner-Bogoliubov condi­
tion),9 and 

(1.4) generalizing Brueckner's extension of Hartree­
Fock theory (the exact self-consistent-field theory) to 
QP.10 

These criteria gave a condition for the PCDD which 
is called the PCDD(I). It could be expanded by 
perturbation theory,4.1o but it was difficult to fit into 
the framework of QP Green's functions.u Using 
time-dependent perturbation theory it was even 
difficult to show that ladder diagrams do not contrib­
ute to the PCDD.10 On the other hand, these criteria 
give some needed physical insight into a previously 
abstruse and mathematical principle. 

It is the purpose of this paper to obtain another 
formulation of the PCDD which is also based on 
reasonable physical criteria, but which can be ex­
pressed conveniently in terms of QP Green's functions. 
The criteria which are used here are: 

(ILl) the total expected number of QP in the true 
ground state is a minimum, 

(11.2) the one particle density matrix and the two 
particle amplitude determined from the BCS ground 
state are equated to the true ones, 

(11.3) the expectation value of an arbitrary operator 
is simplified by diagonalizing its quadratic part,12 and 

(11.4) the starting point for the dressing of the QP 
is chosen in the most convenient way. 

These four criteria all lead to the same condition for 
the PCDD, which is called the PCDD(II). It is not 
exactly the same as the PCDD(I), but it is still 
compatible with the original statement of the PCDD 
that the sum of all dangerous diagrams vanish.1.3 

Criterion (11.1) has an especially simple physical 
interpretation. If the number of QP in the true ground 
state is a minimum, the QP would be expected to 
behave more like an ideal gas. The QP interactions 
would not be as important and thus the free QP model 
would be expected to be a good approximation. The 
expansion of the true ground state in terms of the QP 
states would converge rapidly. Thus this criterion is 
just as physically appealing as the maximum overlap 
criterion (1.1). 

Perhaps the most important aspect of the new 
condition for the PCDD is that it is easily formulated 
in terms of QP Green's functions which have pre­
viously been investigated.ll The equations of motion 

10 D. H. Kobe, Quantum Chemistry Group, UppsaJa, Sweden, Re­
port No. 137, 1964 (unpublished); Ann. Phys. (N.Y.) 40,395 (1966). 

11 D. H. Kobe and W. B. Cheston, Ann. Phys. (N.Y.) 20, 279 
(1962). 

11 The quadratic part of an operator is that part containing a 
product of two creation or annihilation operators. 

for the Green's function describing the creation of 
two QP from the vacuum can be used to 
obtain a perturbation expansion of the PCDD(II), 
and even go beyond ordinary perturbation theory. 
It is also very easy to remove the ladder diagrams 
from the PCDD(II) by solving an integral equa­
tion. 

In the next section the Bogoliubov QP is defined 
and the Hamiltonian transformed to QP operators. 
The criterion of minimum expected number of QP 
in the ground state is applied in Sec. 3 to obtain the 
PCDD(II). In Sec. 4 the criterion of best approxi­
mation to the true one- and two-particle density 
matrices is used to obtain the best coefficients in the 
canonical transformation. It is shown in Sec. 5 that 
the diagonalization of the quadratic part of the 
expectation value of an arbitrary operator also leads 
to the PCDD(II). The best starting point for the 
subsequent dressing of the QP is discussed in Sec. 6. 
Section T gives the Green's function formulation of 
the PCDD(II). The ladder diagrams can be eliminated 
by using the QP Green's functions as shown in Sec. 
8. In Sec. 9 a comparison is made between the 
PCDD(I) and the PCDD(II). Finally the last section 
summarizes the different criteria and the advantages 
of the PCDD(II). 

2. BOGOLIUBOV QUASI-PARTICLES 

In this section the method of the canonical trans­
formation is reviewed, because the equations are 
needed later. The necessity for a source term in the 
Hamiltonian and its implications are discussed. 
Finally the Hamiltonian is transformed to the QP 
operators. 

The Hamiltonian for a system of particles inter­
acting with two body forces is 

H = 2 (e1 - Jl)ala 1 - t 2 {121 V 134) aiaJasa4 • 
1 1234 

(2.1) 

The operators at and a1 are the creation and anni­
hilation operators for fermions with momentum 
k1 and spin 0'1 (± = up/down), and (1) = (k1' 0'1), 
and (2) = (k2' 0'2), etc. They satisfy the usual fermion 
anticommutation relations. The matrix element of the 
potential (121 V 134) is antisymmetric and positive 
for attractive interactions, e1 is the kinetic energy, 
and Jl is the chemical potential. 

Since we are interested in superconductivity, it is 
necessary to introduce a source term into the Hamil­
tonian in order to remove the degeneracy due to the 



                                                                                                                                    

1202 DONALD H. KOBE 

appearance of a condensate of bound pairs. I3 The 
source term is 

H. = -y 2 (wla:a~I + w: a_IaI), (2.2) 
I 

where after the calculation the limit y ~ 0 is taken. 
The complex function WI is arbitrary. The terms in 
Eq. (2.2) remove the conservation law for the number 
of particles. The new Hamiltonian 

H'= H+ Hs (2.3) 

is now used. This Hamiltonian does not commute with 
the number operator, and so therefore the number of 
particles is not a good quantum number. If 10) is the 
true ground state vector of H', then it is not an eigen­
state of the number operator. 

In order to treat the problem of superconductivity, 
Bogoliubovlo3 and ValatinI4 introduced the canonical 
transformation to quasi-particles (QP)I5 

(2.4) 

The QP is a particle with probability amplitude UI and 
a hole with probability amplitude VI' The QP are 
also fermions if the transformation is to be canonical, 
so the QP creation and annihilation operators satisfy 
the usual fermion anticommutation relations. This 
condition implies that the coefficients satisfy 

(2.Sa) 

(2.Sb) 

(2.Sc) 

Equation (2.4) and its Hermitian conjugate can be 
solved for the particle annihilation operator 

(2.6) 

Equation (2.6) expresses the particle annihilation 
operator in terms of the QP creation and annihilation 
operators. 

The Hamiltonian H' in Eq. (2.3) obviously has a 
different form than the Hamiltonian H in Eq. (2.1). 
If Eq. (2.6) and its Hermitian conjugate are substituted 
into the Hamiltonian H' and the QP operators are 
put in normal order, the result will be of the same form 
as if only H had been used. Thus H and H' have the 

18 N. N. Bogoliubov, Physica 26, 81 (1960). This procedure is 
analogous to the addition of an infinitesimal magnetic field in the 
theory of ferromagnetism. The limit as the field goes to zero is taken 
after the magnetization has been calculated, which gives a nonzero 
value below the Curie point. Bogoliubov has called all of these 
procedures quasi-averages. For superconductors the relation between 
the quasi-average method and the nonzero two-particle amplitudes 
(or anomalous propagators) was investigated by B. Johansson, 
Physica 32, 2164 (1966). 

14 J. G. Valatin, Nuovo Cimento 7, 843 (1958). 
16 The coefficients U1 and V1 are taken as real here. It is shown in 

the Appendix that this choice can be made without loss of generality. 
See also Ref. 13. 

same form after the canonical transformation to QP 
has been made. In terms of QP the addition of the 
source term Hs to the original Hamiltonian H leaves 
it form invariant. The limit y ->- ° can be taken in H' 
and the original Hamiltonian is recovered. The only 
purpose of the source term is to give us a hunting 
license for nonzero two-particle amplitudes (01 ai a!IIO). 
These would definitely be zero if the source terms were 
not present. I6 

The Hamiltonian H in Eq. (2.1) in terms of the 
QP operators can be written asH 

(2.7) 

where j + k = 0,2,4 and (j, k) = (0, 1,2,3,4). The 
term Hik has j QP creation operators and k QP 
annihilation operators 

Hik= 2 h iil,2,···,j+k) 
I,2'''',i+k 

X lXilX~ ••• IXJIXi+I ••• lXi+k, (2.8) 

where the coefficients hik can be found in Appendix A 
of Kobe and Cheston,u 

The QP vacuum state is needed later as the unper­
turbed ground state in Sec. IV. The BCS ground state 
vector is6 

IBCS) = II (u i + viaJa~i) Ivac), (2.9) 
; 

where the product is only over half the total number 
of states, and Ivac) is the state of no particles. The 
BCS ground state can be shown to be the vacuum for 
the QP 

(2.10) 

for all k, by using Eq. (2.4). Because of this convenient 
property it is natural to choose the BCS state as the 
unperturbed ground state. 

3. MINIMIZATION OF THE NUMBER 
OF QUASI-PARTICLES 

The problem now is to determine the best choice of 
the coefficients UI and VI in Eq. (2.4), which then gives 
the best Bogoliubov QP. In previous papers9.IO the 
criteria (Ll) through (1.4) have been used to obtain 
the PCDD(I). In this section another criterion is used 
to give a somewhat different condition for the best 
Bogoliubov QP which is called the PCDD(II). It is, 
however, completely compatible with the original 
statement of the PCDD given by Bogoliubov in terms 
of dangerous diagrams.lo3 

The criterion (ILl) which is used now is that the 
total expected number of QP in the true ground state 
is a minimum. If the true ground state vector is given 

18 Y. Nambu, Phys. Rev. 117, 648 (1960). 
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by 10) the total expected number of QP in it is the procedure is carried out the conditions for a minimum 
expectation value of the QP number operator are 

n == ! (01 OC;OCj (0) = minimum 
j 

subject to the constraints in Eq. (2.5). 

(3.1) 

This criterion is a very natural one, since if the 
number of QP in the true ground state were a mini­
mum, the QP would be expected to behave almost 
ideally. Their number would be small and interactions 
would not be as important as if there were many QP 
present. Thus the free QP model would be expected 
to be a good approximation. This condition is anal­
ogous to reducing the pressure in a volume of gas, 
so that it behaves more ideally. By minimizing the 
number of QP, the expansion of the true ground state 
in terms of zero, two, four, etc. QP states would 
converge rapidly. This criterion would also be expected 
to be a good starting point for a treatment of QP 
interaction effects which is discussed in Sec. 6. 

Because of the constraints in Eq. (2.5) it is necessary 
to introduce the Lagrangian multipliers A. and mini-

• 1 

mlze the function 

n' = n + ! Aj(U; + v~ - 1). (3.2) 
j 

However, the operator Lk can be defined aslO 

Lk = uk(O/OVk) - vk(O/OUk), 

which has the property that 

Lk!A;(u~ + v; - 1) = o. 
j 

(3.3) 

(3.4) 

Therefore it does not make any difference if Lk is 
applied to Eq. (3.1) or (3.2). 

If n is minimized (or extremized) with respect to the 
coefficients in the canonical transformation, the 
result is the condition 

Lkn = 0 = Re (Olockoc!k 10), (3.5) 

which is called the PCDD(Il). It gives an equation 
from which the coefficients U1 and VI can be determined 
to give the best Bogoliubov QP. In Sec. 9 it is 
compared with the PCDD(I), and, in Sec. 7 a means 
of expanding it in terms of QP Green's functions is 
given. 

Equation (3.5) for the extremum is actually a mini­
mum if the second derivatives n' ,n' ,and n' . (-u/v) 

U11 111' ltV 

are all positive. The second derivatives n' and n' . uu vv 
mvolve the Lagrangian multipliers Ai which must be 
eliminated by using the two equations obtained by 
setting the first derivatives equal to zero. When this 

(01 aZak 10) > (OlocZock (0), 

(01 akaZ 10) > (OlocZock 10), 

2UkVk Re (01 a!a~k 10) > O. 

(3.6a) 

(3.6b) 

(3.6c) 

These conditions should be satisfied since the number 
of QP in the true ground state is expected to be small. 
The number in the BCS state is, of course, zero. 
However, it is not yet known whether the extremum 
is a minimum or a maximum. 

The conditions in Eq. (3.6) can be shown to be 
satisfied by solving Eq. (3.5) for the coefficients Uk 
and v~, and then substituting them into Eq. (3.6). 
EquatiOn (3.5) can be expressed in terms of the 
coefficients and particle amplitudes by using Eq. (2.4) 
which gives 

(ui - V~Ak = 2ukvk Bk, (3.7) 

where Ak is defined to be the two-particle amplitude1? 

Ak = Re (01 ata~k 10) (3.8) 

and Bk is defined as 

2Bk = (01 akaZ 10) - (01 a~ka_k 10), (3.9) 

which can be either positive or negative. Equation 
(3.7) can be solved with the help of Eq. (2.5) and the 
results are 

2UkVk = Ak/Ck (3.10) 
and 

u~ - v~ = Bk/Ck , (3.11) 
where 

Ck = [A~ + B;]!. (3.12) 

The expected number of QP in the true ground state 
can be expressed in terms of the particle amplitudes 
by using Eqs. (2.4), and (3.10) through (3.12) to give 

(Oloctock 10) = t - Ck • (3.13) 

Since the expected number of QP in the BCS ground 
state is zero and C" = t for the BCS state, the 
positive solution has been taken in Eqs. (3.10) through 
(3.12). If Eqs. (3.13), (3.9), and (3.12) are used in Eq. 
(3.6) the conditions become 

Bk < [Ai + Bill, 
-Bk < [Ai + Bi]!, 

A!/Ck > O. 

(3.14a) 

(3.14b) 

(3.14c) 

These conditions are an satisfied for positive or 
negative Bk as long as Ak in Eq. (3.8) is not zero. 

17 A transformation on the single-particle orbitals as shown in Eq. 
(AlO) can always be made to make <01 aiaL 10) real. 
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However, this condition is just the condition that the 
system is in the superconducting phase. Therefore for 
'superconducting systems, the extremum condition 
given by the PCDD(I1) in Eq. (3.5) makes the ex­
pected number of QP in the true ground state a true 
minimum. 

4. BEST DENSITY 

The criterion for the best Bogoliubov QP that is 
now discussed is that the one- and two-particle 
density matrices obtained with the BCS ground state 
are the best approximations to the true ones. The 
single-particle density matrix obtained from the 
BCS ground state can be set equal to the true single­
particle density matrix. The two-particle density 
matrix obtained from the BCS ground state can be 
equated to a Gorkov18 type factorization of the true 
two-particle density matrix. This criterion is essentially 
the same as the best density criterion in the inde­
pendent particle model,19 where the orbitals are 
Lowdin's natural spin orbitals.20 

The matrix element of the single-particle density 
matrix determined from the BCS ground state is 

(BCSI akak IBCS) = v~ (4.1) 

if Eqs. (2.6) and (2.10) are used. This expression can 
be chosen such that it is equal to the true single­
particle density matrix21 

v~ = (01 aZak 10) = (01 a~ka_k 10), (4.2) 

which can, for example, be calculated by the linearized 
equation of motion method. 22 This condition has in 
principle determined the coefficients because of Eq. 
(2.5). However, we investigate the two-particle 
density matrix to see if there are any auxiliary con­
ditions which must be imposed. 

The matrix element of the two-particle density 
matrix determined from the BCS ground state is 

(BCSI aia:a3a4 IBCS) 

= (U1V1)(U4V4)r53--4r51_2 + VM(r5 23r514 - 15131524) (4.3) 

from Eq s. (2.6) and (2.10). However, the two-particle 
amplitude determined from the BCS ground state is 

(BCSI aZa~k IBCS) = UkVk . (4.4) 

18 L. P. Gorkov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958) 
[English trans!.: Soviet Phys.-JETP 7,505 (1958)]; S. T. Beliaev, 
Physica 26, SI81 (1960); A. Zawadowszki and G. P6csik, Phys. 
Letters 7, 173 (1963); Nuovo Cimento 32, 1110 (1964). 

,. W. Kutzelnigg and V. H. Smith, Jr., Quantum Chemistry 
Group, Uppsala, Sweden, Report No. 130, 1964 (unpublished); 
J. Chem. Phys. 41, 896 (1964). 

00 P. O. Lowdin, Phys. Rev. 97, 1474 (1955). 
21 The number of particles in the state k is the same as the number 

in the state -k by inversion symmetry. 
22 O. Pines, The Many-Body Problem (W. A. Benjamin, Inc., New 

York, 1961), pp. 94-96. 

The coefficients can be chosen such that UkVk is equal 
to the true two-particle amplitude17.23 

UkVk = (01 ata~k 10), (4.5) 

which is not zero in the superconducting state13 

because of the source term in Eq. (2.3). The two­
particle amplitude and the density matrix can be 
shown to satisfy two coupled equations by the 
linearized equation of motion method. 22 

If Eqs. (4.2) and (4.5) are substituted into Eq. (4.3), 
we obtain a Gorkov18 type factorization of the two­
particle density matrix 

(01 aia:aaa4 10) 

"" (BCSI aia:a3a4 IBCS) 

"" (01 ai a~l 10)(01 a_4a4 10) 153--«151_ 2 

+ (01 aia1 10)(01 a~a210) (1523<514 - 15 131524), (4.6) 

Equation (4.6) shows why it is not surprising that 
Gorkov18 obtained the BCS theory6 with this type 
of ansatz. The Green's function equations that he used 
are analogous to the linearized equation of motion 
method used by Pines. 22 

If the ansatz in Eq. (4.6) is used in the expectation 
value of the Hamiltonian, Eqs. (4.5) and (4.2) sub­
stituted into it, and the expression is minimized with 
respect to the coefficients, the BCS result6 is obtained. 
This procedure corresponds to Valatin's14 minimiza­
tion of Hoo in Eq. (2.7). All of these methods corre­
spond to the PCDD in lowest order. 

Equation (3.7) can easily be obtained by multiplying 
Eq. (4.5) by (u~ - vD and making use of Eqs. (4.2) 
and (2.5). If, however, Eq. (2.6) is substituted into 
Eq. (3.7) the condition 

Re (OIIXZIX~k 10) = 0 (4.7) 

is obtained which is the same as Eq. (3.5) for the 
PCDD(Il). Thus the criterion of best approximation 
to the one- and two-particle density matrices gives 
the same condition as the minimization of the number 
of QP in the true ground state.23a 

5. SIMPLIFICATION OF EXPECTATION 
VALUES 

In his original paper on the canonical transforma­
tion applied to boson systems, Bogoliubov24 neglected 
the QP interaction terms and merely diagonalized the 
quadratic part of the Hamiltonian which lead to only 

o' If the coefficients are complex Eq. (A6) would be obtained from 
this criterion too. 

23& V. H. Smith, Jr., Nuovo Cimento 48, 443 (1967), has shown 
that the PCOO(I) is equivalent to setting 

v! = (01 aiak IBCS), 
which is the transition density matrix. 

o. N. N. Bogoliubov, J.Phys. (U.S.S.R.) 11, 23 (1947). 



                                                                                                                                    

COMPENSATION OF DANGEROUS DIAGRAMS 1205 

the compensation of the lowest-order dangerous 
diagram. It was shown previously9 that diagonalizing 
the quadratic part of the reaction operator (or 
t matrix) leads to the PCDD(I). No matter how im­
portant these two operators are for the energy, they 
should not be overemphasized, since there are many 
other important operators. One possible criterion for 
the best Bogoliubov QP would be to diagonalize the 
quadratic part of the operator that is most important 
to the particular problem. However, this criterion 
would make the coefficients dependent on which 
operator was chosen, which would not be a desirable 
feature. Since it is really expectation values which are 
of interest, the criterion of diagonalizing the quadratic 
part of the expectation value of an arbitrary operator 
can be used. In this way the expectation values of 
arbitrary operators can be simplified. 

An arbitrary one-, two-, three-, or many-particle 
operator Q can easily be expressed in second quanti­
zation.2s When it is transformed to the QP creation 
and annihilation operators in Eq. (2.4) and put in 
normal order, it can be written in a form similar to the 
Hamiltonian in Eq. (2.7). The true expectation value of 
the operator is 

(0\ Q \0) 

= Qoo + (0\ Qll \0) + 2 Re (0\ Q20 \0) + ... , 
(5.1) 

where 
(0\ Qll \0) = I qll(k, k) (01 ocrock 10) (5.2) 

k 
and 

Re (01 Q20 10) = I q2o(k, -k) Re (01 OC~OC~k 10). (5.3) 
k 

The three dots in Eq. (5.1) represent the expectation 
values of the parts containing more than two QP 
creation and annihilation operators. The coefficients 
qil contain the matrix elements of the operator Q 
and the coefficients in the canonical transformation. 
It is assumed that q20 is real in Eq. (5.3). 

Since the coefficients can be chosen arbitrarily, the 
form ofEq. (5.1) will be simplified if the third term on 
the right vanishes. From Eq. (5.3) it can be seent hat 
it will vanish if 

(5.4) 

which is the same condition as Eq. (3.5) for the 
PCDD(II). It will also vanish if Q2o(k, -k) vanishes, 
but this condition gives coefficients that are dependent 
on the matrix elements of the operator, which is not 
desirable. Equation (5.4) for the coefficients is also 

S'D. H. Kobe, Proc. Phy~. Soc. London 88,9 (\966); E. R. Pike, 
ibid. 81, 427 (\963); see also D. H. Kobe, Am. J. Phys. 34, 1150 
(1966). 

advantageous in that Eq. (5.2) will be "small" since 
the number of QP in the state k in the exact ground 
state will be minimized by the condition. 

Thus the condition of diagonalizing the quadratic 
part of the expectation value of an arbitrary operator 
also gives the PCDD(II). The criterion (I.3) which 
stipulates that the quadratic part of the reaction 
operator should be diagonal gives the PCDD(I). In 
this section it is the expectation value of the quadratic 
part of an arbitrary operator which is diagonalized, 
so that there is no contradiction between these two 
criteria. 

6. BEST STARTING POINT FOR THE 
DRESSING OF THE QUASI-PARTICLE 

Because of the QP interactions, the free QP becomes 
dressed with a cloud of virtual collective excitations.28.27 

The virtual emission and absorption of these collective 
excitations causes the energy of the bare QP to 
become dressed. This dressed energy is a better 
description of the QP since it takes into account the 
effect of QP interactions that are ignored in the free 
or bare QP model. 

Another criterion that can be applied to determine 
the best choice of coefficients in the canonical trans­
formation is that the starting point for the treatment 
of the QP dressing is chosen in the most convenient 
way.28 This criterion is not unique, but it is shown that 
a reasonable choice will lead to the PCDD(II) 
obtained from the other criteria. 

The concept of dressing can best be described in 
terms of Green's functions for the QP. In a previous 
paperll the set of coupled integral equations satisfied 
by the Fourier transform of the QP Green's functions 

~nm(l, 2, ... , n, n + 1, ... , n + m) 

= i (01 T{OCI ••• ocnoc!+1 ... oc!+m} 10) (6.1) 

were investigated. The creation and annihilation 
operators in Eq. (6.1) are in the Heisenberg picture. 
The variables are defined as (1) = (kI' f'1I' tI ), (2) = 
(k2' f'12' ( 2), etc. The operator T is the time ordering 
operator that puts the largest times on the left and 
the smallest on the right with a plus sign for an even 
and a minus sign for an odd permutation of the 
original order. 

The equation of motion for the single QP propa­
gator can be obtained and is shown in Fig. 1. The 
QP self-energy was obtained in a previous paper28 

where the vertex in Fig.l(g), h20(k, -k), was set equal 

16 D. H. Kobe, Ann. Phys. (N.Y.) 28, 400 (\964). 
17 J. R. Schrieffer, Nucl. Phys. 35, 363 (1962). 
!8 For the independent particle model the criterion of the best 

starting point for a subsequent treatment of correlation was proposed 
in Ref. 19. 
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-B--
(a) 

+ ~ +~+ 
(b) (c) (d) 

+ ~ + ~ 
(e) (f) (g) 

FIG. I. The equation of motion for the single quasi-particle 
propagator. 

to zero so that the term vanished. This procedure is 
just the PCDD in lowest order which is not adequate. 
The self energy was determined from the remaining 
terms in Fig. 1. However, higher-order dangerous 
diagrams would arise from some of the remaining 
terms in Fig. 1. For example, when Fig. l(f) is 
expanded it results in a term that has the same form as 
Fig. leg) except that the vertex function is a second­
order dangerous diagram and would not vanish if 
only h2o(k, -k) were zero. It is thus desirable to find 
another condition which would result in the vanishing 
of the sum of an terms involving G02 or G20 in the 
expansion of the single quasi-particle propagator. 

The concept of dressing the QP is really only an 
approximation which could be expected to be valid 
in the case of weak QP interaction. The true single 
QP propagator has poles at all the excitation energies 
of the system as the true spectral representation 
shows29 

G11(1,2) = (-2'1T)-1!5(WI - ( 2) 

X ! {(Ol ex1 1$>($1 ex! 10) + (01 IX~ Is)(sl IX1 10)} (6.2) 
S WI - Ws + iO WI + Ws - iO ' 

where Is) is a true eigenstate of the Hamiltonian H'in 
Eq. (2.3) and Ws is its excitation energy. The argu­
ments of Gu (1,2) contain the variables (1) = 
(kl' (11' WI), etc. The first term in Eq. (6.2) is the 
retarded part and the second term is the advanced 
part. 

In the absence of QP interactions, the true ground 
state reduces to the BCS ground state IBeS). The 
complete set of states reduce to the zero, one, two, 
etc. free QP states. Thus the only state that contrib­
utes to the sum over states in the first term in Eq. 
(6.1) is the state with one QP Is) = IXi IBCS) with an 
excitation energy E1 == hu(1, 1). The advanced part 
of Eq. (6.2) vanishes because of Eq. (2.10). Thus, in 
the absence of QP interactions; Eq. (6.2) reduces to the 

18 D. H. Kobe, Ann. Phys. (N.Y.) 19, 448 (1962). 

free QP propagator 

G°(l) = (-2'17' )-l( WI - E1 + iO)-l (6.3) 

after integration (summation) over Wll(kll, (1J. 

If the QP interaction is turned on very weakly, the 
form of Eq. (6.3) would still be expected to be a good 
approximation to the retarded part of the single QP 
propagator. The predominant contribution to the 
sum in Eq. (6.2) for the retarded part would come 
from the state with one QP created from the true 
ground state Is) = IXi 10) with the excitation energy 
;1' For the advanced part ofEq. (6.2) the predominant 
contribution would come from the state Is) = ex!.1 10) 
with the same excitation energy, Thus a good approxi­
mation to Eq. (6.2) would be30 

G
11

(l) = (_2'17'r1{{OI IXIIXi 10)(01 IXIIXI 10) 
WI - ;1 + iO 

+ (01 exiex!I 10)(01 ex_llXl 10)} (6.4) 
WI + ;1 - iO 

after integration (summation) over w2(k2 , (12)' The 
energy ;1 is the dressed energy and can be determined 
in principle from the Dyson equation.31 The advanced 
part of Eq. (6.4) is inconvenient, so it would be 
convenient to choose the coefficients such that it 
vanished. This choice is now shown to lead to the 
vanishing of G02 also. 

Mter this discussion of the approximations used in 
Gll for the dressing of the QP, the same approxi­
mations can be made in Fig. leg) for the two QP 
creation propagator G02 ' The functions Gll and G02 

are coupled to each other and thus the same type of 
approximations should be used for both for the sake 
of consistency, The spectral representation of G02 is29 

G02(1,2) = (-27T)-1!5(WI + (2) 

x ! {(Ol IXI Is>(sl ex: ,10) + (OJ IXJ Is)(sl exi ,IO)}. (6.5) 
S WI - w. + ,0 WI + Ws - 10 

The state which would be expected to predominate 
for weak QP interactions in Eq. (6.5) is Is) = IX.!.I 10) 
in the first term and Is) = exi 10) in the second. Both 
these states would have the same excitation energy 
;1' The propagator G02 would then take the form 

G
02

(1) = (_27T)-I{(01 exiex!l 10)(01 IX_IIX!I 10) 
WI -;1 + iO 

+ (Ol IX!IexiIO)(OI IXloci 10)} (6.6) 
WI +;1 - iO 

after integration (summation) over w2(k2 , (12)' 

ao See, e.g., P. Nozieres, Theory of Interacting Fermi Systems 
(W. A. Benjamin, Inc., New York, 1964), Chap. 3, for a discussion of 
the concept of dreSSing. 

81 F.1. Dyson, Phys. Rev. 75, 1736 (1949). 
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The two QP creation propagator G02 and the ad­
vanced part of the single particle propagator in Eq. 
(6.4) will all vanish if the two QP amplitude in the 
numerator vanishes. Thus we can use the condition 

(6.7) 

to determine the coefficients in the transformation. 
The imaginary part of the two QP amplitude is also 
zero because of Eq. (AS). Thus the term in Fig. l(g) 
and other similar terms involving G02 and G20 are 
zero. From Eq. (6.4) the single-particle propagator is 
thus 

Gu (1) = (-27T)-I(Wl - ~l + iO)-IZl , (6.S) 

where ZI is the numerator of the retarded part in 
Eq. (6.4). Equation (6~S) is in exactly the same fO.rm as 
the bare propagator in Eq. (6.3), and can easily be 
determined from the Dyson equation.3l If the ad­
vanced part were not zero, the Dyson equation 
would be much more difficult to solve. Thus the 
criterion of the most convenient starting point for the 
dressing of the QP is also seen to lead to the PCDD(II) 
in Eq. (6.7). 

7. QUASI-PARTICLE GREEN'S FUNCTION 
FORMULATION 

In order to obtain an expansion of PCDD(II), it is 
convenient to express it in terms of the QP Green's 
functions. Then the QP Green's functions equations 
of motionll can be used to expand the PCOO(II) in 
terms of QP interactions. An ordinary perturbation 
expansion can be obtained,lo but the Green's function 
method enables an infinite subset of graphs to be 
summed, and intermediate propagators to be dressed. 
Thus by using Green's functions one can go beyond 
the limitations imposed by ordinary perturbation 
theory. In the next section the Green's function method 
is used to eliminate the ladder diagrams. 

From the spectral representation of the two QP 
creation propagator G02 in Eq. (6.5), it can be shown 
that the two QP amplitude is 

g02(1,2) :=: -Re iII dW I dw2Go2(1, 2) 
-00 

= Re (01 oc~oc~ 10). (7.1) 

The two QP annihilation propagator G20 has a spectral 
representation similar to Eq. (6.5).29 It is related to the 
two QP amplitude by an equation similar to Eq. (7.1) 

00 

-00 

= Re (01 ocloc210). (7.2) 

FIG. 2. The principle of compensation 8
2 

__ -__ --_-_­
of dangerous diagrams in diagrammatic 
form. The dashed lines represent inte-
gration over the energies. 

From Eqs. (7.1) and (7.2) it follows that 

g02(1,2) = g2o(2, 1). 

o 

(7.3) 

Because of the QP anticommutation relations, we also 
have the result 

g02(1,2) = -go2(2, 1). (7.4) 

From the PCDO(II) in Eqs. (3.5), (4.7), (5.4), and 
(6.7) the condition for the best QP is 

g02(1, -1) = 0, (7.5) 

which is shown graphically in Fig. 2. 
The Green's function G02 satisfies the following 

equation of motionll : 

Go2(1,2) 

= L' 47Th~2(ll')GO(I)Gll(1'2) 
+ L' 47Th~2(I'2'13')G\I)G13(3', 1'2'2) 

+ L' -27Th;I(I'2'3'l)G°(1)Go4(I'2'3'2) 

+ L' -67Th~3(1'12'3')GO(I)G22(2'3', 1'2) 

+ L' 87Th~4(13'2'I')GO(I)G3l(3'2'I', 2). 

(7.6a) 

(7.6b) 

(7.6c) 

(7.6d) 

(7.6e) 

(7.6f) 

This equation is shown graphically in Fig. 3. It 
represents an "expansion" of the Green's function in 
terms of the last interaction, the outgoing QP en­
counters. The free QP propagator G°(I) is defined in 
Eq. (6.3). The prime on the hjk functions defined in 
Eq. (2.S) means that there is also a delta function for 
conservation of energy at each vertex. The prime on 
the sum means to sum (integrate) over the primed 
momenta and spins (frequencies). 

In order to obtain the PCOO(II), it is only necessary 
to integrate Eq. (7.6) as shown in Eq. (7.1) and use 
Eq. (7.5). The lowest-order term in the PCOO(II) 
can be obtained by neglecting all the QP interaction 
terms except (b) in Eq. (7.6) and Fig. 3. Then the 
PCDD(II) in Eq. (7.5) gives 

h02(k, -k) = 0, (7.7) 

which is just the lowest-order PCDD(II) obtained by 
diagonalizing the quadratic part of the Hamiltonian 

E!= < + ~ 
(a) (b) (c) 

+ E}::: +~+ ~ 
(d) (e) (I) 

FIG. 3. The equation of motion for th,e Gr~en's 
function describing the creation of two quasI-particles from 

the vacuum. 
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+~ + @: 
(a) (b) (e) Cd) 

FlO. 4. The integral equation which sums the ladder 
diagrams. The outgoing lines are dressed. 

in Eq. (2.7) and which is equivalent to the BCS theory. 
By substituting the equations of motion for the 
higher-order Green's functions in Eq. (7.6), the 
PCDD(Il) can be obtained to any arbitrary order in 
perturbation theory. In particular, the second-order 
correction to the PCDD can be obtained from the 
term (f) in Eq. (7.6) and Fig. 3 if the three QP going 
into the box are annihilated and one is created. 

8. ELIMINATION OF LADDER DIAGRAMS 

By using the Green's function method of the last 
section, it is possible to show that ladder diagrams do 
not contribute to the PCDD(U). Tolmachev and 
Tiablikov' first pointed out that it is not necessary to 
consider the diagrams that have a ladder part on their 
outgoing lines. They used the PCDD(I), but it was 
shown that there is still some difficulty with the ladder 
diagrams.lo 

If the equations of motion for the higher-order 
Green's functions are substituted into Fig. 3 for G02 , 
then Fig. 4 is obtained. A similar equation can be 
obtained for G20 . The term in Fig. 4(d) is the sum of 
all nonladder type diagrams shown in Fig. 5. The 
iteration of the two equations for G02 and G20 results in 
the sum of all ladder diagrams being attached to the 
non ladder diagrams.32 

In Fig. 4 the term (b) is obtained when the QP 
going into Fig. 3(c) passes through with only self­
interactions. Likewise the term in Fig. 4(c) is obtained 
when one of the QP going into Fig. 3(f) passes through 
with only self-interactions. In Fig. 5 there would be 
some ladder diagrams with self-interactions on the 
outgoing lines, but these have been included in Fig. 
4(b) and (c) by dressing the outgoing lines. Thus in 
Fig. 5 only the pure nonladder diagrams are con­
sidered. 

Equation (7.6) can be written in the form of Fig. 4 
by substituting the equations of motion for higher­
order Green's functionsll into it, which gives 

G02(l, 2) = I' -47Tih~ll'2'12)Gl(1)Gl(2)G02(1', 2') 
+ I' -247Tih~.&C122'l')Gl(1)Gl(2)G20(2'1') 
+ Foil, 2) (8.1) 

The dressed single QP propagator G1(l) is defined in 
Eq. (6.4). If Eq. (8.1) is substituted into Eq. (7.2) and 
assuming the matrix elements of the potential and the 

.2 A typical ladder diagram is shown in Fig. I of D. H. Kobe, 
Ann. Phys. (N.Y.) 25,121 (1963). 

+ VC + 
(al (b) 

+ + + 

(~ (I) 

B: + + ~ + 
(gl (i) 

~+ + ~ 
0) (k) (I) 

FlO. 5. The sum of all the nonladder diagrams. Ladder 
diagrams with self-energy interactions on the outgoing lines are 
not included. 

two QP amplitude17 are real, the result is 

g02(1,2) = I' 47Th22(1'2'12)gl(12)g02(l'2') 

+ I' 241Tho.&C121'2')gl(12)g02(2'1') 

+ /02(12). (8.2) 

Equations (7.3) and (7.4) have been used to obtain 
Eq. (8.2). The function gl is defined as 

gl(l2) = (27T)-la1 + ;2)-I[ZIZ 2 

+g~2(1, -1)g~i2, -2)] (8.3) 

and the function /02 is defined as 

/02(1,2) = -Re iII dW1 dW2F02(1, 2). (8.4) 
-00 

Equation (8.2) shows that ifEq. (7.5) for the PCDD(U) 
is satisfied, then /02(1, -1) = 0 also. Conversely, if 

/02(1, -1) = 0 (8.5) 

then Eq. (7.5) for the PCDD(U) is also satisfied since 
the sum of the ladder graphs after the canonical 
transformation converges.33 Equations (8.4) and (8.5) 
can be taken as a reformulation of the PCDD(U). In 
order to determine the coefficients in the canonical 
transformation the sum of all the nonladder dangerous 
diagrams should be set equal to zero. 34 

9. RELATION BETWEEN THE TWO 
CONDITIONS 

In two previous papers9•10 the criteria (1.1) through 
(1.4) in the Introduction were used to obtain the 

33 R. Balian and M. L. Mehta, Nucl. Phys. 31, 587 (1962); B. 
Johansson (Ref. 13) has shown that the divergence of the ladder 
diagrams for the particles in the superconducting phase [D. J. 
Thouless, Ann. Phys. (N.Y.) 10, 553 (1960») is necessary when v in 
the source term in Eq. (2.2) goes to zero to obtain a finite two­
particle amplitude in Eq. (3.8). 

34 For finite systems it is necessary to re-examine the role of ladder 
diagrams in the PCDD according to E. M. Henley, R. C. Kennedy, 
and L. Wilets, Phys. Rev. 135, AII72 (1964). 
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condition for the determination of the coefficients for 
the best Bogoliubov QP. These criteria gave what is 
called here the PCDD(I) 

I: Re (01 (Xt(X!k IBCS) = 0, (9.1) 
where IBCS) is the BCS ground state. Especially the 
maximum overlap criterion (1.1) gives some physical 
insight into the nature of the PCDD. It is this con­
dition that was used by Tolmachev and Tiablikov4 in 
calculating the second-order term in the PCDD. 

The criteria (ILl) through (II.4) developed in this 
paper give the condition called the PCDD(II) 

II: Re (01 (Xt(X!k 10) = 0 (9.2) 
given in Secs. 3 through 6. These criteria are equally 
reasonable, and the PCDD(II) can be used as an 
alternative condition for determining the coefficients. 
It is especially convenient to use because QP Green's 
functions can be used to obtain an expansion for it. 

The PCDD(II) reduces to the PCDD(l) if the true 
ground state 10) is replaced with the BCS ground 
state on the right side of Eq. (9.2). The difference 
between the PCDD(II) and the PCDD(I) can be seen 
by expanding the true ground state wave vector 10) in 
terms of zero, two, four, etc. QP states 

10) = C IBCS) 
+ I ck(Xl(X~k IBCS) 
~ t t t t + £., Ckl(Xk(X_ktX. I (X_I IBCS) 

k>;' t t t t ttl + £., CklmtX.k(X_ktX.I(X_ItX.mtX._m BCS) + ... , 
k>l>m (9.3) 

where the sums are only over half the total number of 
states. The PCDD(l) given in Eq. (9.1) corresponds to 

C = max, 

Ck = 0 for all k, 
(9.4) 

because of the maximum overlap criterion (1.1). How­
ever, the PCDD(II) corresponds to 

n = 2 I 10c12 + 4 I ickl12 + 6 I ICklml2 + ... 
k k>1 k>l>m 

= min (9.5) 
from the minimization of the number of QP in Eq. 
(3.1). In order for Eq. (9.5) to be a minimum the 
coefficients corresponding to a large number of QP 
must be small. Thus the convergence of the expansion 
in Eq. (9.3) must be rapid. 

From Eqs. (9.4) and (9.5) it can be seen that in 
general the two criteria are different, but that both are 
reasonable. Both the conditions in Eqs. (9.1) and (9.2) 
can be expanded by perturbation theory and the same 
general type of diagrams is obtained. However, in the 
perturbation expansion of Eq. (9.1) it is not possible 
to eliminate the ladder diagrams exactly.tO For Eq. 
(9.2) Green's functions and their equations ofmotionll 

can be used. This method is very convenient and fits 
in very nicely with the self-energy of the QP. 26 In 
using Green's functions, it is possible to sum an infinite 
subset of graphs and easily go beyond ordinary 
perturbation theory. This advantage strongly recom­
mends the PCDD(II). 

It is not surprising that different criteria give 
somewhat different formulations of the PCDD. In 
the independent particle modeP9 different criteria 
also give different orbitals. The condition obtained 
for orbitals from the maximum overlap principle is 
different from the best density criterion, and the two 
cannot in general be simultaneously satisfied. 

10. CONCLUSION 

Of the four criteria developed in this paper for 
determining the coefficients in the canonical trans­
formation, the criterion (ILl) of minimizing the 
number of QP in the true ground state has the most 
appealing physical significance. It is analogous to 
reducing the pressure in a container of gas by removing 
molecules so that the gas will behave more ideally. If 
there are very few QP expected in the true ground 
state, the probability of finding many QP is small. 
Thus the expansion of the true ground state in terms 
of QP states would converge rapidly. 

The criterion of best density (IL2) is a very reason­
able one, since it would give the best approximation 
to the expectation values of one- and two-particle 
operators. It also sheds some light on the nature of the 
Gorkovt8 type of factorization of the two-particle 
density matrix. 

The third criterion of the simplification of the 
expectation value of an arbitrary operator (II.3) is 
somewhat arbitrary. On the other hand, it is no more 
so than the original choice of coefficients as the ones 
diagonalizing the quadratic part of the Hamiltonian. 
The Hamiltonian is just one of many operators, so 
that it should not be overemphasized. It is significant, 
however, that the condition obtained from this 
criterion is also the one obtained by the other two 
criteria. 

The fourth criterion, the best starting point for 
the dressing of the QP, is of interest in that all the 
terms involving a G02 or a G20 in the equation of 
motion for the single QP propagator are eliminated. 
In the original treatment of the QP self-energy,26 only 
the compensation of the lowest-order dangerous 
diagram was used. In higher orders, there would be 
G02 or G20 terms with higher-order dangerous dia­
grams attached to them. With the PCDD(II) these 
terms would also be zero. The self-energy of the QP 
obtained previously does not have to be modified. 
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All of the criteria used here give the PCDD(Il) 
instead of the PCDD(I) obtained previously. These 
two conditions for the PCDD were compared in the 
last section. The question as to which is best is 
probably a matter of taste. If ordinary perturbation 
theory is used, the simplest condition is the PCDD(I), 
since it involves the true ground state only once. 
However, there is some difficulty in removing the 
ladder diagrams exactly. 

On the other hand, if the QP Green's functions are 
used then it is essential to use the PCDD(II). The 
ladder diagrams can easily be removed. A perturbation 
expansion can be obtained for the PCDD(II) in which 
dressed energies can easily be introduced. Then 
PCDD(Il) can be used in connection with the QP 
self-energy to obtain equations coupling the energy 
gap to the single particle energy.3S Thus the advantage 
of being able to work with the QP Green's function 
recommends the PCDD(II). 

The eight criteria given in this and previous papers9•IO 

have provided some needed physical insight into a 
previously abstruse and mathematical principle. The 
criterion of minimum number of QP in the true 
ground state stands alongside the maximum overlap 
criterion as giving an intuitive feeling for obtaining 
the best Bogoliubov quasi-particle. 

ACKNOWLEDGMENTS 
The author would like to thank Dr. R. Mattuck 

and Fil. lie. Borje Johansson for discussing the 
method of quasi-averages. This work was originally 
motivated by some discussions with Dr. V. H. Smith, 
Jr., on his work on the independent particle model 
with Dr. Kutzelnigg, and the author would like to 
thank him for many interesting conversations, 
especially about Sec. 4. His appreciation is also 
extended to Dr. F. Sasaki for many stimulating 
discussions. 

Finally, the author would like to express sincere 
gratitude to Professor Per-Olov Lowdin for his 
encouragement and interest in this work, and his 
warm hospitality during the author's stay at the 
Quantum Chemistry Group in Uppsala. 

The work reported in this paper has been sponsored 
in part by the King Gustaf VI Adlof's 70-Years 
Fund for Swedish Culture, Knut and Alice Wallen­
berg's Foundation, and in part by the Aerospace 
Research Laboratories, OAR, through the European 
Office of Aerospace Research (OAR), U.S. Air Force. 

APPENDIX. COMPLEX COEFFICIENTS 
Throughout this paper it has been a~sumed that the 

coefficients in the canonical transformation in Eq. 
85 D. H. Kobe, Ann. Phys. (New York) 35, 42 (1965). 

(2.4) were real. However, this assumption can be made 
without loss of generality as is shown here. 

The coefficients in Eq. (2.4) are now assumed to be 
arbitrary complex numbers 

UI = lUll e
iX

" (Al) 

VI = EI IVII ei'P" (A2) 
where 

El = -E_I = 1. (A3) 

The condition that the QP be fermions modifies only 
Eq. (2.5a) by replacing the coefficients with their 
absolute values 

(A4) 

The two-particle amplitude is in general complex and 
can be written as 

Al = (01 a_lal 10) = El IAll ei91• (A5) 

Ifthe number of QP in Eq. (3.1) is minimized with 
respect to the coefficients in the transformation, the 
condition for the best QP is obtained. This means that 
Eq. (3.1) with the constraint in Eq. (A4) must be 
minimized with respect to lUll, lVII, Xl' and lPl' The 
minimization with respect to Xl and lPl gives the 
condition 

(A6) 

where m = 0, ± 1, ±2, .... This condition can also 
be shown to give a minimum by calculating the 
second derivatives. 

The minimization with respect to the absolute value 
of the coefficients lUll and El IVII gives the condition 

Sl = (lull2 - IVI12)EI IAII - E12 !UlVll Bl = O. 
(A7) 

However, if the two QP amplitude is calculated and 
use is made of Eq. (A6) the result is 

(01 (Xl(X!l 10) = sle-iC'Pl+x11. (A8) 

Therefore the condition in Eq. (A 7) can be expressed 
as 

(01 (XllX!l 10) = o. (A9) 

Thus the phases lPl and Xl cannot be determined by 
the minimum principle. 

A transformation on the single-particle orbitals, 

(AID) 

can be made in Eq. (A5) and in the Hamiltonian, so 
that real two-particle amplitudes Al can be used 
throughout. The condition in Eq. (A6) is satisfied if 
both Xl and lPl are zero. Therefore real coefficients can 
be used in the canonical transformation without loss 
of generality. 
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This paper deals with the theory of deformation of Lie algebras. A connection is established with the 
usual contraction theory, which leads to some "more singular" contractions. As a consequence it is 
shown that the only groups which can be contracted in the Poincare group are SO(4, 1) and SO(3, 2). 

INTRODUCTION 

THIS paper is divided into two parts. The first part 
. deals with the deformation of Lie algebras as it 

has been described in Gerstenhaber's paper. We 
follow this paper very closely, just establishing in a 
more precise way the geometrical interpretation of 
the cohomology groups B2(A, A) and Z2(A, A) which 
naturally appear in the study of the deformations of 
an algebra A. We thus recover simply a sufficient 
condition of "rigidity" for an algebra A, which is 
H2(A, A) = O. We illustrate these results by an 
application to the three-dimensional real Lie algebras, 
for which we determine all the possible deformations. 

In a second part, we show the connection between 
the theory of deformation and the usual concept of 
contractions, defined in a general way by Segal and 
then by Inonli, Wigner, and Saletan. We are thus led 
to a slightly different notation of contraction. It is 
then possible to partially answer the question: "What 
are all the algebras which can be contracted into 
a given algebra A?", because these algebras have to 
be searched for among the deformations of A. 

From the viewpoint of physical applications, we 
show that the only Lie algebras which can give the 
Poincare algebra by contraction are the semisimple 
Lie algebras of the de Sitter groups SO(4, 1) and 
SO(3,2). 

I. DEFORMATION OF LIE ALGEBRAS 

A. Some Remarks About the Deformation Theory 

1. Definitions 

We recall here briefly the main definitions and 
results given in a paper by Gerstenhaber.l Let A be 
a finite-dimensional Lie algebra over a field k, which 
we restrict to be R or C, and let V be the underlying 
vector space of A. The product law in A is a mapping 
V A V --+ V denoted by [ ]. Let V K = Vk ® k«t» be 
the vector space obtained by extending the field k 
to the field K = k«t», where K is the quotient field of 

1 M. Gerstenhaber, Ann. Math. 79, No. I (1964). 

the power series ring k[[t]]. A deformation2 of A is a 
Lie algebra At over the underlying vector space V K, 

which is given by a mapping ft: V K A V K --+ V K 

expressible in the following form: 

ft(a, b) = [a, b] + tFl(a, b) + t 2F2(a, b) + .. '. (1.1) 

The Fi are bilinear functions of V A V into V and are 
defined over k. 

We also impose on the series (1.1) in t that it be 
convergent in the neighborhood of the origin. 
Conversely, a given set of functions Fla, b) does not 
necessarily correspond to a deformation of A, because 
the mappingft thus defined does not necessarily obey 
the Jacobi conditions. 

By writing that 

fift(a, b), c) + fifib, c), a) + fift(c, a), b) = 0, (1.2) 

one obtains the "integrability conditions" connecting 
the Fi : 

I I FJFia, b), c) + F.(FJa, b), c) = 0, 
3'(a,b,c) It+v=n 

n=O,l,2 (1.3) 

where we use the following notations: Fo(a, b) = [a, b], 
i.e., the original Lie law on A, and ;rea, b, c) is the 
circular permutation of a, b, c. For n = 0, the 
condition (1.3) is trivially satisfied: It is the Jacobi 
condition for A. For n = I, one gets 

I Fl([a, b], c) + [FI(a, b), c] = 0 = bF2(a, b, c). 
3'(a,b,cJ (1.4) 

This relation expresses that FI is a 2-cocycle for the 
Lie algebra A: 

Fl EZ2(A, A) 

(A being an A module for the adjoint representation). 
Conversely, an element of Z2(A, A) will give rise to a 
deformation only if it is integrable, that is, if it can 
be the first element Fl of a sequence {Fi } which 
satisfies the set of conditions (1.3). For n = 2, the 

2 Words being defined are given in italic. 
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conditions (1.3) give 

! F1(F1(a, b), c) = -CJF2(a, b, c). (1.5) 
1(a,b,cl 

When F E peA, A), the first member of (1.5) is an 
element ~f Z3(A, A). By the preceding condition, this 
element has to belong also to B3(A, A), which means 
that its 3-cohomology class must be the null class. 
So the integrability conditions involve H3(A, A). In 
fact, as is shown in Gerstenhaber's paper, if H3(A, A) 
is zero each F1 E Z2(A, A) is integrable. 

For'the following, we adopt the viewpoint of 
Gerstenhaber (Chap. II) by taking as a parameter 
space for the deformation theory the algebraic 
manifold e formed by the set of the structure con­
stants of the n-dimensional Lie algebra over K. In 
fact, by using the canonical isomorphism £.(A, B) !:::: 
A * ® B, we identify the structure constants to the 
corresponding elements of (A A A)* ® A .. 

A point of e represents an algebr~ wIth .a fixed 
basis. Now the previous deformatIOn, wIth the 
condition of convergence, corresponds exactly to an 
analytic curve on e, starting for t = ° fr~m the 
representative point of the Lie al~ebra A. It IS clear 
that the infiniteSimal deformation gIVen by the element 
F1(a, b) corresponds to a tangent vector at this curve. 
Let us call Z2int(A, A) the manifold formed by the 
integrable elements of Z2(A, A). On the manifold e, 
each element of Z2int(A, A) is a tangent vector to e at 
the point p representative of the algebra A. Let T1J 
be the linear tangent manifold attached to e at the 
point p. When p is a simple point3 of e (i.e., a non­
singular point), Z2int(A, A) which corresponds to the 
tangent cone at p and the tangent space T1J are 
identical. Then, as raised by Gerstenhaber (p. 86), 
we are faced with the problem of comparing the 
vector space Z2(A, A) with the linear tangent mani­
fold T1J' 

2. Geometrical Discussion 

(a) The tangent manifold T1J' A point of e is defined 
by in2(n - 1) parameters ~1"", ~[!n2(n-1)l which 
are the structure constants Ci~' The manifold e is 
defined by the Jacobi equation, 

f,,(;l, ... , ~[!n'(n-l)l) = 0, 1 SIS n, (1.6) 

where the!r. are homogeneous polynomials of degree 
two: 

fz(C~) == ! CfJC!..k' (1.6') 
9'(i,;,k);m 

8 W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry 
(Cambridge University Press, New York, 1964), Vol. II. 

Algebraically, the linear tangent manifold to e at the 
point p is defined by the equation 

In'(n-l) ofl 
! ~i-(P) = 0, 
i=l O~i 

which leads to 

! C:']C!..k + C:']C!..k = 0, (1.7) 
m;9'(i,;,k) 

where Ck. are the coordinates of p. But (1.7) is 
nothing ~ther than Eq. (1.4) expressed in terms of 
the coordinates. The elements q; solution of (1.7) 
are then the components of the 2-cocycles Z2(A, A), 
where A is the Lie algebra defined by the structure 
constants ct . 

But it must be noticed that this linear tangent 
manifold is not necessarily identical to the geo­
metrical tangent manifold. It is larger in general. A 
sufficient condition for this being true is that the ideal 
generated by the polynomials be equal to its radical: 
This is a conjecture of Gerstenhaber for the JacobI 
ideal, 1 and has not yet been proved. This equality of 
the ideal with its radical has been shown in simpler but 
similar cases such as that of idempotent matrices.4 

(b) The orbits of GL(V). The group GL(V) of 
regular linear mapping from Vonto V acts on e. We 
choose the following way: The algebra A: a A b -+ 

[a, b] is transformed in A':a A b -+ cp(a, b) such that 
(for example, one can take the inverse definition) 

cp(a, b) = g[g-la,g-lb]. 

The transformed structure constants are 

C~n = (g-l)!n(g-l)~C:lg)i, 

where the C:J are the structure constants of A. 

(1.8) 

A' and A differ only by a change of basis and are 
isomorphic. 

Thus the orbits of GL(V) on e are the class of 
isomorphic algebras. When g has the form 

I 
g E GL(V), 

g = 1 + tg1 + t 2g2 + ... 
gi EEndV, 

(1.8) gives a deformation of A which stays in the 
orbit of A and so can be said "trivial".l Let us 
examine the infinitesimal part. To the first order one 
obtains 

cp(a,b) = [a, b] + t(cp[a, b] - [cpa, b] - [a, cpb] + ... ) 
= [a, b] - tCJcp(a, b), (1.9) 

4 M. Raynaud, Compt. Rend. 258, 2457 (l964); 260,4391 (l965). 



                                                                                                                                    

DEFORMATION AND CONTRACTION OF LIE ALGEBRAS 1213 

which means that each tangent vector to a curve in the 
orbit corresponds to an element of B2(A, A). Con­
versely, a coboundary E B2(A, A) is always integrable, 
and gives rise to a deformation of A starting in a 
tangent direction at the orbit of A. Therefore, the 
dimension of the orbit of A is equal to the dimension 
of B2(A, A). This result can be found in another way 
by noticing that the stabilizer of the point P is Aut A 
and that the orbit can be identified with GL(V)JAut A. 
Now the infinitesimal automorphisms (derivations 
of A) are just the elements of Zl(A, A) and are al­
ways integrable. Then dim Zl(A, A) = dim (Aut A) 
and dim (orbit) = dim GL(V) - dim (Aut A) = n2 -

dim Zl(A, A) = dim B2(A, A). 

Application. In general for a Lie algebra of dimen­
sion n, one has 

dim B2(A, A) = n2 - n + dim (center of A) 

- dim Hl(A, A), 

which gives in the case of a semisimple Lie algebra, 

dim B2(A, A) = n2 - n. 

But this is also the dimension of ZS(A, A), hence the 
dimension of the irreducible component e; of e to 
which belongs the representative point of the semi­
simple algebra. 

It is now known that the manifold e can have 
another irreducible component of higher dimension.1i 

(c) A Rigidity Theorem.I.6 Definition: an algebra is 
rigid if it cannot be deformed into an inequivalent 
algebra. 

As already remarked by Gerstenhaber, a sufficient 
condition of rigidity for A is that H2(A, A) = O. 
Geometrically this means that the tangent plane to 
the orbit at the point A, and the geometrical tangent 
plane to the manifold at the same point coincide. 

In particular, a semisimple algebra is rigid. (We 
use this fact in the following.) But there can exist rigid 
algebras of an other type; for example, in dimension 
2, the only non-Abelian Lie algebra is rigid. 

Remark: It is clear that a necessary condition of 
rigidity for algebra A is 

(LlO) 

so that the tangent cone Z2int (A, A) is a linear space 
in that case. Now, if one can prove the conjecture of 

i Recently, Michele Vergne has found an example of an irreducible 
set of dimension greater than 2"s /27. [These de 3eme cycle, Paris, 
I.H.P. Mai 1966]. 

• A. Nijenhuis and R. W. Richardson, Bull. Am. Math. Soc. 
January (1966), p. 1. 

Gerstenhaber [see the paragraph following Eq. (1.7)], 
then, at a simple point, Z2 = Z2int and (LlO) would 
give H2(A, A) = 0 as a necessary condition of rigidity 
for A. 

3. Classification of the Deformations 

We do not know how to solve this problem under 
its more general form, but only for the infinitesimal 
deformations. First, in order to have a classification, 
we have to define an equivalence relation between the 
deformations. 

We say that two deformations of the same algebra A 
(with a given basis) are equivalent, if the deformed 
algebras are for each value of t in the same orbit (Le., 
they correspond to isomorphic algebras). 

It must be observed that this definition does not 
imply that the deformations are in a well-deter­
mined orbit. 

In a more explicit way, it means that, for each value 
of t, there exists an element of the group GL(V), ~p 
such that 

(1.11) 

where gt and It are two deformations of the same 
algebra A. Now, considering only the case where ~t 
admits a development of the following form, 

~t = ~o + t~l + t2~2 + ... , 
we see from (Ll1) that ~o must be an element of the 
stabilizer rCA) of A (= an automorphism of A). (For 
~o = 1, it is the equivalence definition given by 
Gerstenhaber.) 

Through the relation (1.11), there are conditions 
at each order, Le., on all the components F; and Gi of 
ft and gt. At the first order, one gets, by noting 

Fo(a, b) = Go(a, b) = [a, b], 

~oo G1(a, b) - Fl(~Oa, ~ob) 
(Ll2) 

= [~oO, ~lb] + [~la, ~ob] - ~l[a, b] 

= (~o 0 G1 - Fl 0 ~o)(a, b). 

Let ¢loA be the A module given by 

(

a EA 

m E ~oA ~ a . m = [~oa, m] 

[this is a structure of A module because ~o E rCA)]. 
The relation (Ll2) can also be written 

(1.12') 

In particular, for ~o = 1, G1 and Fl differ only by a 
coboundary E B2(A, A). 

Therefore, at the first order, the classification 
problem can be solved conveniently by the two 
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following steps. (1) The equivalence relation (1.11) 
when using transformations 4>t = 1 + t4>l + (24)2 + ... 
implies that the infinitesimal deformations F1 and G1 

belong to the same cohomology class. Let us call 
H2Jnt(A, A) the manifold obtained by considering 
z2int(A, A) modulo the coboundaries. (2) Then we 
have to determine in H2int(A, A) the equivalent classes 
due to the action of the stabilizer rCA) of A, i.e., to 
determine the orbits in H2int(A, A) of rCA) in the 
sense of Sec. 2B. To each of these orbits corresponds a 
class of deformations equivalent to the first order. 

Note: One should stress that this equivalence to the 
first order is very poor since two nonequivalent 
deformations (Ft), (F;) may nevertheless implement 
the same element F; = Fl E Z2(A, A) and therefore 
be equivalent to the first order. 

B. An Example. The Three-Dimensional Real 
Lie Algebras 

Although the classification of the three-dimensional 
Lie algebras is already known (for example, see 
Jacobson7 for the complex case, or the thesis of 
SharpS for the real case), we present here a description 
of the orbits which happens to be very convenient for 
the study of the deformations. 

1. The Orbits9 

The following description is due to L. Michel. 
The action of the group GL(V) = GL(3, R) on the 
manifold e was described in Sec. 12. The structure 
constants are transformed by 

e,l _ (g-l)i (g-l) lek gl mn - m n Ii k' (1.13) 

Now, in the case of dimension 3, it is possible to 
associate a matrix to the system of the structure 
constants by writing 

1 ~ i,j, k ~ 3. 

Eiik is the usual completely anti symmetric tensor. 
From (1.13) we obtain 

p,!k = tEiike:J = IEi;k(g-l)7'(g-l)jp!'k'Emnk,(g)~,. 
(1.14) 

then one gets 

pllk = det G-l!EmnPEmnlc,g!p"k'gi, 

or 
p,!k = det G-1gi,/'k'gf,. (1.14a) 

Then, denoting by R the matrix pi;, one finally obtains 

I R' = (det G)-lGRGt·1 (1.15) 

Now the Jacobi condition can be described in terms 
of the matrix R. First we decompose R in a sum of a 
symmetric and an antisymmetric part: R = S + A, 
i.e., pii = (J.ii + Eiik«k' where (Jii is the (ij) element of 
S, and Eiik«k is the (ij) element of A. Then the Jacobi 
condition 

I CiiCfk= 0 
{f(iik);1 

can be written 

and by using the previous decomposition, 

I pab«b = 0 I, or equivalently, (Jab«b = O. (1.16) 

Now the rank of the matrix R is preserved by (Ll5), 
and this rank is equal to the dimension of the derived 
algebra G f

• We are thus led to a classification of the 
orbits following the dimension of G'.7 

(a) dim Gf = 3. Det R ~ 0, the condition (1.16) 
can only be satisfied with « = 0, which means that 
R is symmetric. 

It is shown in Jacobson that condition (1.15) is 
equivalent to 

R' = pGRGt, (1.15') 

in which p is an arbitrary real number. 
Then, by using the decomposition G = SO with 0 

orthogonal and S symmetric, we see that it is always 
possible to diagonalize R by means of 0, and by (1.15') 
to fix an eigenvalue to 1. Now, one eallily sees that 
the action of S cannot change the sign of the other 
eigenvalues. We thus obtain two orbits, called AD 
and As, which can be respectively characterized by 
the elements 

Ag:R= It is easy to transform (1.14) by using the definition of ( J and A,:R= ( -1 J det G, where G is the matrix (g):: 

det G-tEmnl = Ei /k(g-l)7'(g-l)j(g-l)i ; 
---

7 N. Jacobson, Lie Algebras (Interscience Publishers Inc., New 
York, 1962), p. 11. 

8 W. T. Sharp, thesis, Princeton University (1960). 
• Let us notice that the orbits are not connected; they are made 

of two connected pieces. 

A9 and As are the three-dimensional semisimple 
algebras. A9 is the algebra of the three-dimensional 
rotation group and As is its noncompact form. It is 
obvious that the dimension of these orbits is 6 
(= dim of the symmetric 3 x 3 matrices space). 
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(b) dim G' = 2. Any matrix of rank 2 can be 
written by means of a suitable orthogonal transfor­
mation 

(

0'1 ) (~ OC

a 
-O(

2
) 

R = 0'2 + OCa ° OC1 • 

° OC2 -OC1 ° 
When 0'1 and 0'2 =j!: 0, condition (1.16) implies OCI = 
OC2 = O. Under the action of a symmetric matrix, 
which can be taken diagonal 

the matrix R is transformed into 

R'= 

o 
and we see that the quantity 0'10'2!OC; is an invariant A, 
which can be used to classify the orbits. 

Finally, one obtains the following orbits, which we 
describe by giving a representative element: 

For the case 0'1 = 0'2 = 0, 

A,:R ~ (-! ~ ~) 
The dimensions of these orbits can be computed in a 
straightforward way, by determining the stabilizer of 
the elements R. The results are 

{d~m A7 , A6 , A5(A) = 5, 

dim A4 = 3 

(antisymmetric 3 X 3 matrices). 

(c) dim G' = 1. There are only two kinds of orbits: 

A, cmre'ponding to R ~ ( -: : ~) 
[As can be integrated in the family AsO').] 

the dimensions of which are, respectively, 5 and 3. 
(d) dim G' = O. There is the orbit of the Abelian 

algebra AI' which is reduced to a point on e (dimen­
sion zero). 

2. Deformations 

From I, we know that the dimensions of B2(A, A) 
and of Z2(A, A) are, respectively, the dimensions of the 
orbit of A and of the tangent linear manifold to e in 
A. A straightforward computation gives the results 
shown in Table I. 

It can be seen directly from the equations of the 
manifold e that the singular points belong to AI, 
A 2 , A6 , and A 7 • For the simple points the dimension 
of Cis 6. For the other points, we have to determine 
the manifold Z2int(A, A) and see that its maximum 
dimension is also 6. We now discuss the deformations 
corresponding to each case. 

(a) Deformation of the Simple Points. We know that 
As and A9 are rigid, which means that all their 
deformations are trivial. Then we have only to 
consider A4 and the complete family A5(A) (with 
A = -1 included). 

Now, all the nontrivial deformations of an algebra 
belonging to an A5(A) or to A4 are of the following 
form: they must cross over all the orbits A5(A). For 
example, let us consider the following first-order 

TABLE I. 

A dim B2(A, A) dimZ2(A, A) 

A, 0 9 
A. 3 8 
A. 5 6 
A. 3 6 
A.(A) 5 6 
;''''-1 

A. 5 7 
A7 5 7 
A. 6 6 
A. 6 6 
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deformation of A5(A). 

(

reI, e2] = 0, 

At lea, e2] = -e1 - e2, 

lea, e1] = -e1 + Ae2 + te2' 

For each value of t, this algebra belongs to a different 
orbit A5(A + t). (In fact, it is impossible to deform a 
nonsymmetric matrix into a symmetric one, so there 
are certainly no deformations of the preceding algebras 
into As or As.) 

Let us notice also that the dimension of H2int(A, A) 
[here = H2(A, A)] measures the codimension of the 
orbit of the algebra which is deformed in the manifold 
formed by the deformed algebras. [The set of A5(A.) is 
a manifold of dimension 6.] However, we do not 
know if this result can be established generally. 

(b) Deformation of the Singular Algebras. We now 
describe in more detail the case of A6 and A7 , and 
especially of A 2 • First we associate to the element 
F1(a, b), which characterizes the infinitesimal defor­
mation (see Sec. A), a matrix R1 as in Sec. BI. 

We use the following notations: 

Rl = (; : :). 

v w x 

We note the deformation in term of matrices: 

R t = Ro + tRl + ... , 
where Ro is the matrix associated to the nondeformed 
algebra. 

Deformations of A6 (A7 can be treated in the same 
way). We choose in A6 the algebra corresponding to 

R= r -I J 
F1 must be a cocycle: F1 E Z2(A6, A6)' This imposes 
the conditions 

(a) C: ::' 
The coboundaries are defined by 

(b) {;:;' 

and the integrability condition (1.5) is simply 
x(q - s) = O(c). The manifold defined by (c) is the 
union of two components: 

c1 :q = s, 

c2 :x = 0, 

which already yields the (maximum) dimension of 
z2int as 6. Let us examine first the deformations 
which are linear in t: R t = Ro + tRl . Then the 
preceding integrability condition involves two other 
equations: 

(c') v(q - s) = 0, 

(c") w(q - s) = 0. 

F1 E C1: (c') and (c") are satisfied. The matrix Rt is 
symmetric with a nonvanishing determinant for x ~ O. 
Then there exists a deformation only into As. For 
A7 two possibilities exist: into As for x < 0, and 
into As for x > O. 

F1 E C2: In general in that case we have q ~ s. 
Therefore from (c') and (cN

) we must have v = w = o. 

(

1 + yt 

R t = ts 

° 

tq 0) 
-1 + tz 0 ; 

o ° 
it is a deformation which crosses over the family A5(A). 

For F1 E C1 n C2, the linear transformations are 
trivial. One stays in the orbit ofA6 • For deformations 
at higher orders, the conditions (c') and (cN

) are no 
longer valid. 

F1 E C1: We always have a deformation into As 
or A,. 

F1 E C2: The deformation starts in a transverse 
direction to all the AslAI and then can (1) go by 
means of the higher-order terms completely inside one 
orbit A5(A), or (2) stay always transverse to the family. 

F1 E C1 n C2 : All the cases are possible. The 
deformation starts tangent to the orbit, and then 
takes one of the previous ways. 

Deformations of A2: Let us consider the algebra 

(

[el' e2] = ea, 

A2 [e2 , ea] = 0, 

[ea, ell = 0. 

With the same notations, one easily finds that the 
spaces of the cocycles and of the coboundaries are 
determined by 

Z2(A 2 , A2):s = q, 

B2(A2 ,A2):s=q=0, y =z=O; u=v; w=r. 

The condition of integrability to the first order (1.4) is 

(

S(u - v) + yew - r) = 0, 
(d) 

z(u - v) + sew - r) = 0; 

(d') -vr + wu = a, 

where a is an arbitrary number (depending on F2); if 
F2 = 0, then a = 0. 
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The linear deformations. The manifold Z2int(A2' A2) 
is defined by the equations (d) and (d'). We distinguish 
the following submanifolds. [The distinction is based 
on the equation (d), in order to be able to consider the 
more general deformations.] 

Vl:A = S2 - yz ¥= 0, therefore u = v, w = r. 
V2 :A = S2 - yz = 0 and in general u ¥= v 

and w ¥= r. 
One can verify that the manifolds are invariant under 
the action of the stabilizer Go of A2 • 

Fl E VI: The matrix R t is symmetric, with a non­
vanishing determinant in a neighborhood of t = 0 
(because the lowest-order term is A). Thus there is a 
deformation into As for A > 0 and A9 for A < O. 

Example: deformation into Au: 

{

[el' e21 = ea, 

[e2' ea] = tel' 

[ea, ell = te2 • 

FI E V2: We have to consider the equation (d') with 
a = O. Then one can see that the matrix R t has a null 
determinant. Moreover, it is necessarily a non­
symmetric matrix, because u ¥= v and r ¥= w; so it 
gives a deformation into the family As(A), which 
crosses over all the family. Example: 

{

[el' e21 = ea + tel, 

At [e2' ea] = -tea + Ktel , 

[el' ea] = O. 
For each value of t, At belongs to A5(Kt). 

FI E V2 ("\ V2 : (A = 0, u = v; w = r). R t is sym­
metric; its determinant is zero, so there is a defor­
mation into A6 or A7 • Example: 

{

[el' e2] = ea, 

[e2, ea] = tel, 

[el' ea] = O. 
One also has dim Z2int(A2, A2) = dim V2 = dim VI = 
6, dim V~ = 5. 

The general deformations. FI E VI: Due to the rigidity 
of semisimple Lie algebras, there are always the two 
kinds of deformations into As or Au, and nothing more. 

FI E V2 : Exactly as for A6 , the deformation can 
stay always tral1sverse to the family A50,), or can 
go more precisely in an orbit As(A) well determined 
(and then stay in it). Example: 

{

reI' e2] = ea + leI, 

[e2 , ea] = -lea + Kt2el , 

rei' ea] = O. 
At belongs to the orbit A6(K). 

FI E VI ("\ V2: All the cases are possible. For 
example, to study the second-order deformations, 
one has to classify the deformations following the 
values of F2 which is also a cocycle in that case 
[F2 E VI => deformation into As or Au, etc.]. . 

Finally we see that the study of the first-order 
(linear) deformations produces a rough classification 
of the equivalent deformations in well-determined 
families of orbits. Then the next-order deformations 
can go only in a more precise direction inside one of 
these families. 

Remark: It is very easy to obtain the corresponding 
results in the complex case. Then Au and As are in the 
same orbit, like Au and A7 or As(A) and A5( -A). The 
dimension over C of the cohomology groups are 
respectively the same, and the deformations can be 
immediately deduced from the previous ones. 

II. CONTRACTION 

The concept of contraction for Lie groups and 
algebras was introduced by Segal and by Inonii and 
Wigner in 1953,10 It was later examined in a paper of 
Saletanll in which in particular a general condition for 
contraction is stated precisely. Our aim in this part, 
is to establish a connection between the process of 
contraction and deformation as it can be expected 
from a geometrical point of view. In doing this, we 
are led to add some slight refinements to Saletan's 
paper; it is therefore necessary to recall briefly the 
part of this paper that we need in the following. 

A. The Saletan's Contraction 

g is a Lie algebra over the underlaying vector space 
V, with the law: a/\ b--+ [a,b]. Let <l>t be a linear 
mapping of V K = Vk«t)) into itself (see Sec. IA), 
nonsingular for I ¥= 0 and singular for t = 0, of the 
following form: 

<l>t = u + tv, (2.1) 

where u and v are linear mappings from V into V 
defined over k and u is a singular mapping. 

The contracted algebra gl is then defined by the 
limit law: 

lim <I>;l[<I>ta, <l>tb] = [a, b](1). (2.2) 
t-+O 

Let us assume also that v is a regular mapping; then 
there is no loss of generality by taking for example 
v = 1.12 

Now V is a finite-dimensional vector space, and the 

10 E. Inonii and E. P. Wigner, Proc. Nat!. Acad. Sci. U.S. 39, 510 
(1953). 

11 E. J. Saietan, J. Math. Phys. 2, 1 (1961). 
11 This is not the convention of Saietan who chooses v = 1 - u, 

in order to have W1 = 1. 
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method of Saletan consists in using the fitting de­
composition of11 V under the form V R EB V N, where 
V Rand VN are u-invariant subspaces defined in a 
canonical way with respect to u, such that u is 
surjective on V R and nilpotent on V N . 

Then, if it exists, the law of the limit algebra gl is 
given byl3 

[a, b](lJ = u-l[ua, Ub]R + [ua, b];v 

+ [a, Ub]N - u[a, b]N . (2.3) 

The indices Nand R denote the components with 
respect to the decomposition V = V R EB Vs. A 
necessary and sufficient condition for the existence of 
gl is 

u([ua, b)N + [a, Ub)N - u[a, bb) = [ua, Ub)N' (2.4) 

Let us notice that it is equivalent to write this condition 
(2.4) under the form 

u[a, b](l) = [ua, ub]. (2.4a) 

And the condition (2.4a) simply expresses that u is an 
homomorphism of the algebra gl into the algebra g. 
But conversely, the mere existence of such homo­
morphism between two algebras gl and g is not a 
sufficient condition (or g to be contracted in gl 
because in (2.4a) the law of gl depends on u. 

B. First Connection with the Deformation Problem 

Let us define !tea, b) = <I>;-I[<I>ta, <l>tb] with <l>t = 
u + t. Then we have on V N by considering only 
the values of ft belonging to V N , 

f~N>(a, b) = [a, b]W + t[a, b]N; 

and on VR , 

flR)(a, b) = [a, b]W + t[a, b]R + u-2t(1 + tu-Irl 

X [ubu(a, b) - [ua, ubllR, 

where (1 + tu-l)-l is a formal series in t. 
It is clear that, in a neighborhood of the origin, the 

preceding development is convergent. Therefore 
ft(a, b) is a deformation of the contracted algebra gl 
lying in the orbit of g. (For t =/= 0, one obtains an 
algebra isomorphic to g.) Geometrically, by con­
sidering the structure constants manifold e (defined 
in A), it means that the algebra gl' and in fact all its 
orbit belongs to the edge of the orbit of g (see Fig. 1). 

Remark: Instead of (1), we can consider the more 
general mapping of V K into itself, defined in a 
neighborhood of the origin: 

<l>t = u + tv + t 2w + t 3x + .. '., (2.5) 

18 Which can also be written [a, bJ(l1 = u-1[ua, ublR + t5u(a, b)N. 

FIG.!. Deformation of gl 
into the orbit of g. 

Let us assume that "Pt = v + tw + t 2x + . .. is a 
regular mapping for each t, and u is always a singular 
mapping. Then it is easy to see that this development 
does not give any new results.14 It leads to a contracted 
algebra gl and to a deformation exactly as before. 

Now, conversely, it would seem natural to require 
that any Lie algebra that can be deformed in a well­
determined orbit can also be obtained by contraction 
of an element of this orbit. But with the previous 
definition of contraction, we obviously have a 
counterexample. 

C. The Example of the Three-Dimensional 
Rotation Algebra 

We have seen in Sec. IB that the three-dimensional 
Lie algebra A2 , defined by 

{

leI, e2) = ea, 

[e2, e3] = 0, 

[e3, el] = 0, 

can be deformed in the orbit of As, the rotation 
algebra. But it is easy to see that there is no homo­
morphism of A2 into As, except the trivial one. The 
condition (2.4a) can only be satisfied with u = 0, but, 
by (2.3), it then leads to an Abelian Lie algebra, so 
that As cannot be contracted into A 2 • Besides, 
Saletan has proved that the only nontrivial con­
traction of As defined by (2.3) and (2.4) leads to the 
Euclidean algebra A7 • 

D. "More Singular" Contractions 

Thus it is necessary to look at the case u = 0, that 
is, to take for the mapping <l>t a more singular mapping 
at the limit t = ° of the form 

<l>t = tv + t 2w + t 3x + ... , 
which can also be written 

(2.6) 

We supposel5 that v + t"Pt is a nonsingular mapping 

14 Indeed by writing (Il, = (utp;1 + 1)'1'" we see that is sufficient 
to consider w = uv-1 instead of u, and then the contracted algebra by 
(Il, is isomorphic to the contracted algebra by w + t, the isomorph­
ism being w. 

1. We suppose also '1', always nonsingular (even for t = 0). 



                                                                                                                                    

DEFORMATION AND CONTRACTION OF LIE ALGEBRAS 1219 

when t is different from zero, but valone is a singular 
mapping. Now, exactly as in Sec. lA, we do not 
restrict the generality by taking "Pt = 1. Let us then 
study the limit (2.2) by using the same decomposition 
of the vector space V in V R E8 VN with respect to the 
mapping v. We obtain for 

ft(a, b) = <1)"/I[<I>ta, <l>tb], 
with the same notations, 

fla, b) = !tea, b)R + !tea, b)N' a, b E V, 

!t(a, b) R = tv-1(tv-1 + I )-I[t2[a, b]R (2.7) 

+ t([ua, b]R + [a, ub]R) + [ua, Ub]R], 

and, by using the nilpotence of v, we have on V N 

(t + vr1 = - 1 + - = - ! -- . 1 ( V)-1 1 q-l (_v)n 

t t t n=O tn 

q is the smallest number such that vq = 0, so 

ft(a, b)N = tG - ~ + ~ + .. -) 

X [v2[a, b]N - v([va, b]N + [a, Vb]N) 

+ [va, Vb]N] + t(t[a, b]N + [ua, b]N 

+ [a, Ub]N - u[a, b]N)' (2.7a) 
Therefore, if fla, b) has a limit for t = 0, it gives a 
Lie algebra g(2) corresponding to 

[a, b](2) = v2[a, b]N - v([va, b]N + [a, Vb]N) 

+ [va, vb tv. (2.8) 

Only the V N component gives a contribution at the 
limit; the VR part gives zero. 

Equation (2.8) can also be written 

[a, b](2) = [va, Vb]N - v(t5v(a, b»N (2.9) 

and a necessary and sufficient condition for the 
existence of this limit is, from (2.7a), 

v[a, b](2) = O. 

Let us remark that, introducing 

[a, b](1) = V-I [va, Vb]R + t5v(a, b)N' 

expression (2.9) takes the following form: 

[a, b ](2) = [va, vb] - v[a, b ](1). 

(2.10) 

(2.11) 

By comparing this with (2.4a), we see that if the 
initial algebra g can be contracted by v (i.e., by taking 
<l>t = v + t), then the algebra g(2) obtained by 
contracting with t<l>t is the Abelian algebra. Con­
versely, the existence of a non-Abelian Lie algebra g(2) 
"measures" the lack of verification of (2.4a). 

Now, if it is impossible to obtain a contracted 
algebra by (2.6), the previous process obviously can be 

extended by taking for <I> t more and more singular 
mappings at t = 0. For example, with <l>t = t2(w + t), 
one obtains an algebra g(3) : 

[a, b](3) = -w[a,b]<2), (2.12) 

[we define [a, b ](2) in function of w by means of the 
expression (2.9)], and the necessary and sufficient 
condition of existence for g(3) is still 

w[a, b](3) = 0. (2.13) 

It follows from expression (2.7a) that it is possible to 
go on in this way: the contraction by <l>t = tn(u + t) 
gives an algebra gnH (n ~ 1) defined by 

[a, b](nH ) = -u[a, b](n) 

= (- )n-1un- l [a, b](2), (2.14) 

where [a, b ](2) is defined by (2.9) with respect to u. 
The necessary and sufficient condition of contraction 
is 

u[a, b](nH ) = 0. (2.15) 

If this condition is satisfied at order n, the next 
algebras (of higher order) are Abelian. Otherwise, we 
can continue until the algebra gq, corresponding to 
<l>t = tq-l(u + t), is reached 

[a, b ](q) = (-)q-luq-l[a, b ](2) 

= (- )q-luq-l[ua, ub tv, 
and there is no condition because u[a, b ](q) is always 
zero. 

Remark: [a, b ](Q+l) = 0, so that it is always possible 
to contract into the Abelian algebra. 

It is convenient to put these results into a diagram: 
uXu 

(a, b) ~ (ua, ub) 

1 ~ 1 
[a, b](l) ~ [ua, ub] ~ [a, b](3) ~ [a, b](4) .. " 

where ~(a, b) = [a, b](2) = [ua, ub] - u[a, b](1). The 
condition (2.4a) of existence of gl is just the com­
mutativity of the diagram. If ~ :;6 ° and u 0 ~ = 0, 
one can contract g into g(2), etc. In general, if ui 

0 ~ = ° 
and U i - l 

0 ~ :;6 0, algebra g can be contracted into 
g(i+l ) by using the mapping <l>t = ti(U + t). 

E. Example 

Let us return to the rotation case of Sec. II C. The 
rotation algebra Au can be contracted into A2 by 
using an application 

<l>t = t(v + t(l - v». 

Here we normalize differentlyll in order to have 
<1>1 = 1. We only have to take for v, in the basis e1 , 
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A9 orbit 

A, orbit 

FIG. 2. Orbits of algebras 
A a, A 7 , and Ag. 

e2' ea used in Sec. lIC, the following application: 

which gives 

v_( J 
~.- (' J 

Then one can immediately verify that 

[e1 , e2](2) = ea, 

[e2 , ea](2) = 0, 

[ea, e1 ](2) = 0, 

and that v[e i , ej ](1) = 0. 
Here one recognizes a contraction already pointed 

out by Inonii.16 

From the geometric viewpoint, it corresponds to the 
following situation: The orbit of A2 belongs to the edge 
of the "stratum" of the rotations algebra A9 , but also 
to the edge of the A7'S stratum. (Let us recall that 
the dimensions of the orbits are, respectively, 6 for A9 , 

5 for A7 and 3 for A 2 .) It means that the situation of 
A2 is more singular on e, for example, as it can be 
suggested by Fig. 2, where the orbit of A2 is repre­
sented by a point. As is already known,16 it is possible 
to reach A2 from A9 by means of two successive /-W 
contractions (and that is very clear geometrically). 
However, we do not know if this corresponds to a 
general situation; the solution of this problem seems 
to be related to a best knowledge of the structure 
constants manifold for an arbitrary dimension. 

To sum up, through the more singular way of 
contracting, it is possible to obtain some Lie algebras, 
the orbits of which have themselves some more 
singular positions on the structure constants manifold. 
At the limit, it is always possible to reach the Abelian 
Lie algebra which belongs to the edge of all the orbits. 

F. Deformation and Contraction 

By (2.7) and (2.7a), we see that a deformation of 
the contracted algebra in a well-determined orbit 

16 E. Inonu, in Group Theoretical Concepts and Methods in Ele­
mentary Particle Physics, F. Giirsey, Ed. (Gordon and Breach 
Science Publishers, Inc., New York, 1965), p. 391. 

corresponds exactly to a more singular contraction, 
as in Sec. lIB .. Now we are interested in the converse 
of this property. 

Let us suppose that an algebra gl can be deformed 
in a well-determined orbit (an element of which being 
g, with the law: [a, bD. For each value of t (t ~ 0), the 
deformation/tea, b) is isomorphic to [a, b]. Then there 
must exist an element of the group GL(V) 'Pt such 
that, for each t ~ 0, 

(2.16) 

We know by assumption that the previous expression 
has a limit for t = 0, which corresponds to the 
algebra gl' Now, to prove the reciprocity completely, 
the problem is to show that between the 'Pt (not 
uniquely) defined by (2.16), there is at least one which 
has an analytic expression in the neighborhood of 
t = ° of the form (2.5), (or even with a first term in 
t n ,) the first element of this development being in 
general a nonregular application. Though this 
result seems extremely likely, we have not been able 
to prove it. Then it is not sure that the more general 
way of contracting is obtained by the previous 
Secs. IIA and lID contractions. 

However, we have the partial result: all the algebras 
which can be contracted in a given one gl in the sense 
of Secs. IIA or lID have to be searched for among 
the deformations of gl' The advantage is that the 
research of the deformations can be made in a more 
systematic way. 

III. APPLICATION TO THE POINCARE'S 
GROUP 

The knowledge of all the group or Lie algebras which 
can be contracted into the inhomogeneous Lorentz 
group ~ may present some interest in physics [for 
example, from the viewpoint of general relativity,17 
or from the viewpoint of dynamical groups of Barut 
and B6hm.18] We already know that, between the 
semisimple Lie algebras, only the de Sitter's algebras 
can give ~ by contraction, as it was proved by Sharp.8 
Now, by studying the deformations of the Poincare 
Lie algebra, we can prove that they are the only 
possible algebras which can be contracted in ~. 

The Deformations of the Poincare Lie Algebra 

Let us consider the first-order deformations. 
Applying the results of Sec. 13, we have to compute 
H2(P, P) and H3(P, P). This is done in the Appendix. 
The result says that H2(P, P) is a one-dimensional 
space and that H3(P, P) is zero. It proves there are no 

17 F. Giirsey, in Ref. 16, p. 365. 
18 A. O. Barut and A. Bohm, Phys. Rev. 139, BII07 (1965). 



                                                                                                                                    

DEFORMATION AND CONTRACTION OF LIE ALGEBRAS 1221 

SO (4,~ FIG. 3. Deformations of 
Poincare's algebra. 

obstructions to the deformation (which means that 
every cocycle is integrable), and moreover there is 
only one "direction" of deformation (modulo the 
displacements in the ~ orbit). This unique type of 
first-order deformations is easily obtained by taking, 
for example [see Ref. 17, p. 373], 

-(ijli)[Jk .. , J"v] = ()kvJ .. " - ()k"J .. v + () .. "Jkv - () .. .Jk", 
-(ijli)[ll .. , J"v] = () .. "llv - () .. vll/l> 

-(ijli)[ll" , ll .. ] = tJ"v' 

This corresponds to two classes of algebras following 
the sign of t (we have t = -1/R2, where R is the 
radius of curvature of the universeI7): 

t > 0: it is the algebra of SO(3, 2), 

t < 0: it is the algebra of SO(4, 1). 

It comes from the rigidity of the semisimple Lie 
algebras that the higher-order deformations give 
nothing more. 

Now this situation can be geometrically understood 
on the structure constants manifold corresponding 
to the 10-dimensional Lie algebras. Let us recall that 
the dimension of a semisimple Lie algebra's orbit is 
n2 - n, which gives 90 for the de Sitter's orbits. The 
dimension of the Poincare orbit is given by 

dim B2(P, P) = n2 - n - dim HI(P, P), 

which is 89 because HI(P, P) is a one-dimensional 
space.19 So the situation can be illustrated by Fig. 3. 
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APPENDIX. COMPUTATION OF H2(P, P) 
AND H3(p,P) 

We use the following formula of Serre and Hochs­
child20 

Hn(g, M) = I Hi(g/K, F) @ H;(K, MY, (AI) 
H;=n 

where M is a finite dimensional g module, K is an ideal 
of g such that gjK is semisimple, and F is the field. 

The meaning of the symbol g on the right is defined 
later. 

A. H2(P,P) 

By taking for K the translation ideal, P, we get 
directly from (AI): 

H2(P, P) = H2(T, pt 
and the problem is reduced to the computation of 
H2(T, P). 

. 1. Coboundaries B2(T, P) 

Let g be an element of B2(T, P); i.e., g is a bilinear 
function TAT ---+ P such that there exists a one­
cochain <1>: T ---+ P verifying 

g(xi , x;) = ()<I>(xi , x;) = [Xi' <I>(x;)] 

- [Xi' <I>(x)] Xi E T. (A2) 

<I> can be taken with its values in L """ PjT 

(A3) 
"V 

where MJlv is the usual basis of L. 
Now use the decomposition, g = g L + g T , where 

gL(Xi , Xi) = g(xi , x;)j L 
and 

gT(Xi , x;) = g(xi , x;)j T' 

We see from (A2) that the component gL is zero. 
So a coboundary is a function gT: TAT ---+ T, 

gT(Xi , Xi) = ex~;Xk 
satisfying (A2), which means, explicitly, 

ex~; = 2(d~kgii - dfkg;;). (A4) 

But, given any ex~i = - ex:i , it is always possible to 
find a function <1>, such that (A2) [or (A4)] is verified. 
In fact this function is uniquely determined by 

dk; = t(ex~;g;;giigkk + exkig;; + ex/kgii) 

and we have the result B2(T, P) = C2(T, T), where 
C2(T, T) is the space of all the bilinear functions: 
T A T---+ T. 

2. Cocycles Z2(T, P) 

f E Z2(T, P) if 

()f(xl , X2 , xs) = I [Xl ,J(X2' xs)] = O. (AS) 
~(1,2,S) 

10 G. Hochschild and J. P. Serre, Ann. Math. 57, 603 (1953). 
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Usingf = fT + fL as before, we see that (AS) is only 
a condition onfL' 

3. H2(T,P)P 

There is a canonical structure of P module on 
C2(T, P) which defined by 

fE C2(T, P) JW+ g 'fE C2(T, P); g E P, 

(g '/)(xl , X2) = g . f(xl , x 2) - f(g . Xl' X2) 

- f(Xl,g' x 2)· 

H2(T, P)P is the set of elements of H2(T, P) invariant 
by g, that is such that g . f is in the same cohomology 
class as f This is always verified if gET, because in 
this case 

(g' f)(xl , x 2) = [g,f(Xl' X2)] E T, 

g 'fE C2(T, T) = B2(T, P). 

A representative element in the class off is given by 
an fL: TAT ---+ L. Now taking gin L, one sees that 
g . f L is also a function TAT ---+ L. Then the 
condition of invariance implies g' fL = 0, and is 
equivalent to the following proposition: 

(A6) 

where B is the space of functions TAT ---+ L, and T, 
L being considered as L module (for the adjoint 
representation). As L modules, 

{

T R> D!'! 

L R> Dl.O ~ DO.l. 

So that we get from (A6), using canonical identi­
fications, 

fL E (DU A DU (3) Dl •O (3) DO.l)L. (A7) 

The only L invariant part is the trivial one: now DO.o 
appears twice in the decomposition, which means that 
B(T A T, L)L is a two-dimensional space. It is easy to 
find two independent elements. We know the only 
invariant combinations of X p ' Y .. , M lly are 

(IX) M IlYXPY" g;g; , 

((3) M IlYXP y" E~; , 
but only one of these elements (IX) is a cocycle, so we 
have the final result that H2(T, P)P = H2(P, P) is a 
one-dimensional space. 

B. H3(P,P) 

From Hl(L, K) = H2(L, K) = 0 and also 

HO(T, P)P = 0, 

Eq. (AI) yields 

H3(P, P) = H3(T, P)P. 

1. Coboundaries B3(T, P) 

g = gL + gT [see (AI)] belongs to B2(T, P) if there 
exists a function <J>: TAT ---+ P such that 

g(Xl' X2' x 3) = (b<J»(Xl' X2, x 3) 

= L [Xl' <J>(X2' x 3»), (A8) 
~(l.2.3) 

the component gL is zero. 
Let us define 

{ 
<J>(Xi' Xi) = Cf/Mlly, 

gT(Xi , Xi' Xk) = IXL.kX!' 

The condition (A8) is equivalent to 

lX!ik = 2[Cggkk + C}igii + C1:gjj)' (A9) 

Now it is always possible to find a set of coefficients q: verifying (A9) (which is not uniquely determined 
in this case). For example, 

Ck: = i[tlX:ikgii + tlX~i!gllgiigkk 
+ tlX~k!g!lgiigjj + IX/k!gll], 

so that B3(T, P) is the set of all the 3-cochains C3(T, T). 
Cocyc/es Z3(T, P): The condition fE Z3(T, P) only 

concerns the part fL which characterizes the coho­
mology class. 

2. H3(T,P)P 

Exactly in the same way as for H2(T, P)P, there is 
only one condition of in variance : (g 'f)(Xl' X2 , x 3) = 0 
with 

which means that 

or equivalently 

f E (DU (3) DU (3) DU (3) Dl •O (3) DO.l)L 
L.... ~ __ 

Antlsym 
or 

fL E (DU (3) Dl.O (3) DO.l)L = 0, 

because the trivial component DO.o is not contained in 
the previous product. 

This proves that H3(P, P) = H3(T, P)P = O. 
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Asymptotic Theory of Electromagnetic and Acoustic Diffraction 
by Smooth Convex Surfaces of Variable Curvature 
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A gen~ral method is presented for obtaining successive terms in short wavelength asymptotic expansions 
of the dIffracted field produ~d by p.lane acoustic ~nd e\ect~omagnetic waves incident on an arbitrary 
smooth convex surface. By Introducmg the geodesIc coordInate system on arbitrary surfaces of non­
c?nstant curvature, .both scalar .and vector integral equations governing the surface fields are solved 
dIrectly. The e~presslO~s .for leadmg a~d second-order terms in the asymptotic expansion of the diffracted 
fields are obtamed explIcItly and the dIfferences between acoustic and electromagnetic creeping waves are 
shown. 

1. INTRODUCTION 

A SHADOW is formed when a wave is incident 
upon a smooth convex body which is large com­

pared to the incident wavelength. In the neighborhood 
of the shadow boundary the surface field does not 
abruptly vanish and a penumbra region exists. Some 
waves penetrate into the shadow region and account 
for the nonzero fields there. These phenomena are 
due to diffraction of the incident wave by the object. 

The mathematical problem of analyzing diffraction 
of waves involves finding the short-wavelength 
asymptotic form of a solution of the wave equation 
satisfying an appropriate boundary condition of the 
diffracting surface and the radiation condition at 
infinity. Detailed studies of the surface field on a 
circular cylinder and a sphere,! for which the exact 
solutions are available, indicate that the incident wave 
is diffracted near the shadow boundary and the 
diffracted waves proceed along the geodesic into the 
shadow region, spilling off energy as they travel. Their 
phases are determined primarily by the distance 
traveled from the shadow boundary. The waves 
diffracted by a smooth convex surface are frequently 
called creeping waves. 

In obtaining a description of the waves diffracted 
by an arbitrary smooth convex surface of variable 
curvature, two techniques can be used: 

(1) finding the asymptotic form of an exact solution 
for a canonical body and generalizing the results; 

(2) solving the boundary value problem directly 
by an asymptotic method for a general surface but in 
restricted regions. 

The difficulty with the first method is that very few 
canonical problems can be solved exactly. Thus, in 
the well-known geometrical theory of diffraction,2 a 

1 W. Franz, Z. Naturforsch. 9A, 705 (1954). 
2 B. R. Levy and J. B. Kel1er, Commun. Pure Appl. Math. 12, 

159 (1959). 

locally cylindrical body is chosen as the canonical 
body in analyzing diffraction of waves by arbitrary 
smooth surfaces. While this theory gives the correct 
leading term in the asymptotic expansion of the 
diffracted fields, it does not yield higher-order terms. 

The purpose of this paper is to discuss an integral 
equation approach based on the second technique. It 
can yield not only the leading term but also higher­
order terms in the asymptotic expansion of the fields 
diffracted by an arbitrary shape with a smooth convex 
surface. The method to be used is the following. The 
geodesic coordinate system is introduced to describe 
the geometry of the diffracting surface (Sec. 2). In 
terms of this coordinate system, the short-wavelength 
asymptotic form of the integral equation governing 
the surface fields is derived (Sec. 3.1) for the acoustic 
case, and its solutions are derived for the penumbra 
(Sec. 3.2) and shadow (Sec. 3.3) regions. The same 
procedure is repeated for the electromagnetic case 
(Sec. 4). 

2. GEODESIC COORDINATE SYSTEM 

From the analysis of the sphere solution,! it is 
observed that the creeping waves propagate along 
the geodesic. Thus, we propose to use the geodesic 
coordinate system to describe the diffracting surface. 
An important advantage of this coordinate system is 
that it can be defined on any smooth surface. For the 
sake of simplicity, it is assumed that the diffracting 
surface is symmetric with respect to the shadow 
boundary and that the torsion of the geodesic is zero. 
(See Fig. 1.) 

Let us define the geodesic coordinate system as 
follows. The curve u = 0 is taken to represent the 
shadow boundary with v denoting arc length along it. 
At each point of u = 0 the incident wave is tangent 
in a given direction, and this defines a geodesic through 
each point of u = 0; these geodesics are taken as the 

1223 
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FIG. I. Geodesic co­
ordinate system. 

boundary '---v-----' 
u = constant 

coordinate curves v = const, with u taken as arc 
length along the geodesic measured positively from the 
shadow boundary. The geodesic coordinate system is 
orthogonal and the linear element is given as 

ds2 = du2 + G dv2, with G(u = 0) == l. (2.1) 

Because of the assumption that the geodesics are 
planar, G is independent of v. 

The diffracting surface may be described by the 
Gauss-Weingarten equations3

: 

ot/ou = -KgO, 

ot/ov = ob{ou = Kttb, 

ob/ov = -G[Kttt + KtnO] with Kt = (K;t + K;n)', 

o%u = Kgt, o%v = Ktnb, 
where 

(2.2) 

or/ou = t, or/ov = b with r the position vector. 

(2.3) 

Here 0, t, and biG' are unit normal, tangent, and 
binormal vectors along the geodesic, respectively. Kg 
is the curvature of the geodesic. K tt and K tn are, 
respectively, the tangential and the normal components 
of the curvature of the u = const curves. Thus, the 
two principal curvatures are Kg and Ktn and their 
product is 

KgKtn = -(1/Gf)(o2G'/ou2), (2.4) 

while K tt is related to the function G by 

Ktt = (oG/ou)/2G. (2.5) 

In addition to Eq. (2.2), the Codazzi equation must 
be satisfied: 

OKtn/OU = Ktt(Kg - Ktn), 

OKg/OV = O. 
(2.6) 

3 D. J. Struik, Differential Geometry (Addison-Wesley Publishing 
Company, Inc., Reading, Massachusetts, 1950). 

A more detailed analysis of the geodesic coordinate 
system can be found in most books on differential 
geometry.s 

3. DIFFRACTION OF A PLANE ACOUSTIC 
(SCALAR) WAVE 

The first problem to be considered is the diffraction 
of a plane acoustic (scalar) wave by an acoustically 
hard surface; i.e., a Neumann boundary condition is 
imposed. 

3.1. Integral Equation Governing the Surface Field 

We suppose that a plane acoustic wave is incident 
upon a smooth convex surface and that the normal 
derivative of the total field on the surface vanishes. 
Then the integral equation governing the surface field 
can be derived easily by Green's theorem4 : 

U(r) = 2Uinc(r) 

-L II da'U(r') 1 ~!kR {o(r')' R}eikR
, 

(3.1) 

where R = r' - r, and Uine is the incident field. 
Without loss of generality, we consider the surface 
field on a geodesic which is called the curve v = O. In 
terms of the geodesic coordinate system, the incident 
wave on the geodesic v = 0 is 

Uinc(u, V = 0) = eikt(u=o.v=O).r(u.,,=O). (3.2) 

In the two equations above, the time dependence 
factor rimt is omitted. As observed in the study of a 
circular cylinder and a sphere, 1 the phase of the dif­
fracted (creeping) wave is determined mainly by the 
distance traveled from the shadow boundary; thus 
we set 

U(r) = eikul(r), (3.3) 

and for a large k (= 21T/A, the wavenumber), l(r) is 
assumed to be varying slowly in comparison with 
eiku

• Substitution of this expression into Eq. (3.1) 
gives 

ICu,O) = 2 exp {ikt(O, 0). r(u, 0) - iku} 

- 2~ II G'(u') du' dv'l(u', v') 1 ~!kR 
X {n(u', v')· R} exp {ikR - ik(u - u')}. 

(3.4) 

Since we are interested in the short-w",velength 
behavior of the solution, we replace the second term 
in Eq. (3.4) by its asymptotic form. For large k, the 

4 H. Honl, A. W. Maue, and K. Westpfahl, in Handbuch der 
Physik (Springer-Verlag, Berlin, 1961), Vol. XXVII pp. 218-544. 
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integrand has a saddle point where the derivative of 
the function R - (u - u') vanishes. The Taylor series 
expansion of the vector R near r = r' is derived easily 
by means of Eq. (2.2) and is given by 

R = r'(u', v') - r(u, 0) ~ (u' - u)t(u) + v'b(u) 

- U(u' - U)2Kiu)n(u) - 2(u' - U)V'Ktt(U)b(U) 

+ v,ZG(U){KttCU)t(U) + Ktn(U)n(u)}] 

- i[(U' - u)3{Kiu)n(u) + K;(U)t(U)} 

Above, and in following pages, the curvatures (Kg, 
etc.), t, b, and n without the argument for the v 
coordinate represents their values at v = O. The dots 
denote the derivative with respect to the argument 
of the function. Using the above expression, the solu­
tion of the equation 

(ojov')[(R • R)t - (u _ u')] 

= (v'jR)G(u)[(u - U')Ktt(U) + ... J = 0 (3.6) 

+ 3(u' _ U)VKg(U)Ktiu)b(u) yields the saddle point at v' = 0 for the v' integration. 
+ 3(u' _ U)V,2G(U)Ktt(U){K

tt
(U)t(u) + Ktn(u)n(u)} Applying the method of steepest descents

5 
to the v' 

integration in Eq. (3.4), we obtain an asymptotic 
+ v'3G(u)k;(u)b(u)] + . . . . (3.5) expression of the integral equation for large k. 

(i,,/4) iU [G( ,)]1 
l(u 0) = 2 exp {ikt(O 0). r(u 0) _ iku} _ _ e _ du'eikRo-ik(U-U') u 

, " (27T)! -00 [k(02Rjov'2)(V' = OJ]! 

[
-ik n(u', 0)· Ro leu' 0) _ {n(u', 0)· Ro}(04Rjov,4)(V' = 0) leu' 0) 

X R~ , 8RM(02Rjov,2)(V' = OW ' 

Ktn(U') l( , 0) {n(u', 0) • Ro} 0
2
1 ( , O)J O(k-t + 2Ro u , + 2RM(02RjoV,2)(V' = On OV,2 U, + ), (3.7) 

where 
Ro = r'(u', 0) - r(u,O), (3.8) 

R ( ') K;(U) ( ')3 + Kg(U)Kiu)( ')4 
i""J U-U --- u-u u-u 

0- M M 

[
k!(U) K;(U) Kg(U)K/U)] ( _ U')5 + --____ u, 
1920 90 80 

(3.9) 

02R (v' = 0) 
OV,2 

G(u/) 
= -- [1 - RO{Ktt(U')t(u') + KtnCu')n(u')}], 

Ro 
(3.10) 

and 

iJ4R (v' = 0) = - 3G(u2') [1 - Ro' {Ktt(U')t(u') 
OV,4 Ro 

+ Ktn(u')n(u')} + R~K;(U')] 02~ (v' = 0). (3.11) 
3 ov' 

In Eq. (3.7), the contribution from the u' integration 
between u and infinity is neglected. The reason is the 
following. From Eq. (3.5) it can be shown that Ro 
near u = u' is 

Ro ~ (u - u' ) + "', for u > u' , 

~ (u' - u) + .. " for u < U'. 

Thus, exp [ik{Ro - (u - U')}] in Eq. (3.7) has a saddle 
point at u = u' only if u ;;; u' ; therefore, by integrating 
by parts, one can show that the contribution from 
the region u < u' ~ co is asymptotically negligible 
for large k. 

Now the integral equation governing the surface 
field is thus reduced to a one-dimensional Volterra 
equation. 

3.2. The Surface Field in the Penumbra Region 

In this section, the asymptotic integral Eq. (3.7) 
governing the surface field is solved for the penumbra 
region. It is assumed that the curvatures are slowly 
varying and that pgl Ptn is of order one or less. In order 
to obtain an appropriate form of Eq. (3.7) in the 
neighborhood of the shadow boundary, we set 

Mo = [kpiO,O)]! (pg = I/KI1), 

ku = M~~, 
ku' = M~T, 

(3.12) 

and further assume that [kpg(u, v)]!- »1. Near the 
shadow boundary (u = 0), the phase function, 
t(O,O) • r(u, 0) - u, of the incident wave term in Eq. 
(3.7) can be expanded in Taylor series by means of 
Eq. (2.2): 

teO, 0) • r(u, 0) - U 

3 5 

~ - !!.. K;(O, 0) + ~ K!(O, 0){1 + 4piO, O);;iO, O)} 
6 120 

(3.13) 

[piO, 0) = 0 by assumption of symmetry of the 
diffracting surface with respect to the shadow 
boundary]. 

5 L. M. Brekhovskikh. Waves in Layered Media (Academic Press 
Inc., New York. 1960). pp. 245-250. 
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Substitution of Eq. (3.12) into the above expression 
yields the asymptotic form of the incident wave: 

eikt(O,O).r( u,OI-iku 

Similarly, an appropriate asymptotic form of the 
second term in the right-hand side of Eq. (3.7) can 
be derived easily by expanding the integrand near 
u = u' and by substituting the relationships of (3.12) 
along with 

piu, 0) """' piO, 0) + iu2;;iO, 0) near u = 0. 

The high-frequency asymptotic form of the integral 
equation governing the surface field in the penumbra 
region is then 

_'(S3/6)[1 . {I + 4piO, O);;iO, a)} ~5J 
I(~, 0) = 2e ' + I 120M~ 

__ I_Is dTI(T,0)e-i [(s-TI3/24 l 

(27T)! -00 

x [e-i (1T/4) (~ - T)t + K2(~~ T)] + O(M0'3), 
2 Mo 

(3.15) 
where 

K (~ T) = e-i(1T/4)(~ _ T)![- (~ - T)2 + i (~ - T)5 
2 , 96 20 

x - + '--"-''-'--'-'-~-{
I piO, O);;iO, O)} 

192 8 

+ (0 0)" (0 O){e _ ~T _ (~- T)2 + i ~T(~ - T)3} 
pg , Pg' 12 3 8 48 

+ pia, 0) (e _ T2) + i flo + [pg(O, 0)/2Ptn(0, om] . 
8Ptn(0, 0) (~ - T) 

(3.16) 

Since there is no term of order M-;;1 in the above 
equation, we take the asymptotic expansion of I as 

I(~, 0) = Io(~, 0) + [IM, O)/M~] + O(M0'3). (3.17) 

Substitution of this expression into Eq. (3.15) simpli­
fies the integral equation and the following equations 
for 10 and II are obtained: 

Io(~, 0) = 2e-i (s3/6) 

_ e-
i
(1T/4) (~)!ls dTIo(T, O)(~ _ T)!e-i [(s-r>3/24l 
4 17-00 

(3.18) 

and 

Il(~' 0) = i {I + 4pO<O, 0);;0<0, O)} ~5e-i(s3/6) 
60 

-~ IS dTIo(r, 0)K2(~' T)e-i [(s-r>3/24l 
(217) -00 

__ e__ _ drIl(T, O)(~ _ T)1l"e-i [(s-r> /24l. -i(1T/4) (2 )tls 1 3 

4 17 -00 

(3.19) 

We observe, from the above two equations, that the 
kernel functions are the same and that substitution 
of the solution for the leading term 10 yields the 
solution for the second-order term. Similarly, integral 
equations governing higher-order terms in the high­
frequency expansion of the field can be derived by 
including further terms in the asymptotic expansion 
of Eqs. (3.7) and (3.15). 

Since Eq. (3.18) is a Volterra type and its kernel is 
a function of ~ - T only, the use of Fourier transform 
is suggested. We set 

io(t) = L: I o(~, O)e-ist dt. (3.20) 

Application of the Fourier transform to both sides 
of Eq. (3.18) and use of the convolution theorem 
yields 

io(t) = 2 L: d~e-ist-i(s3/6) 
x [1 + (~f e-

i
:

1T
/
4

) 5000 d~~t. e-iSt-i(S3/ 24)] -1. (3.21) 

The numerator of the above equation is an Airy 
function6 

(3.22) 

The denominator and other integrals for il can be 
evaluated by means of the functions' 

F nCp) = 5000 

dxxn- te-i (12)ip QJ-i",3 (3.23) 

for various n. In particular, 

Fo = 7Tf 2!3-1ei (1T/4) Ai (p)[Ai (p) - i Bi (p)], (3.24) 

Fl = 7Tf 3-!e3i(1T/4)[2 Ai (p){Ai (p) - i :Hi (p)} + (i/7T)], 

(3.25) 

F2 = 27Tf 3-!(12)-ie5i(1T/4)[{Ai (p)}2 + p{Ai (pW 

- i{p Ai (p) Bi (p) + Ai (p) Hi (p)}]. (3.26) 

6 J. C. P. Miller, The Airy Integral (Cambridge University Press, 
New York, 1946). 

7 v. H. Weston, "Pressure Pulse Received Due to an Explosion 
in the Atmosphere at an Arbitrary Altitude, Part I," The University 
of Michigan Radiation Laboratory Technical Report 2886-I-T, 
C. I-C. 4 (1960). 
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n 

3 
4 
5 
6 
7 
8 
9 

TABLE I. The function Fn. 

2 
o 
8p 

28 
32p2 

288p 
2912 + 512p3 

4p 
6 

16p2 

80p 
108 + 64p3 

672p2 
10048p + 1024p' 

o 
4p 

10 
16p2 

112p 
220 + 64p3 

3456p2 

The remaining Fn may be expressed in terms of the 
above three functions by the relation 

X i(n-llFip) + En(12)-(n-2J/3i(n-2)F2(P), 

(3.27) 
where en, Dn, and En are given in Table I. 

Using the Fl function, Eq. (3.21) reduces to 

io(t) = 2t17! /w1(t2!), (3.28) 
where 

WI = i17t[Al - i Bi]. 

The inverse Fourier transform of Eq. (3.28) yields 
the solution for the leading term: 

1 100 ip,;2-1 
10(;, v- = 0) = ! dp e_._ (p = t2t). (3.29) 

17 -00 w1(p) 

Similarly, the application of the Fourier transform 
to the integral equation governing the second-order 
term (3.19) gives 

i1(t) = i N (p = t2~, (3.30) 
217 Ai (p)w1(p) 

where 

N =1"" d;e-it~[i {I + 4pg{0, O)pg{O, O)} te-iUI3;6) 

-00 60 -~ l~ dTIO(T, 0)K2(;, T)e_i[CH)3/24]. (3.31) 
(217) -"" 

Using the convolution theorem, the functions Fn of 
Table I and Eq. (3.28), one can show that 

N [2 .. 17 piO, 0)] --- = P - - + pg(O, O)pg{O, 0) - + ~---'-
417 Ai (p) 15 15 Pln(O, O) 

+ w1(p) [- ! + {J3 + a"5 - !(J3)pg{0, O)pg(O, O)J 
w1(p) 5 30 

_ [PW1(P)] 2 [iPiO, O)piO, 0) + piO,O)J 
Wl(P) Pln(O, 0) 

+ (0 0)" (0 0)~[Wl(P)]3p4. 
pg , Pg' 3 w

1
(p) (3.32) 

Substitution of this expression into Eq. (3.30) and 
inverse Fourier transformation gives the solution for 
11' Combining II with Eqs. (3.3) and (3.29), we obtain 
the desired expression for the surface field in the 
penumbra region: 

U(u, 0) ~ eiku - dp _e __ +. e dpeiP(uldJ -. - - - + piO, 0) ---; (0, 0)-1 1"" ip(ujd) iku 1"" [ P {2 d
2
p 17 

17! -00 w1(p) [!kPu(0,0)1f17! -00 w1(p) 15 du 15 

+ piO, O)} + w1(p) {_! + p3 + Pg(O, 0) d
2

pg (0, 0)U1s _ !p3)} _ {P~I(P)}2 
Plr.(O,O) {Wl(P)} 2 5 30 du2 w1(p) 

{
'1. (0 0) d

2
pu (0 0) + piO, O)} + ~ p{PW1(p).r P (0,0) d

2

pu (0, O)J, (3.33) 
X 3Py, du2' PineO, 0) 3 {Wl(p)4} g du 2 

whered= [AP:(9,0)!17]!andAistheincidentwave!ength. 
When u/d is positive and sufficiently large (far away 
from the shadow boundary into the shadow region), 
Eq. (3.33) can be expressed as a rapidly convergent 
series in terms of the residues at the poles w1(P) = O. 
This residue series represents the creeping waves. 
When u/d goes to negative infinity (illuminated region), 
Eq. (3.33) reduces to 2eikt(0.0).rCu.0l, which is the geo­
metrical optics term.s The width of the penumbra 
region is of order d. 

33. The Surface Field in the Shadow Region 
The incident plane wave cannot reach the shadow 

region directly (otherwise the shadow does not exist), 

8 N. A. Logan, "General Research in Diffractio~ Theory Vol. I," 
Lockheed Missiles and Space Division Techmcal Report No. 
LMSD-288087 (1959). 

and only the waves diffracted near the shadow 
boundary proceed into the shadow region. An expres­
sion for the surface field in this region may be obtained 
by following two steps4: 

(1) Obtain the initial values of the diffracted 
(creeping) waves from the solution for the penumbra 
region at the shadow boundary. 

(2) Solve the homogeneous integral equation [with­
out the plane wave term in Eq. (3.7) and the limit of 
the integration only over the surface in the shadow 
region] and match the initial values at the shadow 
boundary. 

The initial values of the diffracted waves may be 
obtained from Eq. (3.33). When u is positive, the 
integrals of this equation can be expressed in terms 
of the residues at the poles w1(P) = 0, and each 
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residue represents a creeping wave.9 The values of 
these residues at the shadow boundary (u = 0) yield 
the necessary initial values of the creeping waves. The 
residue series ofEq. (3.33) at the shadow boundary is 

U(O, 0),..... 217ij L -- 1 + -------=-00 1 [ 1 
'=1 P,Wl(PI) 2{tkpg{0, O)}t 

{ ( 
1 pg(O, 0) 1 (0 0) d2

pu (0 0») 
X PI - 15 + 2Ptn(0, 0) + 9-aPg, du? ' 

1 (1 pg{O, 0)1. (0 0) d? Pu (0 O»)}] + p~ 5 + 2Ptn(0, 0) - 3OPg' du2 ' , 
(3.34) 

where PI is the lth root of W1(P1) = O. In the above 
expression, each term in the series represents the 
initial value (birth weight) of the lth mode of the 
creeping waves. 

The short-wavelength asymptotic form of the 
homogeneous integral equation governing the surface 
field in the shadow region is the same as Eq. (3.7), 
except for the incident field term which now vanishes. 
Before attempting to solve the integral equation, we 
can observe that the common factor 

[G(u')]i[oZRjov'Z]-t 

u = u' as follows 

[G(U')]i[ Ro ~:~ (v' = O)J-
i 

= [G(u')]i[l - Ro' {Ktiu')t(u') + Ktn(U')D(U,)}]-t 

!::: [G(u')]l. (3.35) 
G(u) 

[Refer to Eqs. (2.2), (2.4), (2.5), and (3.10).] The 
above relation indicates that the solution of the 
homogeneous integral equation has a factor [G(u)]-l. 
In view of the phase factor for the solution in the 
penumbra region, Eq. (3.33), we set the solution of 
the homogeneous integral equation in the form 

l(u,O) = A[G(u)]-! exp [ik [U ds 2~t Jo M (s) 

X {~J (s) + r1(S) + r2(S) + ... }] (3.36) 
10 M(s) M2(S) , 

where the constant A is the initial value, and 

M(u) = [kpiu, O)]t. 

The propagation factors 1'0' 1'1' and 1'2 are yet to be 
determined. On setting 

k(u - u') = M2(U)T, (3.37) 

in the kernel ofEq. (3.7) behaves near the saddle point we obtain the following expression under the assump­
tion that the curvatures are varying slowly: 

k [U -¥- {roes) + r1(S) + r2~s) + ... }!::: ro(U)T + _1_ [rl(U}r - :: {pg(u, O)Po(u) - ipy(u, O)ro(u)}] 
Ju,M (s) M(s) M (s) M(u) 2 

+ + [r2(U)T + ~ {p;(u, 0)Yo(u) - jpiu, O)pg{u, O)ro(u) - tplu, O)pg(u, O)Yo(u) 
M (u) 6 

+ 19° p!(u, O)ro(u)} - ~ {pg(u, O)Yl(U) - piu, 0)r1(U)} J + O(M-3
). (3.38) 

Now combine Eq. (3.7), without the incident plane wave term, with Eq. (3.36) and expand the integrand 
near the saddle point u = u' by Taylor series [using (Eq. 2.2)]. After these algebraic manipulations and 
making use of Eq. (3.37) and (3.38), we can obtain the following asymptotic homogeneous equation: for 
the propagation factors ri' 

1 = _ e-
ih

,/4) [00 dT'Ti[l _ piu, 0) {-iT + i T3} + ~ {_ 1. + p!(u, 0) _ pg(u, O)pg{u, D)} 
2(217)1 Jo M(u) 24 M2(U) 48 2 4 

+ i _.'1'5 {_1 __ ~!! .2(U 0) + pg(u, O)pg(U, D)} _ '1'8 .2(U 0) + i a + [pg(U, O)/Ptn(u, O)1}J 
M'u) 1920 360Pg, 80 1152M2(u) Pg , M2(U)'T 

x [1 + i~-l {r2(U)T + ~ (p!(u, O}jio(u) - jpg(u, O)pg(u, O)ro(u) - tpiu, O)pg(u, O)Yo(u) + .llp!(u, O)ro(u» 
M (u) 6 

- ~ (puCu, O)Yl(U) - pg{u,O)rl(U»}J exp [-i 'T
3 

+ iro(u)2-lT + i2-
l 

2 24 M(u) 

x {rl(U)T - ~ (puCu, O)yo(u, 0) + O(M-~ - jpiu, o)ro(u»}} (3.39) 

• R. F. Goodrich, Trans. IRE-PGAP, AP-7, 528 (1959). 
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Upon comparing coefficients of the leading term in 
the expansion in powers of 11M, we obtain 

1 = _ e-i(1T/~ ('" dnl exp {-i T3 _ iYo(U)T2-t}. 
2(27T) Jo 24 

(3.40) 

Comparing with Eq. (3.23), it can be shown that the 
right-hand side is related to the function F1 of Eq. 
(3.25). Substitution of Eq. (3.23) and (3.25) into Eq. 
(3.40) yields the following: 

Ai (Yo)w1(Yo) = O. (3.41) 

The solution of this equation determines Yo. To be 
consistent with the initial values [Eq. (3.34)] of the 
creeping waves, the roots of w1(yo) = 0 must be 
chosen. In terms of the definition 

Y - ei (,r/3){3 
0/- I' 

the various roots are given by Table II. 
Since Yo is constant, comparison of the coefficients 

of 11M in Eq. (3.39) yields 

e-i
(1f/4) f'" [ p (u 0) 

0= - --l drrl fPiu,O)r - i -g-, - r4 

2(27T) 0 24 

- iT{Y1(U) + ~o piu, 0)T}2-tJ 
X exp {-iYo2-t r - i ;:}. (3.45) 

Various integrals in Eq. (3.45) can be identified with 
Eq. (3.23). Thus, after substitution of Fn from Table 

TABLE II. The values of PI and Ai (-PI)' 

1 
2 
3 

1.01879 
3.24820 
4.82010 

+0.53566 
-0.41902 
+0.38041 

I, we can evaluate Y1 from Eq. (3.45), and the result is 

Yl(U) = i2t[ipuCu, 0)]. (3.46) 

From the coefficients of M-2 in Eq. (3.39), one finds 

Y2(u)2 F2(yo) = (12) Fo(Yo) - + -'-"-.:--C.-:..-
-i -i [1 pg(u, 0) 

5 2Ptn(u, 0) 

- +--puCu, O)paCu, 0) p!(u, O)J 
30 45 

+ y~F2(YO)[Jo - IspaCu, O)paCu, 0) + lhp!(u. 0)]. 

(3.47) 

Upon substituting the values of Fo and F2 given 
by Eqs. (3.24) and (3.26), we obtain Y2, namely, 

( )2-i 1 [1 pg(u, 0) Y2 U = - - - + ....:....::;-'---'-
Yo 10 4Ptn(u, 0) 

paCu, O)puCu, 0) p:(u, O)J - +--
60 90 

+ y~[J-o - 15Piu, O)piu, 0) + 1~5P!(U, 0)]. 

(3.48) 

Combining Eqs. (3.36), (3.46), and (3.48) and matching 
the initial values given by Eq. (3.34) by letting u = 0, 
we obtain the desired solution for the surface field in 
the shadow region: 

U(u, 0) = [G(O)Jt[paCo, O)]! eikU ! .1 [1 + e;(1f/3) {p (_1.. + piO,O) + _1- (0,0) d
2
pg (0, 0») 

G(u) pg(U, 0) !~l{3!Al(-PI) 2-i M 2(0) I 30 4Ptn(0, 0) 180Pu du2 

- ~ (1.. + piO,O) _ i-oPuCO, 0) d
2p

; (0, O»)}J exp [_e-i<1f/6) {31 (U ~ M(s)Tt 
(3! 10 4Ptn(0, 0) du Jo pis, 0) 

_ei(1f/6) (U ~ L {! (1.. + pg(s,O) _ pis, O)paCs, 0) + p~(s, 0») 
Jo pis, 0) M(s) (3! 10 4Ptis, 0) 60 90 

+ (3~(i-o - IspuCs, O)pis, 0) + lhp~(s, O»}} (3.49) 

where M(u) = [kpaCu, O)]t and various values of P! -------------------
and Ai( - (31) are given in Table II. In deriving Eq. ducting smooth convex surface of nonconstant 
(3.49), the following relationships are used: curvature. Since much of the analysis is similar to 

YOI = ei(1f/3)PI and w
1
(p) = ei(,r/6)27Tl Ai (pei(2."/3». that which we have already discussed for the acoustic 

case, the details are omitted wherever possible. 
(3.50) 

4. DIFFRACTION OF A PLANE ELECTRO­
MAGNETIC (VECTOR) WAVE 

The second problem investigated is the diffraction 
of a plane electromagnetic wave by a perfectly coo-

4.1. Integral Equation Governing the Induced 
Currents on the Conducting Surface 

If a plane electromagnetic wave is incident upon a 
smooth convex conducting surface, the integral equa­
tion governing the induced currents on the conductor 
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is4 

. 1 
J(r) = 2n(r) x Hmc(r) - - nCr) 

271' 

If 1 - ikR 'kR 
X da' R3 {J(r) x Re' }. (4.1) 

Here H inc is the incident field and the time dependence 
factor r imt is omitted. Again, without loss of gener­
ality, we consider the induced current along the 
geodesic v = O. The expression for the incident field is 

HinC(u,O) = [-cos Oob(O, 0) + sin Oon(O, 0)] 
X eikt(O.O)'r(u.O), (4.2) 

where 00 = sin-1 {nCO, 0) x Ho/IHol} is the polarization 
angle of the incident wave. With the substitution 

J(r) = [t(r)ItCr) + b(r)Ib(r)]eikU, (4.3) 

the vector integral Eq. (4.1) is reduced to two coupled 

scalar equations: 

Ilu, 0) = 2I!nc(u, 0) - ~ If du' dv'[G(u')]! 1 - :kR 
271' R 

X t(u). [n(u) x {ItCu', v')t(u', v') x R 

+ Ib(u', v')b(u', v') x R}]eikR-ik(U-U') (4.4) 
and 

I b(U, 0) = 2I~nc(u, 0) - ~ If du' dv'[G(u,)]1 1 - ;kR 
271' R 

X b(u). [n(u) x {Ilu', v')t(u', v') x R 

+ Ib(u', v')b(u', v') x R}]eikR-ik(U-U'). (4.5) 

The two equations above are similar to that of 
acoustic case, Eq. (3.4). They also have saddle points 
at v' = 0 for the v' integration and at u = u' for the 
u' integration along the v' = 0 curve. Performing the 
v' integration by the method of steepest descents, we 
obtain 

ItCu, 0) = 2I~nc(u, 0) - 1.- fU dU'[G(U,)]!(271'i)! 1 ! [-ikItCU', 0) t(u). {n(u) x (t(u') x Ro)} 
271' -00 k [(o2R/oV'2)(V' = 0)] R~ 

and 

where 

(o4R/oV,4)(V' = 0) { , R}I' 0 Ilu', O) G(u') ) 
8R~{(02Riov'2)(V' = OW t(u). n(u) x (t(u) x 0) lu, ) - 2R~ {(o2R/oV,2)(V' = O)} t(u 

• {(n(u)· RoKtt(u') - n(u). t(u'»KtCu')N(u') + (t(u') - Ktt(u')Ro)Kt(u')n(u). N(u')} 

(o2It/ov,2)(u',0) t() { , R} (oIb/ov')(u',O) G' 
+ 2RM(02R/oV,2)(V' = O)} u • n(u) x (t(u) x 0) + {(o2R/oV,2)(V' = O)}R~ (u )t(u) 

• {Ro(n(u)· N(U'»Kt(U') - KtCu')N(u')(n(u). RO)}] + O(k-t) (4.6) 

I (u, 0) = 2I~nc(u, v = 0) _ ~ iU 
dU'[G(U,)]!(271'i)! 1 

b 271' -00 k [(o2R/oV'2)(V' = O)]! 

X [-ik {n(u). Ro}{b(u)· b(u')} _ {(o4R/oV,4)(V' = O)}{n(u). Ro}{b(u). b(u')} 

R~ 8R~{(02R/oV'2)(V' = OW 

X Ib(u', 0) - G(u')Ib(u',O) {b(u)· b(U')}{K;(u')n(u). Ro - KtCu')n(u)· N(u')} 
{(o2R/oV,2)(V' = 0)}2R~ 

(0
2
1 b/OV,2)(U', 0) {b() b( ')}{ () } 01 t (' 0 ' 

+ 2R~{(02R/oV'2)(V' = O)} U· u n u • Ro + ov' V = ,U) 

X {b(u). b(u')} {Ktt(U')n(u). Ro - n(u). t(U')}] + O(k-t), (4.7) 
R~{(02R/oV'2)(V' = O)} 

Kt(u)N(u) == Ktt(U)t(u) + KtnCu)n(u). 

4.2. Induced Currents in the Penumbra and 
the Shadow Regions 

and 

I!nc(u, v = 0) = b(u) • [n(u) x Hinc]e-iku 

= -sin 00 .1.. e-i (s8/6) + O(Mo~. (4.9) 
Mo 

In this section, Eqs. (4.6) and (4.7) are solved by 
the same technique used in the acoustic case. In the 
penumbra region, substitution of Eq. (3.12) into Eq. 
(4.2) gives the asymptotic form of the incident field: 

Combining Eqs. (3.12), (4.6), and (4.8), we have 

I (E 0) = 2 cos 0 e-i(l/6)[1 + i {I + 4puCO)pg(0)} E5] 

t '0 120M~ 

__ 1_ JS dTI (E 0)e-iHS-T)8/24] 
(271')1 _<Xl t, 

inc ) 'k It (u, V = 0) = t(u • [n(u) x rlnc]e-' U • 

= cosO e-i (S8/6)[1 + i {I + 4pg(0)p,(0)} E5] + O(M-3) 
o 120M~ 0 

(4.8) 

X {e-ihr/4l (E - T)2 + K 2t(E'T)} + O(M;;3\ 
2 M2 0 " 

o (4.10) 
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where 

K2t(;,7") = e-i (lT/4)(; - 7")! 

[ 
(; - 7")2 . (; - 7"t{ 1 PoCu = O)puCO)} x - + I - + '-"-'-----"-.:....::..:.--'-

96 20 192 8 

+ p (O)p" (O){ e _ ;7" _ S§ - 7")2 + J.- (; _ 7")3;7"} 
g a 12 3 8 48 

+ ~ poCO) (;2 _ 7"2) + i U6 - poCO)/2PtnCO»]. (4.11) 
8 Ptn(O) (; - 7") 

Now, the above asymptotic form of the integral 
equation governing It is independent of Ib , and thus 
the original coupled vector integral Eq. (4.1) is de­
coupled in the asymptotic sense for large k. 
. Upon comparing Eq. (4.10) with acoustic Eq. (3.15), 
we can easily observe that the only difference between 
the two equations is the sign of the term PoCO, 0)1 
2Ptn(0, 0)(; - 7") in K2t and K2 • Thus, we can obtain 
immediately the solution for It from the acoustic 
solution given by Eq. (3.33). 

The asymptotic form of the integral equation 
governing Ib in the penumbra region is 

Ib(;, O) = -2 sin 00 L e-i (s3/6) 

Mo 

+ _1_ is d7"I (7" 0)e-i [(s-d/24] 
(217)t -00 b' 

X [e-i~"/4) (; _ 7"i + O(M;2)J + O(MoS). 

(4.12) 

On setting 
1b(;,0) = [IoM,O)/Mol + O(M03), (4.13) 

application of the Fourier transform and the Fn 
function [Eq. (3.23)] yields: 

lbo = -i sin 0042fl7 Ai (p) + lbo 

x [-1 + i217 Ai (P){Ai (P) - i:Hi (P)}]. (4.14) 

Substituting the Wronskian relation . . 
Ai Bi - Bi Ai = 1/17 

into Eq. (4.14), the inverse Fourier transform gives 
the solution for 100: 

1
b
(;, 0) = i sin 00 foo dp e

iwip 
. (4.15) 

2-i M ol7t -00 w1(p) 

Thus, combining solutions for It and Ib , we obtain 
the expression for the induced currents in the 
penumbra region as 

1 foo eip(U/d) 
J(u, 0) = t(u, 0) cos OoeikU ! dp--

17 -00 w1(p) 

+ t(u, 0) cos (JoeikU 1 (00 dpeiP(uM 
17t2-f M~ J-ro 

x [-.!L {_ 2 + piO, 0) d
2 
P: (0, 0) 17 + piO, o)} 

w1(p) 15 du 15 PtiO,O) 

w1(p) { 1 p3 Pg(O, O) (0 0) 
+ {wtCpW - 5 + 30 Ptn(O, 0) + Pa ' 

X d
2
pg (0 O)(.!!. _.l! 3)} _ {PWl(PW 

du2 ' 15 sP {W}(p)}3 

X {1. (0 0) d
2 

Pa (0 0) + PoCO, O)} 
3Pa' du2 ' ptiO, 0) 

+ ~ p{pW1(p)}3 (0 0) d
2

Pa (0 O)J 
3 {Wl(P)}' Pa' du 2 ' 

+ b(u, 0) Ism 0 dp _e -- + O(M;3), (4.16) 
. . 0 foo ip(u/d) 

2-*M017t -ro Wl(P) 
where 

d = [Ap~(O, 0)/17]*. 

Due to the similarity of asymptotic forms of electro­
magnetic and acoustic integral equations, solutions 
for the shadow region can be obtained by the same 
method used in the acoustic case. The induced 
current in the shadow region is 

[
G(O)Jt[PuCO, 0)J1 iku ~ 1 

J(u, 0) = t(u, 0) cos 00 G(u) piu,O) e C1(31 Ai (-(31) 

[ 
ei(,,/3) {( 1 PoCO, 0) 1 d2pg) x 1 + f (3c - - + + 18opiO, 0) -d 2 (0, 0) 

2- M\O) 30 4ptnCO, 0) u 

_ .!. (1. _ Pa(O,O) _ 1. (0,0) d
2
Pa (0, O»)}] exp [_e-HlT /6)(J1 (U ~ 2-f M(s) 

(J~ 10 4ptiO, 0) 60Pg du 2 Jo pis, 0) 

_e
i
(lT/6) (U ds {! (.!.. _ pis,O) _ pis, 0)(d

2
pg/ds

2
)(s, 0) + [(dpglds)(s, 0)]2) 

Jo pg(s, 0)2-f M(s, 0) (31 10 4ptnCs, 0) 60 90 

+ (J~(.!.. - lspis, 0) d
2
Pa (s, 0) + ~ (d Pg 

(s, 0»)2)}J + b(u, 0) sin Oo[G«O»Jt[pg«O, OO»J 
1 

60 ds2 135 ds G u Pg U, 

X e L . exp _e-i(lT/8)oc! -- 2 ~M(s) + OeM ). Iku+i(Jr/6) ro 1 [ LU ds _1 ] -3 

2-*M(0) !=1 Ai (-ocl) 0 pis, 0) 
(4.17) 
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Here PI and Ai (-PI) are given in Table II, and CXI is 
the lth root of Ai (-CXI) = 0 (see Table III). 

1 
2 
3 

2.33811 
4.08795 
5.52056 

+0.70121 
-0.80311 
+0.86520 

5. DISCUSSION 

In both the acoustic and the electromagnetic dif­
fraction problems considered, the short-wavelength 
asymptotic expressions for the surface fields have 
been obtained for the penumbra and the shadow 
regions. The second-order terms in the asymptotic 
expansion of the surface fields are new results. The 
leading terms are the same as those of Fock1o and 
Levy and Keller.2 

In the solutions for the shadow region, the factor 
[G(O)/G(u)]l is of interest. By definition of the func­
tion G [Eq. (2.1)], G! dv represents the width between 
the two adjacent geodesics. Thus, referring to the 
geometrical theory of diffraction,2 [G(O)jG(u)J! repre­
sents the so-called ray convergence factor for the 
creeping waves. In the geometrical theory of diffrac­
tion, this factor was obtained by physical reasoning 
(conservation of energy), and in the present paper, 
this factor is justified mathematically. The leading 
term for the acoustic and electromagnetic creeping 
waves is the same as that predicted by the geometrical 
theory of diffraction. This leading term, except the 
factor [G(O)/G(u)]l, is independent of curvature in 
the direction transverse to the geodesic. 

In the solution of electromagnetic diffraction 
problems, it is shown that up to the terms of order 
[kp,,]-l in the asymptotic expansion, there is no 
coupling between tangential and binormal components 
of the creeping waves. However, identity between the 
acoustic creeping waves under Neumann boundary 
condition and the tangential component of the 
electromagnetic creeping waves is true only in the 

10 v. Fock, J. Phys. 10, 130 (1949). 

leading term. The transverse curvature appears in 
the second-order term. The effect of transverse curva­
ture on the electromagnetic creeping waves differs from 
that on the acoustic creeping waves. This is one of 
the new results of the present investigation. 

When the radius of curvature Pt in the transverse 
direction is infinite, the diffracting surface becomes 
cylindrical. In this case, the propagation factors of the 
creeping waves in the shadow region agree with those 
obtained by Franz and Klante,11 and by Keller and 
Levy.12 When the principal radii of curvature (p" and 
Ptn) are the same and constant, the diffracting surface 
is spherical. In this case, the solutions of the creeping 
waves reduce to the results of Senior,13 who obtained 
the creeping wave solution (including the second­
order terms) for the sphere by means of a Watson 
transformation of the Mie series (exact) solution. 

The solutions for the shadow regions are not valid 
near a caustic where the radius of curvature (Pt) in 
the direction transverse to. the geodesic is no longer 
large compared to the incident wavelength. The 
author feels that the integral equation method used 
here will still be applicable in investigating the surface 
fields near the caustic, provided that the saddle point 
integration for the v' coordinate (Secs. 3.1 and 4.1) 
is modified by some suitable means. 
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Lowering and Raising Operators for the Orthogonal Group in the Chain 
O(n) ;:, O(n - 1) ;:, ... , and their Graphs* 
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Normal~ed lowering and raising operators are constructed for the orthogonal group in the canonical 
group cha~n O(n) :' <?(n - 1) => ••• ~ 0(2) with the aid of graphs which simplify their construction. 
By successive applicatlO.n of such l.o~enng oper.ato~s f~r O(n), O(n - 1), ... on the highest weight states 
for each step of the cham, an explicit construction IS given for the normalized basis vectors. To illustrate 
the usefulness of the construction, a derivation is given of the Gel'fand-Zetlin matrix elements of the 
infinitesimal generators of O(n). 

1. INTRODUCTION 

THE semisimple Lie groups have recently found 
many new applications in physics. The unitary 

groups in particular have received wide attention as a 
result of this renewed importance, and the irreducible 
representations of U(n) (arbitrary n), have been 
studied in considerable detail.1.2 Although the orthog­
onal group O(n) has received less attention, it 
recently also found some new applications to physical 
problems. In particular, the groups 0(5) and 0(8) 
have become of interest in nuclear spectroscopy in 
connection with the quasi-spin formalism for neutron 
and proton configurations.3.4 The group chain O(n) ;:, 
O(n - 1) ;:, . " has also been found of interest in 
general many-body theory in the construction of 
n-body states of definite permutational sy.mmetry.5 

The basis vectors of an arbitrary irreducible 
representation of O(n) are completely characterized 
by the chain of canonical subgroups O(n - 1) :::> 

O(n - 2) ;:, ... 0(2). This canonical group chain 
has been studied many years ago by Gel'fand and 
Zetlin,6 who give the matrix elements of the infinitesi­
mal operators of O(n), for arbitrary n, in this basis.? 
Since the mathematically natural chain of subgroups, 

• Supported by the U.S. Office of Naval Research, Contract 
NONR 1224(59). 

1 J. G. Nagel and M. Moshinsky, J. Math. Phys. 6, 682 (1965). 
2 M. Moshinsky, J. Math. Phys. 4, 1128 (1963); G. E. Baird and 

L. C. Biedenharn, ibid. 4, 1449 (1963). For earlier references 
consult these references. 

a B. H. Flowers a!ld S. Szpikowski, Proc. Phys. Soc. (London) 84, 
193 (1964); J. C. Pankh, Nucl. Phys. 63,214(1965). J. N. Ginocchio, 
ibid. 74, 321 (1965); M. Ichimura, Progr. Theoret. Phys. (Kyoto) 
32,757 (1964); 33, 215 (1965). K. T. Hecht, Phys. Rev. 139, B794 
(1965). 

, B. H. Flowers and S. Szpikowski, Proc. Phys. Soc. (London) 84 
673 (1964). ' 

15 P. Kramer and M. Moshinsky, Nucl. Phys. 82,241 (1966). 
• I. M. Gel'fand and M. L. Zetlin, Ook!. Aka:d. Nauk. USSR 71" 

1017 (1950). I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro 
Representations of the Rotation and Lorentz Groups and Their 
Application (The Macmillan Company, New York, 1963), p. 353. 

7 T~e Gel'fand-Zetlin result has also been derived by algebraic 
techOlques by J. O. Louck, Los Alamos Scientific Laboratory 
Reports LA 2451 (1960). 

such as O(n):::> O(n - 1) ;:, .. " often does not 
include the subgroups of actual physical interest,3.4 
the application to physical problems, in general, 
involves a transformation from the mathematically 
natural to a physically relevant scheme. To effect 
such a transformation, it becomes important to have 
an explicit construction of the basis vectors of an 
arbitrary irreducible representation of the group. 

It is the purpose of this paper to give an explicit 
construction of the basis vectors of the irreducible 
representations of O(n) in the Gel'fand scheme through 
the successive application of lowering operators acting 
on the highest weight state. The concept of lowering 
(or raising) operators was employed by Nagel and 
Moshinskyl to construct the full set of basis vectors 
of U(n) in the canonical group chain U(n):::> 
U(n - 1) :::> •• '. Although the present work has 
set itself the analogous task for the group chain 
O(n) :::> O(n - 1) ... and thus forms a parallel to 
the work of Nagel and Moshinsky, the techniques 
employed are somewhat different. In particular, since 
the lowering (or raising) operators for O(n) are 
complicated polynomial functions of the infinitesimal 
generators of the group, a graphical technique has been 
found useful in the construction of these operators. 

In Sec. 2 a review is given of some of the properties 
of the group O(n) and the canonical chain of subgroups 
employed in the Gel'fand basis. In Sec. 3 the raising 
and lowering operators are constructed with the aid 
of graphs. Section 4 presents the calculation of the 
normalization coefficients of the lowering operators. 
These are the fundamental numbers of the construc­
tion since the successive application of lowering 
operators must yield a normalized basis vector for 
easy application in actual problems. Finally, in Sec. 
5, a brief derivation is given of the Gel'fand and 
Zetlin results for the matrix elements of the infini­
tesimal operators to illustrate the usefulness of the 
present construction. 

1233 



                                                                                                                                    

1234 S. C. PANG AND K. T. HECHT 

2. SOME PROPERTIES OF O(n) 

A. Generators of O(n) 

The natural infinitesimal generators of O(n) are 
the set of skew-symmetric, Hermitian operators Jij 
with the commutation relations 

[Jmi,Jkl ] = i(bm~i! + biimk 

- bi~m! - bmiik), (2.1) 

where m, j, k, and I run from 1 to n. The number of 
independent generators of O(n) is therefore !n(n - 1). 

The infinitesimal generators of a Lie group are 
best expressed in standard forms in which they are 
organized into one set of k commuting operators 
(H type), where k is the rank of the group, and a set 
of raising and lowering generators9 (E type). In 0(3), 
for example, H, E1, E_1 correspond to J12 , J13 + il23 , 
J13 - il23 , respectively. For both 0(2k + 1) and 
0(2k) it is convenient to choose the k commuting 
operators as J12 , J34 , J66 , ••• , J2k-1.2k' It is useful to 
further classify the raising and lowering generators 
into two types, those which connect the group O(n) 
to its subgroups, to be denoted by Q, and those which 
operate within the space of the subgroups only, to 
be denoted by p, so that there are three types of 
operators in all. In 0(7), for example, operators of 
type Q are linear combinations of the Ji7 , while 
operators of type P involve only Jii with both i, j < 7. 

The three types of operators are defined as follows: 

(a) 0(2k + 1) 

Type (1) H/Z = J2I%-1.2/Z' oc = 1,2,' . " k, 

(2) Q2k+1.±/Z = J21Z-1.2k+1 ± il21Z•2k+1 , 
oc = 1, 2, ... ,k, (2.2) 

(3) PIZ/I = [Q2k+1.1Z' Q2k+1./I]' 
oc, {3 = ±1,' . " ±k, (3 y!: -oc; 

(b) 0(2k) 

Type (1) H,. = J2,.-1.2I%, 

oc = 1, 2, ... , k - 1, 

(2) Q2k.k = J2k- 1.2k (=Hk), 

Q2k.±,. = J2I%-1.2k ± il21Z.2k , (2.3) 

oc = 1,2, ... , k - 1, 

(3) P,./1 = [Q2k.,., Q2k./I]' 

oc, {3 = ±1, ±2,' . " ±(k - 1), k, 

(3 y!: -oc, 

8 O. Racah. CERN reprint 61-8 (1961). 
I The raising and lowering generators are not to be confused with 

the raising and lowering operators which are the subject of this 
paper. Except for 0(3) the lowering and raising operators are 
complicated polynomial functions of the lowering and raising 
generators. 

(Note that Hk is now included among the type 2 
operators, and that PIZ,-IZ is not of type 3 but, from 
its definition, is merely equal to 2J2I%-I,21Z') The basic 
commutators of these operators are then 

(2.4) 

(2.5) 

[PIZ/I' P1~] = 2(b/Z,_~P/l1 + b/l'-1P/Z~ 
- b/Z.-1P/I~ - b/l,-~P/Z1)' (2.8) 

The PIZ/I. can also be represented as Q-type operators 
of the subgroups of O(n) 

PIZ/I = i[Q2/1-1./Z + iQ2/1.a], 

Pa,-/J = i[Q2/1-1,/Z - iQ2/1.IZ]' 0 < oc < (3, 
(2.9) 

P-IZ,/1 = i[Q2/1-1,-a - iQ2/1.-/Z], 2{3 < n, 

P-/Z.-/1 = i[Q2/1-1.-/Z + iQ2/1.-a]· 

B. The Gel'fand Basis 

Gel'fand and Zetlin6 have provided a way to com­
pletely specify the basis vectors of the irreducible 
representations of O(n) according to the canonical 
chain of subgroups O(n)::::> O(n - 1) ::::> ••• ::::> 0(2). 
For the case n = 2k + 1 

m2k+1•1 m2k+1,2 m2k+1,k-1 m2k+1,k 

m2k,l m2k.2 m2k,k-1 m2k•k 

m2k-1.1 milk-I. 2 m2k-1.k-1 

m2k-2.k-1 

l.A(,np) = 

m51 mS2 

m41 m'2 

mal 

m21 

(2.10) 
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For the case n = 2k 

m2k,l m2k,2 

m 2k- 1 ,l m 2k- 1 ,2 m2k-1,k-1 

m2le-2,l m2k-2,2 

l.A{,n/l) = 

m 41 m 42 

m31 

m 21 

(2.11) 

The k numbers in the top row characterize the 
irreducible representations of O(n). The numbers in 
the next row characterize one of the possible irreduc­
ible representations of O(n.- 1) contained in the 
specific irreducible representation of O(n), and so 
forth for successive subgroups of the chain. The 
numbers in each row thus characterize one of the 
possible irreducible representations of a specific 
subgroup. The numbers m 61 , m62' m 63 , for example, 
characterize one of the irreducible representations of 
0(6).10 

The Gel'fand basis vectors are not eigenvectors of 
the k commuting operators J2~-l,2~' The basis differs 
in this respect from the corresponding Gel'fand­
Zetlin basis for the unitary groups.1 Although the 
full set of mij are thus not simply related to the com­
ponents of the weights, they are nevertheless related 
to the highest weights of the irreducible representa­
tions, since the highest weight state of O(n) is an 
eigenvector of the set of J2~-l,2~' The significance of 
the mn,i is therefore the following: 

(a) For n = 2k + 1, 

m2k+1,l is the maximum possible eigenvalue of J 12 in 
0(2k + 1), 

m2k+1,2 is the maximum possible eigenvalue of J 34 when 
the eigenvalue of J 12 is m 2k+1,l in 0(2k + 1), 

10 A slight change has been made in the Gel'fand-Zetlin notation. 
The first index has been shifted up by one unit so that mOl' m •• , .•. 
characterize the irreducible representation of O(v). The chain of 
numbers thus ends with mu [irreducible representation of 0(2)1, 
rather than with mu . 

m 2k+1,i is the maximum possible eigenvalue of J 2i- 1 ,2i 

when the eigenvalues of J2~-l,2« are equal to m2k+1,01 

for all ~ < i in 0(2k + 1), 

m 2k+1.k is the maximum possible eigenvalue of J 2k- Uk 

when the eigenvalues of J 201- 1 ,201 are equal to m2k+1,01 

for all ~ < kin 0(2k + 1); 

(b) For n = 2k, 

m2k,l is the maximum possible eigenvalue of J12 in 
0(2k), 

m 2k ,i is the maximum possible eigenvalue of J 2i- 1 ,2i 

when the eigenvalues of J 201- 1 ,201 are equal to m 2k,OI 

for all ~ < i in 0(2k), 

m2k,k-1 is the maximum possible eigenvalue of J 2k-3.2k-2 

when the eigenvalues of J 201- 1 ,201 are equal to m2k,OI 

for all ~ < k - 1 in 0(2k), 

m2k,k is the eigenvalue of J 2k- Uk when the eigenvalues 
of J 201- 1 ,201 are equal to m 2k ,OI for all ~ < k - 1 in 
0(2k). 

The irreducible representations of the subgroups in 
the chain are characterized in the same way. 

The numbers mij are simultaneously either integral 
or half integral with restrictions which have been 
given by Gel'fand and Zetlin6 : 

(2.12) 

These properties are clear once the lowering and 
raising operators are derived in this paper. 

Since the type-l operators J2OI- 1 ,2OI are not diagonal 
in the general Gel'fand basis, it is convenient to 
define a whole hierarchy of subbases of decreasing 
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complexity: 

[.A(,~~] == [.A(,n,,], 

[.A(,~~] = [.A(,n,,; mal = m2l], 

[.A(,~~] = [.A(,n,,; mu = m31 = m2l], 

[.A(,(51] _ [.A(, • mn = mu = m31 = m2l] 
np - nJJ' , 

m52 = mu 

(2.13) 

[.A(, (2il] - [.A(, • m - m n" - n,,' 2i,1I - fJlI 

ex. = 1,2, .. " i ] 
P = 2ex.,2ex. + 1, ... ,2i ' 

[.A(,(2Hll] - [.A(, • m - m .. " - .. ,,' 2;+1,11 - fJlI 

ex. = 1,2, ... , i ] 

P = 2ex., 2ex. + 1, ... ,2i ' 

The base vectors of [.A(,~q~] with q = 2i or q = 2i + 1 
have the special property that they ·are eigenvectors 
of the set of commuting operators J 22- l ,211 with 
ex. = 1, ... ,i. Any vector of [.A(,~q~] is specified by 
(n - q + 1) rows of numbers. 

The particular subbasis [.A(,~~-ll], made up of the 
base vectors of highest weight in the immediate sub­
group O(n - 1) of O(n), is of greatest importance in 
the present discussion. Its states are specified by only 
two rows of numbers and it has the following special 
properties. 

(1) All of the type-l operators, J 211- l ,211 (with ex. = 
1, ... ,k for n = 2k + 1, and ex. = 1, ... ,k - 1 for 
n = 2k), are diagonal in this basis. 

(2) All of the type-3 raising generators PafJ' PII,-fJ 

(0 < ex. < p) give zero when operating on any vector 
of the basis [.A(,~~-ll]. This condition is necessary and 
sufficient to define the basis [.A(,~~-ll]. (Note that the 
generators P12, Pl.-2, P13, Pl.-3, P23' P2.-3,·· . are 
naturally considered as raising generators, whereas 
P-l.2, P-l.-2, P-l.3, P-l.-3, P-2.3 P-2.-3,··· are 
lowering generators.) 

The raising and lowering operators which are the 
subject of this paper are best defined in terms of the 
subbasis [.A(,~~-ll]. They are the operators which raise 
or lower by one integer one of the quantum numbers 
m .. -l. i of the second row without leaving the subbasis 
[.A(,~~-ll], that is the space of base vectors of highest 
weight in the immediate subgroup. In particular, the 
full set of states of [.A(,~~-ll] can be constructed by 
repeated operation with the various lowering opera­
tors of O(n) on the highest weight state of a specific 
irreducible representation, namely [.A(,~';l]. The set of 
states of [.A(,~~-21] can then be constructed by successive 

operation with lowering operators of O(n - 1) on the 
states of [.A(,~~-ll] which are highest weight states of 
irreducible representations of O(n - 1), and so forth, 
until the full set of Gel'fand states has been reached 
by successive stepdown operations with the lowering 
operators of O(n), O(n - 1), ... , 0(3). 

3. THE RAISING AND LOWERING 
OPERATORS AND THEIR GRAPHS 

In 0(3) the raising (and lowering) generators 
J13 ± iJ23 == Qa.±1 are themselves raising (and lower­
ing) operators; that is, Qa.+1 operating on a state 
II, m) converts it into a state II, m + 1). In O(n), with 
n > 3, the raising and lowering generators Q ... i have 
matrix elements connecting very many different states 
of the general Gel'fand basis, and when operating on 
a state of [.A(,~~-ll] do not give states belonging solely 
to [.A(,( .. -ll] .. " . 

By forming polynomial functions of the raising 
and lowering generators, it is possible to construct 
raising and lowering operators, to be denoted by 
o ... ±i, which have the simple property that they 
raise (or lower) by one integer one of the quantum 
numbers m .. - 1 •i of the subbasis [.A(,~~-ll] without 
leaving this subbasis, that is, the space of base vectors of 
highest weight in the immediate subgroup O(n - 1),u 
Specifically O .. ±i is defined by 

o Im
nl mn2 m ni m.nk) n.±i 

mn-l.l mn- 1.2 mn- l .i 

= N' Im
n l m .. 2 m ni ... 

m.nk). 
mn-l.l m n- 1.2 m n- l •i ± 1 ... 

(3.1) 

where N' is a normalization factor and I ) denotes a 
normalized state. To save writing, only the column 
that suffers change is indicated: 

0n.±i Imni 
) = N'lmni 

), 
mn- l •i mn- 1 •i ± 1 

{
i = 1,2, ... , k, n = 2k + 1, 
i = 1,2, ... , k - 1, n = 2k. 

(3.2) 

For n = 2k it is also convenient to introduce the 
zero-step operator, 02k,k 

.. , m2k.i o Im2k .1 
2k.k 

m2k- l •l .,. m2k-l.i 

= N' Im2k.1 • •• m 2k.i 
m2k- l .l ... m2k- l , I 

m2k.k- l 

m2k-l.k-l 

m2k.k-l 

m2k-l.k-l 

11 For the specific cases n = 5 and 6 explicit expressions for 
raising and lowering operators have been given previously. J. 
Flores, E. Chacon, P. A. Mello, and M. de Llano, Nuc!. Phys. 72, 
352 (1965), and (n = 5) K. T. Hecht, ibid. 63, 177 (1965). 
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or 

(3.4) 

Since 

1
m ... ) and 1

m... ) E [.A(,~~-l)], 
m .. _l. " m .. -l. i ± 1 ° ... ±i and 0llk.1: must satisfy 

(1) [Jk-l .... ' 0 ... ] = fJlI;O .... 
[Jk - I .2«, 0 .. _.] = -fJII.O ... _., 

[J2«-I .... ' 0 11:.1:] = 0, ° < oc < k, (3.5) 

(2) [PIIII' ° ... ±.] 1
m

... ) = 0, 
m .. _l." 

[PIIII' 0llk.l:] 1
m

... ) = 0, 
m .. _l." 

(3.6) 

[PII.-II' ° ... ±.] I:'" ) = 0, 
.. -1 •• 

[PII.-II' 0llk.l:] 1
m

... ) = 0, ° < oc < IPI. 
m .. _1 •• 

Equations (3.5) and (3.6) are necessary and sufficient 
conditions that ° ... ±i be raising (lowering) operators. 
Equations (3.6) apply to all of the raising generators 
of the subgroup O(n - 1) and ensure that the state 
° ... ±i Im .. i , m .. _1 •• ) is a highest weight state of the 
subgroup O(n - 1) since the state 1m ... , m .. _l •• ) has 
this property. Since the raising and lowering opera­
tors are complicated functions of the generators they 
are best described in terms of graphs, and manipula­
tions involving these operators are also best performed 
with the aid of these graphs. 

A. Raising Operators and Their Associated Graphs 

Contents of Ri graphs 

Graphs associated with the raising operator 0 .... 
are to be denoted by R.; these graphs consist of the 
following (see Table I). 

(1) A single row of i ordered points numbered 
from 1 to i with order increasing from right to left. 

(2) A connected chain of arrows always pointing 
from right to left, with (a) any point 1 ~ j ~ i as 
starting point, to be indicated by a circle, (b) end 
point always at i, (c) the arrows which form the links 
of the connected chain may connect some (possibly 
all) of the points between the starting point j and the 
end point i but may skip around others (possibly none). 

Operator Representations of the R. Graphs 

Each of the many possible graphs of type R. 
represents one of the terms of the raising operator 
0 ..... 

TABLE I. The graphs of R,., for any n > 8. 

GRAPHS OPERATOR REPRESENTATION OF THE GRAPHS 

4 3 2 I 
G> . . · 0.4 "3-4 "2-4 "1-4 

--..a . · (-'4-3) 0.3 "2-4 "1-4 

....----." · (-'4-2) 0.2 "3-4 "1-4 -- · (-'4-3)(-'3-2) °.2 "1_4 

.--.---o---e (-'4_1) °.1 "3-4 "2-4 

~ (-'4-3)(-'3-1) °.1 "2-4 

~ (-'4-2) (-'2-1) 0 •• "3-4 .. ... .. e (-'4-3)(-'3-2) (-'2_1) °.1 

Qj.j : "j- "j a:2(J 2."1,2. +11".) 

•• 2k "r 2k+1 

(1) The circle around the starting pointj represents 
the operator Q ... I' 

(2) An arrow link of the chain connecting points 
oc and p, with oc < p, represents the operator ( - PII.-J. 
[Note that the operator (-PII.-J = P-«.II with oc < P 
is a lowering generator of one of the subgroups of 
O(n).] 

(3) A free point, not connected by one of the arrow 
links of the chain, is associated in the operator 
representation of the graph by 0 1.-. = oJ - a., all = 
2(JIII_ 1•211 + k - oc) for n = 2k or n = 2k + 1. (Note 
that aJ._. = 0_ •• 1, and the vectors of [.A(,~~-l)] are 
eigenvectors of all') 

(4) The full operator represented by one of the 
R. graphs is the product of all the factors of type 
(-PII._II) and Q ... i implied by the various links of the 
graph. The order of the Q and P operators in the prod­
uct reading from right to left is the same as the order 
of the links of the chain again reading from right to 
left, with - Pi.-« on the extreme left and Q .. .J on the 
right followed on the right by all the commuting 
operator functions 0_ •• 1' 

The Raising Operators 

Theorem: 0ni is equal to the sum of the operators 
represented by all possible graphs R .. i • 

Proof: Since all raising generators PII.II ' PII._II 
(0 < oc < IPI) can be expressed in terms of commuta­
tors of generators of the type Pi.i+1 and Pi.-(J+1) ' Eqs. 
(3.5) and (3.6) follow from 

Im .. i ) 
PJ.-(J+1)O ... m = 0. 

..-1 •• 

(3.7) 

(3.8) 

j = 1,2, ... , (k - 1), 

(3.9) 
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Equation (3.7) follows at once from the commutators 
of J2a.-1.2" with the p's and Q's [Eqs (2.4)-(2.6)]. 
Equation (3.8) follows from the fact that a P with two 
positive indices, when commuted through to the right 
of all factors PP._" and Q; of Oni' leaves one P with 
two positive indices (which in turn has one such 
surviving term when commuted to the right), and a P 
with two positive indices gives zero when operating 
on a state of [.A<.,(n-;-l)]. Equation (3.9) follows since n •• 
all the Pi.-(Hl) commute through to the right side of 
all factors P and Q of 0n.i except for the types which 
involve the indices j and j + 1, and Pi.-(1+1) operating 
on terms including these satisfy the relations written in 
terms of graphs: 

l@--._--@m 
j+l J 

1®-----;:, ;--@m(_2e,.!;+!) 

Pj.-I;+I) 
l®---~m m,; ) +J® ______ .--..f/!)m (2a.ij' 

mn_I,j 

; ~-----qjm 
® 1+' j 

... ~+---pl j--®m (-20. ij+J) 

t m 

~ 

And also 

~----.., 
1+' 

P1,"I+1l +}®---. ........... 

l®...----;-----.. 

Special examples 

0(6) 

061 = Q6,l 

1 

~I 

I:~·,..) = 
~\-.., 

w}--. 

0 62 = QUal-2 + (-P2-I)Q6,l 

o +.--0 

0(7) 

07.1 = Q7.1 

07.2 = Q7.nOl-2 + (-P2-1)Q7.1 

el} (f2o_ il ) 
1 

Q} 1-20j,_lj+l)) 

G 1- 2O i.lj+/I) 

07.3 = Q7.nOl-Sa2-3 + (-ps-JQ7,2al - S 

(3.10) 

1
m

,; >0 mn_I,i • 

(3.11 ) 

+ (-PS-l)Q7.la2-3 + (-Ps-J(-P2-1)Q7.1 

o •• + -+-----0 • +.~ + .+----e+-----O 

B. Lowering Operators and Their Associated Grapbs 

The graphs for the raising operators On,l are 
identical for all k > i. The graphs for the lowering 
operators 0n.-l, however, are not only dependent on 
the specific value of n but have a slightly different 
character for the odd- and even-dimensional rotation 
groups, n = 2k + 1 and n = 2k, so that the two cases 
must be discussed separately. Graphs associated with 
the lowering operators 02k+I.-i are to be denoted by 
L2k+l,i 

(1) L2k+1.i Graphs 

The L2k+1.i graphs consist of the following (see 
Table II). 

(a) Two rows of ordered points, k points in the 
bottom row numbered from 1 to k with order in­
creasing from right to left, and k - i + 1 points in 

TABLE II. The graphs of 1: •• 2 , 

GRAPHS OPERATOR REPRESENTATION OF THE GRAPHS 

03 02 
° 7 . 2 "2_3 "23 "22 "21 ·3 -2 -, 

0-00 
(-P-23) °7-3 "23 "22 °21 0 . 0 

~ · (-P- 2-3) °73 "2-3 "22 °21 

~ · (-P-23) (-P-3-2 ) °72 "23 °21 

~ · (-P- 2 -3 ) (-P3 - 2) °72 °2-3 "21 . 
~ (-'-2-1) °7! ° °23 °22 0 2-3 

~ (-P- 23 )(-'-3-1) °71 °23 °22 

~ (-'-2-3) (-'3-1) °71 °2-3 °22 

~ (-'-23) (-'-3-2)(-'2-1) °71 °23 

~ (-'-2-3) (-'3-2) (-'2-1) ° "2-3 71 

Qij1lQ j +OJ 0i_ j 1l OJ-Oj 

".' 2(J2._ I,2. +3-.) 

the top row with order decreasing from left to right 
starting with k at the left and ending with i so that 
the point, j (i ~ j ~ k), in the top row sits above the 
point j of the bottom row. 

(b) A connected chain of arrows forming a clock­
wise path, the arrows always pointing from right to 
left in the bottom row and from left to right in the 
top row, with (i) any point of either the top or bottom 
row as starting point, to be indicated by a circle, (ii) 
end point always at i of the top row, (iii) no vertical 
arrows (that is, no connections from point I in the 
bottom row to point I in the top row), (iv) no arrows 
pointing downward [that is, no arrows with starting 
points (tails) in the top row and end points (arrow­
heads) in the bottom row], (v) the arrows which form 
the links of the connected chain may then be directed 
from point ex in the botton row to point fJ in the 
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bottom row with (P > ot), from point f-l in the top TABLE III. The graphs of 1:6•1 , 

row to point 11 in the top row with (11 < f-l), or from 
point ot in the bottom row to any point (J in the top 
row (J :;; ot, but (J =;6 ot. 

(2) Operator Representations of the L2k+1 .• Graphs 

(a) The circle around the starting point, say j, 
represents the operator Q2k+l.j when it is in the bottom 
row and Q2k+1.-; when in the top row. 

(b) An arrow link of the chain connecting point 
ot to point p represents the operator 
(i) (- PP._~) when ot < p, both points in 

(ii) (- p_P.~) when 
(iii) (-p_P._~) with 

bottom row, 
ot > p, both points in top row, 
ot in the bottom row, p in 

top row. 
(c) A free point not connected by one of the arrow 

links of the chain is represented by the operator 
function ai.-~ = ai - a~ when ot is in the top row and 
ai~ = ai + a~ when ot is in the bottom row, where 
a~ = 2(J2~-1.2~ + k - ot), as before. 

(d) The full operator, represented by one of the 
graphs L2k+l.i' is again the product of all factors of 
type p and Q implied by the links of the graph. The 
order of the Q and p operators in the product reading 
from right to left is the same as the order of the links 
of the chain starting with the encircled point and ending 
at point i of the top row, with Q followed on the right 
by all the factors ai±~ implied by the free points of the 
graph. 

(3) L2k.i Graphs 

Graphs associated with the lowering operators 
02k.-i of the orthogonal group in an even number 
of dimensions are to be denoted by L2k.i (see Table III). 
The graphs L2k.i have the same structure as the graphs 
L2k+1 •i with the exception that the two points k are 
replaced by a single point to be placed halfway 
between the top and bottom rows but to the left of the 
two points (k - 1). The rules for the construction of 
the operators represented by the graphs L2k .i are the 
same as those for the graphs L2k+l.i except for the 
following. 

(a) A free point, not connected by one of the arrow 
links of the chains and if placed in the otth position 
of the bottom row, is to be denoted by bi~ = ai~ - 2. 
If the kth point is a free point it is to be denoted by 
Ci = t(ai - 2). (Free points of the top row are 
associated with ai._~' as for L2k+l.i') 

(b) For the special case i = k, required for the 
zero-step operator, the free points of the bottom row 
(say in position ot) are now to be denoted merely by 

GRAPHS OPERATOR REPRESENTATION OF THE GRAPHS 

· 0 
°6-1 °1_2 b

" · · . c, b
'2 

· o---w 
(-P-12) °6-2 c, b

'2 
b

" · . 
~ · . (-P-13) °6-3 °'_2 b

'2 b" 

~ (-P-'2) (-'-23) °6-3 b'2 b" 

· ~ (-P-'-2) °62 °1-2 c, blf 

~ (-'-'3) (-'-3-2) °62 °'_2 b" 

~ (-P-'2) (-'-23)(-'-3-2) °62 b" 

· ~ (-'-'2) (-'-2 -I) ° 6 , c, b'2 

~ (-'-'3)(-'-3) °6 , QI-2 b
'2 

~ (-'-'2) (-'-23)(-'-3-') 06 , b'2 

· ~ b-'-2) (-'2-') 061 0'-2 c, 

~ (-'-'3) (-'-3-2) (-'2-') 06 , °'-2 

~ (-'-'2) (-'-23)(-'-3-2) (-P2-') 06 , 

0itj = 0j±Oj bij=Oij-2 c;=1I2(oi-2) 

06.3' 06 .- 3 ,..,3"' .. ,3 Qal: 2 (J2c.-f,2J'3-4 ) 

a~ . (The points of the top row play no role whatsoever 
in this special case.) 

Theorem: 02k+1.-i, 02k.-i is equal to the sum of the 
operators represented by all the possible graphs of 
L2k+l.i and L2k .i respectively. 

Proo!, (a) [J2~-1.2~' 0n.-i] = -On.-i~~i 
This again follows at once from the commutators of 
Eqs. (2.4)-(2.6). 

(b) For the relation 

the proof is essentially the same as that for the raising 
operator except that there are two sets of terms like 
those of Eqs. (3.10)-(3.11). One set arises whenj and 
j + 1 are both in the bottom row, the other when j 
and j + 1 are both in the top row. Both sets of terms 
sum to zero independently of each other. [The points 
m and I of Eqs. (3.10)-(3.11) can now be in either top 
or bottom row.] 

The proof of the relation 

is much more complicated since more summations of 
graphs are involved. However, the method is identical12 

to that illustrated by Eqs. (3.10)-(3.11). 

12 S. C. Pang, University of Michigan dissertation (to be pub­
lished). 
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(4) Special Examples of Lowering Operators13 

0(6) 

. 0 (7) 

'·-'?'r'/./· 0._,:,'. . + '. ,+ . ,+ , . +, ,+ '- ' 

0.1" •. + ~ + 
t 

'",;---.+''.- • 

o =' • • + . -- + ...-;--.. + .- + . /' + '/-
1-1. ., ••• ••• ••• .-'.. ••• 

. ,'+ .~+ '~'+ '/'+' _. +"/ .. \ .,. ". ~ .. Le .-e 

._. . • '/' + " 
+ .'>-. + L·+ _.... . .... 

0._1".'. + \ + "'" + \ . .. ... .-. 
Not all the graphs give independent operators. 

In 0 7.-1 , for example, only 15 out of the 21 graphs are 
independent. The remaining six give operators which 
can be written as linear combinations of the 15 
independent ones. Terms 16 and 18, for example, are 
related by 

( ...... ) { .......... }.. {' ....... } {' . '} Lr = - .'\~ a:~2!~: - 2 •• \ 0;-;- -2 ~43 of:2 

It is most convenient, however, to treat all graphs on 
an equal footing to preserve both the over-all symmetry 
of the expression for 0n.-i and the uniform and 
simple factoring of the operators associated with an 
individual graph. The operator representations of the 
various graphs all have the same structure, differing 
only in the number of factors of type p and a. The total 
number of operator factors for each graph of eni is 
equal to n - i. 

13 t Note that 0.3 is an example of a neutral or zero-step operator 
of type 02k.k-

C. Some Properties of the Raising and 
Lowering Operators 

The raising and lowering operators which have been 
constructed have meaning only when they operate on 
the basis [.A(,~';.-l)]. It is interesting to note that the 
operators 01l.± .. together with the Ja..-l.a.. form a Lie 
algebra with respect to [.A(,~';.-l)]. The raising and lower­
ing operators have not yet been normalized. However, 
the unnormalized operators On... have the simple 
property 

(3.12) 

With respect to the basis [.A(,~';.-ll], the set of operators 
0_, 0 11,-... Ja..-l,a.. thus commutes with any other 
set 0 11/1' 0 11,_/1' J2/1-1,2/1 ({J ~ at), so that the Lie 
algebras mentioned above breaks up into a set of k, 
(k - 1), commuting algebras of order three for 
dimension n = 2k + 1 (n = 2k), respectively. Equa­
tion (3.12) can be verified by direct computation or 
obtained from the following considerations . 

From the uniqueness of the base vector 

the states 0 nP ni I.A(,~';.-ll), 0 1IP ni I.A(,~';.-l) can differ 
by at most a constant: 

'0 0 ! u(1I-1l) - 0 0 ! u(1I-1l) 
ni 111 """nil - cij n; ni ""'1I1l • (3.13) 

The constant cit can be shown to be unity by comparing 
the coefficients of the terms with the largest number 
of factors of type p on each side of Eq. (3.13). The 
term with the largest number of factors p for a single 
operator 0 ni arises from a single graph and has the 
coefficient unity in all cases except i < 0, n = 2k + 1. 
In the latter case it arises from two graphs (e.g., 
graphs Nos. 9 and 10 of Table II) whose summed 
coefficient (on the right) is equal to aii • This has the 
same eigenvalue when operating on the state !.A(,~';.-l) 
or on 0 . !..AL(n-ll) Thus C .. = 1. 

n3 nil· " 

4. THE NORMALIZATION 

The raising and lowering operators 0n.i do not 
yield normalized basis vectors_ It is therefore impor­
tant to define normalized raising and lowering opera­
tors, to be denoted by Un •i , which differ from the 
o ni merely by a normalization factor. The calculation 
of these normalization factors is presented in this 
section. 

The results for the even- and odd-dimensional orthog­
onal group are somewhat different. For n = 2k + 1 
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the normalized raising and lowering operators are14 

U2k+1,i = I (IT aia. ) ( IT ai _/lai/l )_2_ 2 Ii 0 
a.=1 (a_i,II + 2)(a~~·P) + 2)aillo /I=i+1 a~;~+l)(a:~tJ) - 2) a:~f+l) (a:e~l) + 2) 2k+l,i' 

(4.1) 

U2k+1,-. = 02k+1-i !1_2_ 2 IT (a-ia. + 2) IT 1 Ii 
, aii a:~ok+l) (a:~~~1) + 2) 11=1 a;,.(a<'::;ol) + 2)a:=~+l) /I=i+1 ai,_/iai/la~;~+l)(a~~~J) - 2) , 

(4.2) 

where 

aHII = 2(J2i-l.2i + k - i) ± 2(J211- 1.2a. + k - IX) 
(4.3) 

with eigenvalue 2(m2ki + k - i) ± 2(m2kll + k - IX) 
in the restricted basis [.A(,~~1,1']' The superscript zero 
on a subscript of aia. has the following meaning: the 

eigenvalue of the corresponding J2"-1.2a. is to take its 
highest possible value in 0(2k + 1). For example, the 
eigenvalue of a1:~+l) is 

2(m2k; + k - i) + 2(m2k+l." + k - IX). 
For n = 2k the normalized raising and lowering 

operators are 

where aill , a~:'f,) are defined as before, and hi" = a;II - 2, Ci = !Ca; - 2). 
(4.5) 

The general basis vector for the orthogonal group can then be generated by 
these operators. Taking the case n = 2k + 1 as an example, 

successive applications of 

I u (3) ) Um31- m21 1.At, (3) ) 
.J"'2.k+1,11 = 3-1 2k+l,1' . 

Therefore 

where 

(

t(n - 1), n odd, 
[n] = 

in, n even. 
~ 

The symbol II with an arrow means that terms 
are to be arranged in increasing order from left to 
right. Note that the eigenvalues of the alII depend 
upon the exact position of these factors in the ordered 
product. 

A. Normalization Factor for the Case n = 2k + 1 

Since the lowering operators 02k+1.-a. form a 
commuting set of operators in the restricted basis 

U The superscript (2k + 1) will be omitted whenever it is obvious. 

(4.6) 

(.A(,~~Jl.I']' it is sufficient to consider the special vector 
I i) in the calculation of the normalization factor associ­
ated with 02k+l.-i, where Ii) is defined by 

Ii) = 1[.At,~~~1,1']; m2k,,, = m2k+l,II for IX =F i). (4.8) 

Before calculating the normalization factors, a 
number of preparatory steps are taken. 

(1) The Quadratic Casimir Invariant 

It is well known that I:~"/ J~; is a quadratic invari­
ant of 0(2k + 1), 

2k+1 
I J~; 1.At,~~~l,l') = C2k+1 1.At,~~~1,1') for all IX. (4.9) 
;<; 

Expressing Jij in terms of the Q operators of both 
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Eqs. (2.2) and (2.3) the invariant takes the form 
2k+l k k 
I J:i = I Q2k+l,-iQ2k+1,; + I Q2i,-iQ2i,i 
i<j i=l O<i<j 

k k 

+ I Q2i-l,-iQ2i-l,i + I J:i- 1,2i 
O<i< i i=l 

k 

+ I (2k - 2i + I)J2i- 1,2;' (4.10) 
i=1 

By applying (4.10) to 
/.A(,(2k+l) 

2k+l,1' 

and using the fact that the raising generators Q; give 
zero when operating on the highest-weight state, the 
invariant can be evaluated: 

k k 

eSk+1 = Im:k+l,a + I(2k - 2!X + l)msk+1'«' (4.11) 
«=1 a=1 

(2) Some Preparatory Lemmas 

Lemma 1: 

and a process of mathematical induction. Note that 
(ii) follows from (i/ P-E). = (-P<,-l Ii) t and the fact 
that - P<.-l with 0 < E < /A/ is a raising generator 
of a subgroup of O(n). Set {J = i + 1 in relation (i). 
As a consequence of Lemma 1 only two terms of 
° np (corresponding to the first two graphs of Table 
I) survive. Commuting Qn.-(i+ll through the factor 
Pi+l.-i and using relation (ii), the term arising through 
the second graph reduces to 

i-I 
-2(i/ Qn.-iQni II aa.-(i+ll Ii). 

a=1 

Together with the first term this leads to the special 
case of Eq. (4.14), with 1= i + 1. By similar tech­
niques the case with arbitrary I can be related to that 
with 1- 1. 

Lemma 4: 

Qn.i Ii) = 0 for 0 < j < i, 
where the vector Ii) is defined by Eq. (4.8). 

(4.12) (i/ Q2k+l,-iQ2k+l.i Ii) 

Proof: 
a ° na = I gaP(P )Qnp , 

P=1 
(l 

since 

QnP = I haP(p)O np , 
P=1 

Gnp Ii) = 0 {J =;t!: i (m2kP = m2kH/l (J =;t!: i), 

it follows that 

Qn.; Ii) = 0, 0 < j < i. 
Lemma 2: 

k 

(i/ I Qak+l,-iQ2k+l,i / i) 
i?:i 

= (i/ (m2k+l,; - J2i-l.2i) 

X (m2k+l,; + J 2i- 1 ,2i + 2k - 2i + 1) Ii). (4.13) 

This is a consequence of Lemma 1 and Eqs. (4.10) 
and (4.11). 

Lemma 3: 
1-1 

2 I Qn,-IQnl 
(i/ Qn,-IQnl Ii) = (i/ m>i Ii) 

a;_1 

= ('/ ~ III-l ai - cr + 2Q .Q ./') I n,-I n, I , 
ai_ 1 a=i+l ai_a 

This follows from the relations 
1 > i. (4.14) 

(i) (i/ Qn.-/lOnll [i)=O, i < {J, 

(ii) (i/ P-tl = 0, 0 < E < /A/, 

• k ai,-l 
= (1/ II ( + 2) (m2k+1,i - 12i- 1,2i) 

l=i+l ai- l 

X (m2k+l,i + JSi-1,Si + 2k - 2i + 1) Ii). (4.15) 

This is a direct consequence of Lemma 3 and Lemma 2. 

(3) Evaluation of (i/ 02kH.PSk+l.-i Ii) 

All terms in the raising operator 02k+1,i, except 
the one term containing Q2kH.i, have at least one 
factor P-E). (0 < E < /A/) on the left-hand side. Since 
(i/ P-<l = 0, the basic matrix element reduces to 

i-I 
= (i/ Q2kH,i02kH,-i Ii) II (i/ (acr- i + 2) Ii). (4.16) 

a=1 

The matrix element (i/ QSkH.P2k+l.-i Ii) is evaluated 
by commuting all of the factors P-E). of 02k+l.-i 
through to the left-hand side where they give zero 
when operating on (i/. After this process only matrix 
elements of the type (i/ Q2k+l.-iQ2kH.i Ii), (j ~ i), 
survive. Their coefficients are evaluated in Appendix 
A by a process of summing of graphs. The matrix 
elements themselves are given by Lemmas 3 and 4. 
Combining these results (Appendix A), the basic 
matrix element is 

(i / OSk+l,.OSk+l,-i I i) 

= (il (g aicr1TI}ai ,-1 - 2) fi (a_ill + 2») 
X (mSk+1,i + J 2i- 1,2i + 2k - 2i) Ii). 

(m Sk+l,. - J2i- 1,2i + 1) (4.17) 
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In the state Ii) all J2«-I,2« except that with (I. = i yield 
their highest-weight value 

Thus 

(il J2«-I,2« Ii) = m 2k+l,«, 

(il J2i- 1,2i Ii) = m 2k,i' 

(il 02k+1,P2k+1,-i Ii) 

«(I. ~ i) (4.18) 

= (.A(,~~~l'/l1 (m2k+1,i - J2i- 1,2i + 2k - 2i) 1.A(,~~~I'/l) 
k k 

x t(.A(,~!~I'/l1 II a:::+l) II 
«=1 y=i+l 

i 

X (a:~~;l) - 2) II (a~i~tl) + 2) 1.A(,~:I'/l)' (4.19) 
(J=1 

The superscript zero on a subscript of ai« has been 
defined in connection with Eq. (4.19). For example, 

(2k) (2k+1) (2k) , 
(.A(,2k+1,/l1 ai,_yO 1.A(,2k+l,/l) = 2(m2k,i - m 2k+l,y + y - I). 

(4.20) 

B. Normalization Factor for the Case n = 2k 

(1) The Quadratic Casimir Invariant 
2k 
'2,}:; I.A(,~~~/l) = C2k I.A(,~~~/l) for all (I.. (4.21) 
i<i 

Expressing the Jii in terms of Q operators as before 

2k k-l k-l 

! J:1 = ! Q2k,-iQ2ki + ! Q2;,-iQ2;i 
i<; i=1 O<i< j 

k k 

+ ! Q2;-I,-iQ2;-I,i + ! J~i-l,2i 
O<i<j i=1 
k-l 

+ !(2k - 2i)J2i_1,2i' (4.22) 
i=1 

k k-1 

C2k = ! m~k,-i + !(2k - 2i)m2k,i' (4.23) 
i=1 i=1 

As before, it is convenient to define the special vector 

Ii) = 1.A(,~~~;1); m 2k,« = m 2k- 1,« (I. ~ i). (4.24) 

Since the raising operators for O(2k) and O(2k + 1) 
have the same form, Eqs. (4.12) and (4.14) hold, and 

(4.25) 

Putting this relation back into the expression for the 
quadratic Casimir invariant gives 

+ J~i-l,2i + (2k - 2i)J2i- 1,2i Ii) 

= m~ki + (2k - 2i)m2k,i + m~k,k' (4.26) 

Unlike the corresponding equation for the case of the 
odd-dimensional orthogonal group, this relation is 
not sufficient to evaluate the matrix element 
(il Q2k,-iQ2k,i Ii), since the matrix element 

is not known. However, there is now one more invariant 
at our disposal. 

(2) The Quadratic Invariant in the Restricted 
Basis [.A(,(2k-l)] 

2k/l 

Since the (zero-step) neutral operator 02k,k com­
mutes with all raising and lowering operators when 
applied to the basis [.A(,~~~;l)], it is an invariant in this 
restricted basis. To get a relation between the matrix 
elements of the quadratic factors J:k- 1,2k and 
Q2k,-iQ2k,i consider (il 02k,k02k,k Ii), where 

k-l 

(il 02k,k02k,k I i) = (il II a«J 2k-1,2k02k,k I i) 
«=1 

k-1 

= (il II a« li)(il J2k-1,2k02k,k Ii) (4.27) 
«=1 

through the relation (il p_;< = 0, 0 < j < 1101. Sum­
ming up of the matrix elements from all the possible 
graphs in 02k.k with techniques similar to those 
illustrated in Appendix A leads to 

(il 02k,k02k,k Ii) 
k-l 

= (il II a! Ii) 
1t=1 

('I J2 kII-1 (a i-« + 2) Q Q I') (4,28) 
X 1 2k-l,2k - 2k,-i 2k,i I . 

«=i+l ai_«ai 

On the other hand, since 02k,k is an invariant 

(il 02k,k02k,k I i) = (.A(,~:'~I 02k,k02k,k 1.A(,~k~~)' (4.29) 

Also 

( '121') (u(2k)1 2I u (2k) f ..,J.' I a« I = ';1\)2k,/l a« ';1\)2k,/l or Gt r- I. (4.30) 

By applying (4,28), (4,29), and (4.30), the quartic 
invariant leads to the relation 

('I J2 2 kII-1 (ai_It + 2) Q Q I') 
I 2k-l,2kai - a i 2k,-i 2k,i I 

«=i+l ai-It 

= 4m~k,k(m2k,i + k - i)2, (4,31) 

(3) Evaluation of (il O;O-i Ii) 

Since we have two equations and two unknowns 
we can determine both (il Q2k,-iQ2k,i Ii) and (il J:k-l,2kli). 

The technique for the summing up of the graphs is 
similar to the case of 0(2k + 1) illustrated in Appendix 
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A (and Sec. 4A3.) and leads to 

(il 0Bk.i02k.-i I i) 
k i 

= !<.A(,~~~I)1 II (a!~~o - 2) II (a~i~10 + 2) 
"=1+1 P=l 

k b(2k) 
x II b~2~) 1.A<,(2k-1)(.A<,(2k-l) I u" 1.A(,(2k-l». (4.32) 

'Y 2k.I' 2k.I' b Sk.I' 
y=l ii 

The superscript zero on a subscript of aiIJ has the same 
meaning as before. For example, 

(.A(,~~~;I)1 b~~:) 1.A<,~~~;I» 

= 2(m2k-l.i + m2k•y + 2k - i - Y - 1). (4.33) 

C. The Normalization Coefficients 

Let the normalized lowering (raising) operators be 
denoted by U n.±i' If the state 1.A(,~~-I) is normalized 

(.A(,~~-I); mn- 1•il U niU n.-i I.A(,~~-l); mn- 1 •• ) 

- ( U (n-l). mIl U (n-l). m I) 1 
- JF\)np , n-l,i - t./f\}np' n-l,i - =. 

(4.34) 
But 

(.A<,~~-l); mn-l •• - 11 = (.A(,~~-I); mn-1.il (Un._.l, 

(4.35) 
The normalized lowering (raising) operators should 
thus have the property 

Uni = (Un._i)t. (4.36) 

The lowering (raising) operators of type 0n.±i do 
not satisfy this relation. However, if On. is a lowering 
(raising) operator of [.A(,~~-l)], so is 

In/(Ja, '34' .. ')Oni' 

where Ini is a function of '21Z-1.2a only (or. = 1, ... , k 
for n = 2k + 1, or. = 1, .. " k - 1 for n = 2k), and 
where In,±i can be chosen such that 

(4.37) 

Since any arbitrary function g(Q, p, J)PIZP' with ° < or. < 1 IPI, is a null operator when acting on 
[.A(,~~-I)] and can be added to a raising or lowering 
operator without changing its raising or lowering 
property, the functions Ini ,fn.-i must be evaluated by 
comparing the p independent terms on each side of 
Eq. (4.37). This leads to 

k k 

f2k+l,i = II ai,-.. II aiP' 
a=i+l P=l 
i-I 

f2k+1,-i = II (a-i,7 + 2), 
7=1 

i-I 
f2k.-i = II (a_i, .. + 2), 

a=l 
i-I k-l 

f2k.i = c.bii II biP II ai._ .. bi .. · 
P=l a=l+l 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

Thus 

Un. = Un.! N ni)O ni , (4.42) 

U n.-i = ° n.-lUn,-il N ni), (4.43) 
where Nni is a factor which is defined to be real. With 

(.A(,(n-l) I U.U ·1.A(,(n-l» = 1 
nl' m n,-' nl' '(4 44) 

(.A<,(n-lll I' ° ° I' 1.A(,(n-ll) - N 2 . nJl J ni ni n,-i) n,-i np. - ni· 

Note that the Un;, unlike the Oni' do not form a 
commuting set of lowering (raising) operators, 
[UnIJ , UnP ] =;f:. 0, since [In .. , 0nP] =;f:. 0. However, 

(4.45) 

Therefore, 

N!. = (.A(,~~-l)1 fnJn,-i 1.A(,~nl'-l)(il OnPn,-i Ii), (4.46) 

With Eqs. (4.19), (4.32), and (4.38)-(4.41) 

(4.48) 

5. MATRIX ELEMENTS OF In-1,n 

In the evaluation of the matrix elements of the 
infinitesimal generators, the matrix elements of 'n-l,n 
play the fundamental role since the matrix elements of 
all other 'ii can be simply related to these. Matrix 
elements of 'n-1.n have been given by Gel'fand and 
Zetlin.6 •

7 A derivation of the Gel'fand-Zetlin result 
is given here to illustrate the usefulness of the lowering 
(raising) operators. 

Since 'n-l.n commutes with all Ji} with both i, j < 
n - 1, 'n-l,n is a scalar operator with respect to 
O(n - 2). The matrix elements of 'n-l,n are thus 
diagonal in m n-2,a and independent of mv,a' v ~ n - 3. 
With respect to O(n), 'n-l,n transforms according to 
the regular representation [11000·",], With respect 
to O(n - 1) its irreducible tensor character is that of 
the vector representation [1000 .. ']. It thus connects 
states in which anyone of the mn- 1 •IJ differ by ± 1 
only. (For n - 1 odd, it also has a diagonal matrix 
element.) 

(.A(,~I'I J n-l,n l.A(,nl') = (.A(,~:-2) I J n-l.n 1.A<,~~-2» 

= < m:~:'il 'n-ln I::~:,)· 
mn- 2,i mn-2 •• 

(5.1) 
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For convenience, only the relevant mYi in the one col­
umn subject to change are written out. The matrix ele­
ments in the [.A(,~~-2)] basis could be evaluated through 
a construction involving successive application of 
lowering operators of type Un,i followed by Un-l,i' 
It is more convenient to factor the matrix element of 
In-I,n into two parts by using the Wigner-Eckart 
theorem. The reduced matrix element, independent 
of the mn-S,II ,can be chosen as the matrix element 
of In-l,n in the restricted basis [.A(,~~-l)], while the 
mn_ 2,,,-dependent factor can be expressed as the 
matrix element of a vector operator in (n - 1)­
dimensional space 

X <m~-I'il V /m n- l .i\ (5.2) 
mn-I,i mn-s,1 

where V has irreducible tensor character [1000, .. ] 
with respect to O(n - 1) and [000' .. ] with respect 
to O(n - 2), and its matrix element is normalized to 
unity when mn_I,i = mn-l,i (all i). The first factor 
imposes the restriction m~-l,i ~ mn-l,i' However, 
the matrix element with m~-I,i = mn-I,i - 1 can be 
obtained from that with m:-I'i = m"_I,i + 1 through 
the Hermiticity of J n-l,,. , 

/~ni I Im
ni 

) A. Evaluation of \::'-l'~ In-Ii,n :n-1.i 
n-l,. n-l, 

(1) n = 2k 

Olk,k is a linear combination of J2k-l,lk and Qlk,lI' 
Re-expressing OIU instead as a linear combination 

of J Sk- l ,2k and 021<,i 

{OSk'k = [J2k- l ,lk IT a~lk) 
11=1 

+ ki
l 

02k-l,-"OSk,,,hi]} I mSk'i) = 0, (5.3) 
,,=1 m Sk- l ,' 

where hi are functions of JSi-l,li' (i < k), which are 
to be determined from the conditions required for 
OSk,k 

(a) [PI!' OSk,k] I mn.l) = 0, 
mn-l.l 

0< j < III ~ k - 1, (5.4) 

(b) (QSk-l,l, OSk,k] I mn.l ) = O. (5.5) 
mn-l,l 

Condition (a) is automatically satisfied. In order to 
satisfy condition (b): 

{[Q2k-l.I' J Sk-l,lk] It a~'I.I<) 
+ !l[QSk-l.I' OSk-l.-II]OSk"h,,} I m n

•
i 

) = O. (5.6) 
11=1 mn- l •J 

From the coefficients of QSk,i' however, the h, follow 
directly 

(

'-I a(lk) 1<-1 a(Sk) ) 1 

h; = i IJ (a(lk) ~ 2)a(2k) fJIJ+l a(lk) (;2k) _ 2) a(2k)' 
11- I" -;.11 =, i.-fJ ifJ Ji 

Also 
(5.7) 

Olk.k I mn; ) = ~ IT a~~k) I mSkoi ). (5.8) 
mn-l.; 2 i=l mSk-l,i 

Re-expressing the 0 11<-1.-" and OSk,II of Eq. (5.3) in 
terms of USk-l,-1Z and USk,tz' the matrix element of 
Jlk-l,SI< can be read off from Eq. (5,3): 

<
m

lk
; I ImSk; > < I (Ik) k (2k) I ) • • mSk 1 al<° a lZ

o m lk J 
mlk-l.J Jlk-l,Sk mSk-l.; = m' 2 !! a(2I<) ms . 1 ' 

mlk-l.;mlk- l ,i Sk-l.; IZ k- ; 
(5.9) 

(5.10) 
(2) The n = 2k + 1 Case 

The procedure is similar to that for n = 2k. First, since Jlk,lkH has no diagonal matrix elements, in 
place of the neutral operator there is now the relation 

{Jlk.SHl - [~02k'-IIOIHl.tzhtz + 0SHl.khk + OSkH.-kh-k]} ImlkH
;,) = 0, (5.11) 

,,=1 mSk.i 
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where the hrz are evaluated as before through From the coefficients of Q2Te+1.i , 

hi = {2(b~~k) + 4)(a;~ a~k) 
X rri

-
1 

a(.2k)a(2k) rrk
-

1 
a(.2k) a(.2k»)-1 (5.13) 

}« -1.« 3.-P ,p • 
«=1 P=i+l 

Similarly. re-expressing the 0 operators in terms of U 
operators, the matrix element of J2Te.2Te+1 can be read 
off from Eq. (5.11). 

<
m2k+1,1 I I

m
2k+l'i) < I-i I a(21Nol)(a(2.~+1) + 2)a(2Ic+l) It I ) 

+ 1 J m - m2lc+l,i _ -I, 1, j m2Te+l,j 
m2k'; 2Te.2k+1 liTe'; - m . 2 (2Te+l!( (21c+1) + 2) m. 
m . m . 2k,3 aik a i - k 2Te., 

2Te" 2k" 

(
m2k+1 '\ ;-1 \ a~:~l)(aj!~+1) + 2) It Te I a~~;P(a~~~+ll + 2) It Im 2Te+1 i) 

X m2Te,:!! a~~:l)(a~!Te+1) + 2) pIt a~~r>(a~~lc+l) + 2) m2Te,i' , 
j = 1,2," " k. (5.14) 

B. Evaluation of <m~_1'il v(n_l>!mn-1
•
i
) 

mn-2.i mn- 2• i 
v(n-l) has the transformation properties of 

\
10"') 
00· .. 

and is to be normalized such that 

m n-l.2 .,. mn-l,i .•. ) = 1. 
mn-l,2 .,. mn-l,i .•• 

(5.15) 

It is convenient to introduce the following shorthand notation. Change mni --+ (Xi mn-l.i --+ Pi mn-2•i --+ Y. ~ 
Pi and define 

I~) = /Pl 
Pa 

Yi f31 f32 

1f3; + 1 (3) = 1f31 f32 
f3; Yi f31 f32 

1~=/f31 f32 

Yi Y j f31 f32 

I~)=I~ 0 0 
0 0 

(1) The n = 2k Case 

Define coefficients r ii by the relation 

Pi-l Pi 
Pi-l Yi 

f3j + 1 
f3j 

f3i-l f3i 

f3i-1 Yi 

"). ... 

f3i+l Pi+2 .. ), (5.16) 
Yi+l Yi+2 ... 

f3i+l f3i+2 f3i-l f3i f3H l f3i+2 ... ). (5.17) 
f3i+l f3i+2 f3i-l Yi YHI YH2 

., . 

f3i+1 f3i-1 f3i + 1 f3i+1 .. ), (5.18) 
YHI Yi-l Yi Yi+l ... 

(5.19) 

where the r ii are generalized Wigner coefficients for 
the Kronecker product [100",] X [f31f32Pa' •• ] of 
O(2k - 1). Note that r 11' the coefficient with all 
Yi < f3i starting with Yl, is equal to the matrix element 
of V(2k-ll provided r Te_ 1j , the coefficient with all 
Yi = f3i' satisfies the normalization condition r Te-Ii = 
1 required by Eq. (5.15). The coefficients rij can be 
related to the coefficients ri+l,1 by recursion tech­
niques, leading after repeated recursion to a relation 
between r 11 and r 7<-1.1' Since the recursion is to be 
established through the raising generator Qt, it is 
necessary to define further coefficients, nu , by the 
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relation 

The operators A(p) of the last term of the equation, 
when acting on states (5.16), create states outside the 
basis [.A<.,~~~-;:~~]. These are orthogonal to the states of 
present interest so that the last term of Eq. (5.21) 
plays no further role in the discussion. 

Applying Q2k-l.i again to Eq. (5.21), a set of recur­
sion relations is established' for the coefficients nij 

nil (Pi P ;) q i (Pi) 
Yi Yi = ___ ..:!.Y...:.:i __ _ 

n (Pi Pi) (Pi Pi + 1)' (5.22) 
i; + 1 qi Y,· + 1 Yi Yi Yi 

(5.26) 

The recursion process for r ii can be started if the 
coefficients r ii' nij can be related for a particular 
value of Yi' The cases rij and riO are somewhat 
different. 

a. The Case rij' From Eqs. (4.1) 

qi(~: ~:) = ICPi - Yi)(Pi + Yi + 2k - 2i - 1) 

k-l a. ,o(a.,o + 2) It x II .,-,. .,,. . (5.27) 
}.=;+1 (a;,;. + 2)(a i ,_;. + 2) 

For m i = Pi - j + i + 1 

and Eq. (5.25) reduces to 

qi(Pi)rii( Pi P;) + ni;(Pi P;) = O. (5.29) 
mi mi + 1 Y i mi Y i 

With this starting relation and the recursion relations 
(5.22) and (5.25), 

r .. (Pi P;) = Yi - Pi + j - i-I 
(5.23) "Yi Yi Pi - P; + j - i-I 

niOe:) qi(~:) 
= 

niO(Yi ~ 1) qiCi ~ 1) , 
where 

<Yi ~ 11 Q2k-l,i I~ = qi(~:)- (5.24) 
(5.30) 

Applying Q2k-l.i also to Eq. (5.20), another set of 
recursion relations is established, where r ii has been related to 

Yi 

Pi) + nii(Pi Pi), (5.25) 
Yi Yi Y; 

In the same way the relationship r H -+ r 2i -+ 

r 3i -+ ..• -+ r H can be established, leading to 

Pk-l) = r jj (PI P2 '" PiP i+1 P 1+2 ••. ) 

Yk-l PI P2 '" P; Y i+1 Y 1+2 ••. 

I IT (Yi - Pi + j - i - 1)(Yi + Pi + 2k - i - j - 1) It (5.31) 
x i=1 (Pi - Pi + j - i - 1)(Pi + Pi + 2k - i - j - 1) . 

So far the recursive chain stops at i = j since Eqs. (5.22) and (5.25) are valid only if i ::;; j. To com­
plete the recursive chain, the relationship r ii -+ r HI,; -+ •.• -+ r k_ I .; must be established. For this 
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purpose consider 

PHI ) + .... 
I'i+l + 1 

(5.33) 

[The omitted states are similar to those of Eq. (5.21). 
They are orthogonal to the states of present interest.] 
Operating with QU-I,i on (b), and with QU-l.HIQM-l,i 

on (a) and comparing the two equations 

Then 

(5.35) 

(5.36) 
(5.34) 

Combining Eqs. (5.31) and (5.36) with the restriction 
r k-l.i = 1, 

<
PI P2 

1'1 1'2 
Pk-11 V(STo-ll IPI P2 '" Pi PHI '" PTo-l\ 
I'k-l 1'1 1'2 I'i I'i+l '" I'To-J 

Pi + 1 PHI PiH 

I'i I'HI l'iH 

= I IT (Pi - I'i + i - j + 1)(Pi + I'i + 2k - i - j - 1) 1*. (5.37) 
i=1 (Pi - Pi + i - j + 1)(Pi + Pi + 2k - i - j - 1) 

b. The Case riO' From (5.23) and (5.26) 

n ( Pi ) 

r~e:) -r~(;:) + (P; - r;) q{ pP~) . (5.38) 

• Pi - 1 

In order to start the recursion process, the relation 

between riO (~:) and niO (Pi ~ 1) / qi(Pi ~ 1) must 

be known. The technique used for the case rij cannot 
be applied here. However, by applying the quadratic 
invariant to both sides of 

{Q . II)} I~) = n. ( Pi ) 1M + ... 2k-l,. 0 Pi - 1 .0 Pi - 1 {J/ ' 
(5.39) 

the desired relation is obtained (details are given in 

Appendix B) as 

riO(~:) = -(Pi + k - i-I) 

x niO(pi~ l)/qi(Pi~ 1)' 
(5.40) 

r 10(Pl) = IT I'i + k - ~ - 1 rk_1
,0(Pk-1) , 

1'1 i=1 Pi + k - I - 1 Pk-l 
(5.41) 

so that 

(5.42) 
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(2) The Case n = 2k + 1 

The procedure is exactly the same, except that the term riO does not exist (VOlk) has no diagonal matrix 
element). The result is 

(
PI P2 ••. PH Pi + 1 P1+1 

Yl Y2 .,. Y;-l Y; Yi+1 
Pk-1 Pkl V(2k) IPI PI! ... P;-1 Pi + 1 Pi+1 •.• Pk-l Pk) 
Yk-l Yl Y2 Y;-1 Y:I Y HI •.• Yk-l 

= I TI (Pi - Yi + i - j + 1)(P; + Yi + 2k - i - j) \*, (5.43) 
i=1 (Pi - Pi + i - j + 1)(P; + Pi + 2k - i - j) 

(:
n; I Imni) C. Evaluation of m~-I,n In-I.n m n_l.; 
n-2.; mn_II.; 

Combining the results of subsections A and B above, Eqs. (5.2), (5.9), (5.10), (5.14), (5.37), (5.42), and 
(5.43), the Gel'fand-Zetlin matrix elements are obtained. With 

12k,« = mllk,« + k - oc, 

1210-1.« = mllk- l ,« + k - oc, 

k~ k * 
IT (l;k-2,« - l:k- 1.:I) IT (l;k./I - l:k- 1,;) 
«=1 /1=1 

k-1 
1:Io-l,;(41:k- 1,i - 1) IT (I;k-l,1I - l;k-l,;)[(121o-1 ... - 1)2 - 1;10-1,;] 

1%*:1 

<::::1~ 11/2k.2k+11::I.\ 
millo-I,; m 21o-1.! 

k-l k * 
-i IT (l1Ik-1 ... - 12k,; - 1)(1210-1, .. + 12k,;) IT (l2k+I,/I - lak.; - 1)(l2k+I,/I + 12k.;) 

.. =1 /1=1 =-
k 2 IT (l;k« - l;k;)[l~kl% - (12k; + 1)2] 

APPENDIX A. EVALUATION OF 
<i I Q2k+1.i 021;+1.-i I i) 

«*; 

There are many graphs in 02k.H.-i' For some types 
of calculation certain ways of grouping them are 
more convenient than others. The following example 
demonstrates one way. 

Aj A' 

(. . '.' . . h.) ( . .... '.) 

c::3\' + . .) ( . . ) 
C, B, B' 

kilt 
02k+l,-i == I I I {-i, l}(-p_l,_;){j, -P}Q2k+l,2> 

;=1 2>=1 !=i+l 
k k :11-1 

X IT a',1 IT a',-1 IT ai,y 
y=J+l 7=1+1 7=1 

k k 

A; = I {- i, l}( - P-I,-J) IT ai,_y' 
I=i+l y=l+l 

{-i, i} = {j, -j} = 1 
; :11-1 

B; = I {j, -P}Q2k+l,21 IT ai1 , 
2>=1 y=1 

k 

C; = IT aiy' 
7=1+1 

k It 

A' = I { - i, j}Q2k+1.-i II ai,_y, 
;=i 7=1+1 

k 

B' = IT aiy' 
y=1 

k 

02k+1,-i = IA;B;C; + A'B: 
1=1 

(5.44) 

(5.45) 

(5.46) 

(A2) 

(A3) 

k k k 

+ I {-i,j}QIIk+1,-; IT ai1 II a.,_y, (AI) 
;=i y=1 1=;+1 

where {- oc, P} means summation of all possible 
graphs, which have a chain away from the IPlth point 
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on the top when {J is positive and on the bottom when 
P is negative ; and a chain ending at the I exlth point 
on the top when ex is positive and on the bottom when ex 
is negative. 

Example: 
{-I, 5} includes the following graphs in the top row: 

.~. 
(With one arrow link of the chain and three points.) 

+ .-.~. -+ .~~. + .~---. 

(All the possible distinct graphs generated by re­
moving anyone free point from the first graph, with 
the appropriate chains.) 

+ .--.~.~. + ..... .....-:-'-.--.. + ~ ....... --. 
(All the possible distinct graphs generated by 

removing any two free points from the first graph, 
with the appropriate chains,) 

+ .-.~.-..--. 

(All the possible distinct graphs generated by 
removing three free points from the first graph.) 

Since the distribution of free points uniquely 
determines the graph, it is sometimes more convenient 
to define the graph by its free points, 

With 

(il Q2k+l,i-p-«II) = (il (-2)Q2k+l,p 0 < ex < IPI 
(A4) 

each chain contraction gives a factor (-2), and 

(il Q2k+l,i{ -i, I} 

= -2(il Q2k+1,1 IT ai .-IZ 1 + (-2)! -
l-l [ 1-1 1 

«=HI P=Hl at,-II 

+ (_2)2 If 1 + ... (_2)H-l l-l 1 ]. 
p,y=i+1 ai,_pa,;,_y IT 

p¢y ai,_« 
"=HI 

(AS) 

The second term in the parenthesis comes from 
the removal of one free point from the first graph 
which is 

l-1 

( - P-il) II ai ,_", 
,,=£+1 

and the last term in the parenthesis comes from the 
removal of all free points from the first graph. A 
similar removal of free points gives the intermediate 
terms. By summing up all the terms, 

1-1 

(il Q2k+l,i{ -i, I} = -2(il Q2k+l,1 II (a,;._" - 2), 
",=i+l 

(A6) 

(A7) 

The first term is the summation of the contribution 
of all possible graphs with any number of free points 
from i + 1 to k in the Aj; but it has included the 
graphs 

k 

{-i,j}(-P-i,-i) IT a i ,_"" 
,,=Hl 

which should be zero, since P-I-i = O. The second 
term is therefore needed to take away the improper 
contribution of 

k 

{ - i, j}( - P-I.-i) II ai ,_,,' 
"=Hl 

Similarly 
I-I 

(il Q2k+l,-jB j = (il ! (-2)Q2k+1,-vQ2k+1,V 
v=1 

;-1:1>-1 i-I 

X II (ai", - 2) II ai « + Q2k+1,-jQ2k+l,i II ai "" 
,,=v+l 11=1 11=1 

(AS) 
With Eq. (4.12) and Eq. (A2) 

i-I ; i-I 
2 II a'a II aia II (a,;._" + 2) 

('I Q B I') ('I Q Q «=1 ,,=;+1 11='+1 I') 
I 2k+l,-i j I = I 2k+l,-i 2k+l,i i" (A9) 

II ai,_11 
,,=Hl 

By combining with (A7), (A2), and (A9) 

k k Q2k+1,-iQ2k+1.i II (a~_« - 4) II a,,, II (ai-« - 2) + 2 II ai.-IZ 
i-I k [ k k] 

('I Q "" ABC I') - "" 4( 'I «='1+1 ,,=1 "=1 «=1+1 I') I 2k+l,ik I I I I - k - I , I , 
i=i i=i 3 

ail IT ai ._« 
«-i+l 

(A 10) 
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Similarly, with Eq. (4.12), Eq. (A2), and Eq. (A6) 
k ~1 k k 

(il Q2k+l.iA'B' Ii) = 1- 4(il J2;-1.2; II (ai,-a - 2) II ai,-a II a ia Ii) 
;=i a=i+l a=;+1 a=1 

;-1 k k 

k II (a~,-a - 4) II ai~-a II a ia (All) 

+ '" _ 4('1 Q Q a=i+l a=i+l a=1 I') k I 2k+l.-i 2k+l.i ; I • 
;=i 

By summing up Eq. (A1O) and (All), finally 

II ai.-a 
a=i+l 

(il Q2k+1,;02k+1.-i Ii) = (il [IT a ia IT (ai.-a - 2)](m2k+l.i - J 2;-1.2; + 1)(m2k+l.; + J2i- 1,2i + 2k - 2i) Ii). 
a=1 a=i+l 

(AI2) 

A similar process works for O(2k), and gives 

(il Q2k'p2k,-i Ii) = (il (m2k.i + J2i- 1,2; + 2k - 2i - 1)(m2k,i - J 2i- 1,2i + 1) Ii) 

APPENDIX B. DERIVATION OF EQ. (5.40) 

To derive Eq. (5.40), 

riO(~:) = -(Pi + k - i-I) 

X QiO(Pi ~ 1) / Qi(Pi ~ 1)' (5.40) 

the quadratic Casimir invariant C2k- 1 is applied to 
Eq. (5.39). In order to simplify the evaluation of these 
terms, the following points are useful: 

(1) Qa;I~:> = 0 i > 0, IX < 2k - 1 (Bl) 

since I~:) belongs to [.A(,~~~] 
(2)a. Q2k-l.;Q2k-l,i I~) = 0, i =/= -j. (B2) 

The net result of the two Q operations in succession 
would either have to change one of the m2k- 2 ,a by 
two or two of the m2k-2,a by one each, Both cases are 
impossible since m2k- 1,a is [1000 .. ']. 

b. Q2k-l.-iQ2k-l,i I~) = 21~)' (B3) 

a direct consequence of Eq. (4.14) and Eq. (4.15). 

2k-l 

(3) C2k-l = 1 J;; 
i<i 
k-l 

= 1 Q2k-l.-;Q2k-l.; + 1 Q2a.-;Q2«.; 
;=1 ;<a:Sk-l 

x (il IT (a i.-a - 2) IT bia li)(iI J.. li). (Al3) 
a=i+l a=1 bi; 

k-l 

+ 1 Q2a-l,-;Q2a-l,; + 1 J~a-l,2a 
;<a:Sk-l a=1 
k-l 

+ 1(2k - 21X - I)J2a- 1,22' (B4) 
a=l 

Proof" Operating on Eq. (5.39): 

The second term on the left-hand side cancels the 
term on the right-hand side, and with Eqs. (B3), (5.20), 
and (5.24) the derivation of Eq. (5.40) is attained. 
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Decomposition of the Unitary Irreducible Representations of the 
Group SL(2C) Restricted to the Subgroup SU(I, I) 
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The unitary irreducible representations of the group SL(2C) belonging to the principal series restricted 
to the subgroup SU~l, 1) are decomposed into a direct integral of unitary irreducible representations of 
SU(~,.l). The matrIX elements of the unitary operator which performs the decomposition are given 
~xphcltly and used to obtain a relation between the matrix elements of the unitary irreducible representa­
tions of the groups SL(2C) and SU(l, 1). Similar identities between the matrix elements of nonunitary 
representations of these groups are obtained by means of analytic continuation. The relevance of these 
res~lts to the theory of complex angular momentum and of high energy nearly forwardscattering is 
POInted out. 

1. INTRODUCTION 

DECENTLY various authors1.2 have suggested and 
R investigated a connection between complex 
angular momentum and the (not necessarily unitary) 
irreducible representations of the Poincare group 
corresponding to a spacelike four-momentum (the 
momentum transfer). These representations are 
strictly connected8 to the representations of the little 
group corresponding to a spacelike four-momentum, 
i.e., the three-dimensional Lorentz group, or the 
corresponding spinor group, the group SU(I, I) which 
is homomorphic to it. The scattering amplitude at 
fixed momentum transfer can be expanded in terms 
of the matrix elements of these representations. This 
expansion is strictly connected with the expansion 
obtained by means of the Sommerfeld-Watson 
transform.4 It can be considered as a generalization 
of the partial wave analysis, which is an expansion of 
the scattering amplitude at fixed energy in terms of 
the matrix elements of the representations of the 
group SU2. 

It has also been suggested 5-7 that, when the momen­
tum transfer vanishes, it is more natural to expand 
the scattering amplitude in terms of the matrix ele­
ments of the representations of the little group 

1 H. Joos, Lectures in Theoretical Physics, W. E. Brittin and 
A. O. Barut, Eds. (University of Colorado Press, Boulder, Colo., 
1965), Vol. VilA, p. 132; L. Sertorio and M. Toller, Neuvo Cimento 
33,413 (1964); F. T. Hadjoannou, Nuovo Cimento 44, 185 (1966) 

2 J. F. Boyce, J. Math. Phys. 8,675 (1967). . 
8 E. P. Wigner, Ann. Math. 40, 149 (1939). 
4 E. J. Sq~ire~, Complex Angular Momentum and Particle Physics 

(W. A. BenJamm, Inc., New York, 1963). This book contains the 
references to the original papers. 

5 M. Toller, Nuovo Cimento 37, 631 (1965). 
, M. ~oll~r, "The Laplace Transform on the Lorentz Group and a 

GeneralIzatIon of the Regge Pole Hypothesis," Istituto di Fisica 
dell'Universita di Roma, Report.No. 76 (1965). 

7 M. Toller, "Some Consequences of a Generalization of the 
Regge-Pole Hypothesis," Istituto di Fisica dell' Universita di Roma, 
Report No. 84 (1965). 

corresponding to a vanishing four-momentum, i.e., 
the homogeneous Lorentz group or the corresponding 
spinor group SL(2C) which is homomorphic to it. 
In other words, many considerations lead us to think 
that, at vanishing momentum transfer, the expansion 
in terms of the matrix elements of the representations 
of SL(2C) permits a simpler description of the high. 
energy scattering amplitude. 

As the scattering amplitude is an analytic, and 
therefore continuous, function of the momentum 
transfer, a connection must exist between the SL(2C) 
expansion at vanishing momentum transfer and the 
SU(l, 1) expansion for very small momentum transfer. 
This connection takes a more suggestive form if we 
make the assumption (supported by recent research8) 

that the scattering amplitude is dominated in the very­
high-energy region by Regge pole contributions. As 
shown in the above-mentioned papers, each Regge 
pole contribution can be described in terms of the 
matrix elements of an irreducible nonunitary repre­
sentation of SU(I, 1). Gribov and Volkov9•1o have 
pointed out that, when the momentum transfer van­
ishes, the various Regge pole contributions can no 
longer be independent from each other, but must be 
arranged in families of poles which are displaced from 
one another by integral numbers. How~ver, there is 
a large ambiguity in determining the structure of these 
families, so further hypotheses are needed. According 
to the ideas sketched above, we suggestll that at 
vanishing momentum transfer the sum of the Regge 
pole contributions belonging to a family gives rise to 
a contribution which can be described in terms of an 

• R. J. N. Phillips and W. Rarita, Phys. Rev. 139, B1336 (1965). 
• D. V. Volkov and V. N. Gribov, Zh. Eksperim. i Teor. Fiz.44. 

1068 (1963) [English trans!.: Soviet Phys.-JETP 17, 720 (1963»). 
10 V. N. Gf/bov, Zh. Eksperim. i Teor. Fiz. 43, 1529 (1962) 

[English trans!.: Soviet Phys.-JETP 16, 1080 (1963»). 
11 Volkov and Gribov use a different assumption. 
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irreducible representation of SL(2C)12; we call it a 
"Lorentz pole contribution." 

In order to investigate the above-mentioned con­
cepts in more detail, it is necessary to study the con­
nection between the representations of the groups 
SL(2C) and SU(I, 1). This is the aim of the present 
paper. 

In Secs. 2 and 3 we describe the irreducible unitary 
representations of SL(2C)lS and of the subgroup 
SU(I, 1).14 In Sec. 4 we perform the decomposition 
of the irreducible unitary representations of SL(2C) 
restricted to the subgroup SU(I, I) into a direct 
integral of unitary irreducible representations of 
SU(I, 1). In Sec. 5 we investigate the properties ofthe 
matrix elements of the unitary operator which per­
forms the decomposition. By means of these matrix 
elements we can write a formula which gives the 
matrix elements of the representations of SL(2C) in 
terms of the matrix elements of the representations of 
SU(l, 1). In Sec. 6 we modify and extend this formula, 
introducing by means of analytic continuation the 
matrix elements of nonunitary irreducible representa­
tions of the groups considered. In Sec. 7 we show 
that the identities so obtained are the very mathemati­
cal instruments needed in order to clarify and exploit 
the ideas sketched at the beginning of this Introduction. 

The arguments treated in this paper are also useful 
in connection with the problem of decomposing an 
irreducible representation of the complex inhomoge­
neous Lorentz group restricted to the real inhomoge­
neous Lorentz group (Poincare group). The importance 
of this problem in the relativistic theory of scat­
tering has been pointed out by RoffmanY;·16 

2. UNITARY IRREDUCIBLE REPRESENTATIONS 
OF THE GROUP SL(2C) 

The elements of the group SL(2C) are the unimodu­
lar complex 2 x 2 matrices of the form 

a = (all a
12

), a11a22 _ a12a21 = 1. (2.1) 
a21 a22 

The unitary (and also the non-unitary) irreducible 
representations of this group have been investigated 
and classified by Gel'fand and Naimark.13 The method 

11 A similar classification of the Regge trajectories has been 
proposed by G. Domokos and P. Suranyi, Nucl. Phys. 54, 529 
(1964). These authors use as a starting point a Bethe-Salpeter 
equation with the integration path of the energy variable rotated in 
the complex plane [G. C. Wick, Phys. Rev. 96, 1124 (1954»). In 
consequence, they consider the four-dimensional rotation group 
instead of the Lorentz group. 

11 M. A. Naimark, Linear Representations of the Lorentz Group 
(Pergamon Press, Inc., London, 1964). This book contains the 
references to the original papers by Gel'fand and Naimark. l' V. Bargmann, Ann. Math. 48, 568 (1947). 

16 E. H. Roffman, Phys. Rev. Letters 16, 210 (1966). 
11 E. H. Roffman. Commun. Math. Phys. 4, 237 (1967). 

used by these authors for the construction of these 
representations has been generalized by Mackey17.18 
in his theory of induced representations. 

In order to introduce suitable notations, we give 
in this section a short description of the irreducible 
unitary representations of SL(2C) belonging to the 
principal series. We do not consider in this paper 
the representations of the complementary series. As in 
the following, we use Mackey's general techniques, and 
emphasize the fact that we are dealing with induced 
representations. 

It is useful to introduce the following notation for 
the elements of some one-parameter subgroups of 
SL(2C): 

u:xlO) a.,(~) 

(

COS to 
= -i sin 10 
uV<O) 

-i sin 10), = (C~Sh E 

cos 10 smh H 
avC') 

sinh E), 
coshH 

= (COS to 
sin !O 

u.(O) 

-sin to), 
cos to ( 

coshH 

= isinhE 

a.a) 

-isinh E), 
coshE 

= (exp (-i!O) 0 ), 
o exp (ilO) (

exp gO) 
= 0 exp(-l{)' 

(2.2) 

In the homomorphism between SL(2C) and the 
Lorentz group, the first three elements give rise to 
rotations of an angle 0 around the axes of the co­
ordinate system, and the other three elements give 
rise to pure Lorentz transformations along the 
coordinate axes with relative velocities (J = tanh ~. 

SU2 is the unitary subgroup of SL(2C) (homo­
morphic to the rotation group). As well known, every 
element U E SU2 can be written in the form 

u = ul,,)u,lO)uiv), 
(2.3) 

o ~ " < 47T, 0 ~ 0 ~ '7T, 0 ~ V < 27T. 

By means of this parametrization, the invariant 
measure on SU2 takes the form 

d" = (47T)-2 sin 0 d" dv dO. (2.4) 

The induced representations we consider are con­
structed by means of the subgroup K whose elements 
are complex matrices of the form 

(
rl q) 

k = 0 p' p ¥= 0, (2.5) 

11 G. Mackey, "The Theory of Group Representations," Lecture 
notes, University of Chicago (1955). 

18 G. Mackey, Bull. Am. Math. Soc. 69,628 (1963). This paper 
contains referen,ces to previous work on induced representations. 
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and, by means of the following one-dimensional unitary 
representations of K, 

LM\k) = Ip(k)12('HM)[(p(k»)-2M, (2.6) 

where p(k) is an element of the matrix k as shown in 
Eq. (2.5); M is an integral or half-integral and A is a 
pure imaginary parameter. 

We mention some properties of the right co sets of 
SL(2C) with respect to the subgroup K13: 

(a) Every coset (one excepted) contains one and 
only one element of the form 

(2.7) 

where Z represents both a complex number and the 
corresponding matrix. This means that every matrix 
a E SL(2C) (with a22 ¢ 0) can be written in the form 
a = kz with k E K. 

(b) Every coset contains infinite unitary matrices. 
Two unitary matrices u and u' belong to the same 
coset if and only if 

u' = u.(fl')U (2.8) 

for some value of f-l. This means that every matrix 
a E SL(2C) can be written (in an infinite number of 
ways) in the form a = ku with k E K and u E SU2. 

A measure in the space of the right co sets can be 
considered as a measure df-l(z) in the complex plane 
of z. We choose this measure in the following way: 

f1f{Z) df-l(z) = r ?p(u) df-l, (2.9) 
JSU2 

where ?pea) is an arbitrary function defined over SL(2C) 
with the property 

?p(ka) = ?pea), k E K. (2.10) 

A simple calculation shows that Eq. (2.9) requires that 

df-l(z) = d Re Z dIm Z/7T(1 + IzI2)2. (2.11) 

An element a E SL(2C) given by Eq. (2.1) operates 
a transformation in the space of the right co sets or 
in the space of the representative elements z. More 
explicitly, this transformation is 

z' -+ z" = kz' a, k E K, (2.12) 

or, performing the calculations 

z" = (z'an + a21)/(z'al2 + a22). (2.13) 

From Eq. (2.11) we know that the measure df-l(z) is 
affected in the following way by the transformation 
(2.12): 

df-l{z") ( 1 + Iz'12 )2 
-d ( ') = I' 2 2 • (2.14) 

f-l z z al2 + a221 + Iz'an + a211 
Given an element a of SL(2C), we indicate by (a)o 

an arbitrary unitary matrix which belongs to the same 
coset. Clearly a(a);l belongs to the group K. If a is 

given by Eq. (2.1), we have 

Ip[a(a);IW = la2112 + la2212. (2.15) 
Therefore Eq. (2.14) can be written in the form 

df-l(z") 1 p[z'(zT
1
) 14 1 p[a'(aT

1
) 14 __ = 0 = 0 (2 16) 

df-l(z') p[z' a(z' a);l) p[a' a(a' a);l)' . 

In the last expression of this equation, a' is an arbitrary 
element belonging to the same coset as z' [note that 
(a')o = (kz')o = (z')o and that p(k) is a representation 
of K). 

The Hilbert space .le, where the induced representa­
tion j)M A = ULMA operates, is formed by functions 
f(a) defined on SL(2C) which satisfy the covariance 
condition 

J(ka) = LMA(k)J(a), k E K. 
The scalar product is defined by 

(f,f') = r J(u)f'(u) df-l 
JSU2 

(2.17) 

(2.18) 

and the representation operators operate in the 
following way: 

[j)M,-(a)f1(a') = 1 p[a'(a,);l) li(a'a). (2.19) 
p[a'a(a'a);l) 

Equations (2.17)-(2.19) define the induced repre­
sentation completely. 

Equation (2.19) can also be written in terms of 
functions defined on SU2 alone: 

[j)MA(a)f1(u) 

= Ip[ua(ua);IJr2J(ua) 

= Ip[ua(ua);IJr2LMA[ua(ua);I)J[(ua)o) 

= Ip[ua(ua);1)12(HM-I)(p[ua(ua);I])-2MJ[(ua)o]. 
(2.20) 

The covariance condition in this case takes the simpler 
form 

f(u.(f-l)u) = exp (-iMf-l)f(u). (2.21) 

In order to write the representation operators in 
matrix form, we have to choose a basis in the Hilbert 
space of the functions feu) which satisfies Eq. (2.21). 
A very convenient choice is the following: 

<I>~(u) = (2j + 1)1Rkm(u). (2.22) 

Rkm(u) are the matrix elements of the unitary 
irreducible representations of SU2, which can be 
written in the forml9 

R:"m{u.(f-l)u,lO)u.(v» = exp (-imf-l - im'v)r:"m,(O), 
(2.23) 

where the functions r!.m'(O) are given in Eq. (A6) of 
Appendix A. 

li is knownl3 that every element of SL(2C) can be 

19 M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, Inc., New York, 1957). 
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decomposed in the following way: 

a = u1a.( ~)U2 , 
u1 , u2 E SU2, 0::;; ~ < 00. (2.24) 

From Eq. (2.20) we have 

eDM\u)<I>;!J(u') = <I>!(u'u) = L <I>~.(u')R~'m(u), 
m' (2.25) 

and therefore 

~~~'m.(u) = (cp!, ~M"(u)<I>ffm') = t5;;,R!"m.(u). 
(2.26) 

We show in Appendix A that 

~~~'m,(azm) = t5mm, d!!;~,m· (2.27) 
From the last two equations we can obtain the general 
form of a matrix element of the representation operator 

~~~'m.(ula.(~)u2) = L R;'m"(uI) d~~;i'mR:':"m,(U2)' 
m' (2.28) 

Many properties of the functions d!k(O are given 
in Appendix A. 

In particular, we know that representations ~M" 
and ~-M.-" are equivalent and therefore the following 
identity must hold: 

~i~:;'~(a) = 'l1iM'-"~~~'m,(a)'l1ff", (2.29) 
where the functions 'l1f" are given by Eq. (AI8) of 
Appendix A. In the following we use the decomposition 

~~~'m,(a) = A~~'m,(a) + 'l1i}l.< Ai~:;'~(a)'l1;M,-", 
(2.30) 

where 

A~~'m,(uIa.mU2) 
= L R~m,,(ul)a~~;;,mR:;;"m.(U2)' (2.31) 

m" 

As shown in Appendix A, the functions a~~,(O have 
a simple asymptotic behavior for ~ -- 00. 

3. UNITARY IRREDUCffiLE REPRESENTATIONS 
OF mE GROUP SU(1,1) 

The group SU(I, 1) is a subgroup of SL(2C) formed 
by all the complex matrices of the form 

v = (; :), lotl 2 
- 11112 = 1. (3.1) 

Every element of this group can be written in a unique 
way as follows: 

v = u.(f-t)a",mu.(v), 
(3.2) o ::;; f-t < 41T, 0::;; V < 21T, 0::;; ~ < 00. 

With this parametrization, the invariant measure on 
the group takes the form 

dv = (41T)-2 sinh ~ df-t dv d~. (3.3) 

The irreducible representations of SU(I, 1) have 
been described by Bargmann.14 The representation 
matrices have the form 

D~m.(u.(f-t)a",mu.(v» = exp (-imf-t - im'v) d~m,m· 
(3.4) 

The superscript A is a shorthand notation for the 
parameters which label the equivalence classes of 
irreducible representations. In order to obtain more 
explicit formulas, it has to be replaced in the following 
way: 

(a) Representations of the continuous classes: A 
stands for the two parameters E, l. The parameter E 

takes the value 0 for the representations of the integral 
type and t for the representations of the half-integral 
type. The unitary representations of the principal 
series correspond to complex values of the parameter 
l with Re l = -to For other values of I we have non­
unitary representations, some of which are equivalent 
to the unitary representations of the complementary 
series. The subscripts m and m' take the values E, 

E ± 1, E ± 2,···. 
(b) Representations of the discrete classes: A stands 

for k± with k = t, I, !, .... The subscripts m and 
m' take the values k, k + 1, k + 2, ... for the repre­
sentations Dk+ and -k, -(k + 1), -(k + 2), ... for 
the representations Dk-. 

The Plancherel formula can be written in the form 

where 

r If(v)1 2 dv =f L lF~m,r2 dA, (3.5) 
)8UO,I) mm' 

F~m' = r f(v)D~m.(v) dv. 
)8U(l,ll 

(3.6) 

The Plancherel measure dA which appears in Eq. (3.5) 
is defined by 

f 1jI{A) dA = ~ f'.) 1p(E, is - t)1](E, is - t) ds 

where 

+ L (2k - 1)[1p(k+) + 1p(k-)], (3.7) 
k 

1](0, l) = (2l + 1) cot 1Tl, 

1](t, l) = -(2l + 1) tan 1Tl. 
(3.8) 

For the functions d~m,m = d:"m,m we use a phase 
convention different from that used by Bargmann.14 

In such a way we obtain functions which are analytic 
in the whole complex l plane. For m ~ in' they can 
be expressed in terms of the hypergeometric function 
in the following ways: 

1 r(l + m + 1) ( ~)m+m' 
d!"m,m = (m _ m')! r(l + m' + 1) cosh 2 

x (sinh~r-m'F21(m - 1, m + 1 + 1; 

m - m' + 1; -(sinh~)), (3.9) 

and they satisfy the symmetry conditions 

d!"m,m = d~m,-m,m, 
(3.10) 
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From Eq. (3.9) we can derive the identity 

d:1- 1(" U-I-1 dl ("U l 
mm' ':JJ = m mm' ~J ml', (3.11) 

where 

UI = r(l + m + 1) U-I-IU I = 1. 
m rem -1) , m m 

(3.12) 

These equations show that the representations DEI 
and DE.-I-I are equivalent. 

We use in the following the decomposition 

d!.m'(O = a~m,g) + U~a;;;~}(OU;/,-\ (3.13) 
where 

amm,(O = smh-
I ( _1)m-m'r( - 21 - 1) (. ~)-21-2 

r(-l- m)r(-l + m) 2 

x (Coth~r+m'F21(l + mt + 1, I + m + 1; 

21 + 2; -(sinh~)). (3.14) 

Functions (3.14) have a simple asymptotic behavior 
for large values of ~. They are analytic in the whole 
complex plane, apart from poles for half-integral 
values of I - m. 

The functions d~~,g) have been computed by 
Bargmann.14 They can be given in terms of the func­
tions defined above by means of the formulas 

d'* ,(r. = [em - k)! (m' + k - 1)!J1-dVC-V(" 
mm ':>J (m' _ k)! (m + k _ I)! mm ':>J 

(3.15) 
or 

dk+ ,(" = 2[(m - k)! (m' + k - 1)!J!a(k-V(~). 
mm ':>J (m' _ k)! (m + k _ I)! mm 

(3.16) 
The functions d~,(O are given by 

d~m'(O = d!:-;"'._m(O = (_1)m-m' d~-;'.-m'(O' (3.17) 
It is useful to define the matrices also: 

A~m,(uz(,u)a.,a)uZ<v» = exp (- im,u - im'v)oc:"m,(O. 

(3.18) 

It is clear that Eqs. (3.11) and (3.13) can also be written 
in terms of the matrices A:"m,(v) and D~m'(v). 

4. DECOMPOSITION PROCESS 

In this section we decompose the irreducible unitary 
representations ~Ml of SL(2C) restricted to SU(1, I) 
into a direct integral containing the irreducible unitary 
representations DA of SU(I, 1) described in Sec. 3. 
Our proceeding can be divided in two stages. In the 
first stage, following a general method developed by 
Mackey,17 we decompose the restrictions of the 
representations ~Ml, which have been described in 
Sec. 2 as induced representations, in pairs of reducible 
representations of SU(I, 1), which we indicate by 

O-M and O+M. In the se(:ond stage we decompose these 
representations by means of the Plancherel formula 
in a direct integral of irreducible unitary representa­
tions. At last we find an explicit expression for the 
matrix elements ~~1'm'(v) in function of the matrix 
elements D~m'(v). 

In order to perform the first step, we must determine 
the double co sets of SL(2C) with respect to its sub­
groups K and SU(I, 1). We recall that these double 
cosets are the sets composed by the elements of SL(2C) 
that may be written in the form 

kav, k E K, v E SU(I, I), 

where a is a fixed element of SL(2C) which can be 
chosen as. representative element of the double coset. 
Clearly, the double cosets are pairwise disjoint, and 
their union is SL(2C). 

From the properties given in Sec. 2, we know that 
the following decomposition is unique: 

a = kuy{O)uz(v), a E SL(2C), 

k E K, 0.:5: 0 .:5: TT, 0.:5: l' < 2TT. 
(4.1) 

It is easily obtained that 

uy{O) = kb+a.,(O, tanh E = tan to, 
for 0.:5: 0 < tTT; 

(4.2) 

where 

(4.3) 

In both cases we have 
p(k) = (cosh o-t. (4.4) 

From Eqs. (4.1) and (4.2) it follows that each element 
a E SL(2C) can be written in one of the following three 
forms: 

a = kb+a.,(Ou.(v), 

a = kb-a"(Ouiv), 

a = kUll{!TT)uiv). 

(4.5) 

If we note that a"(~)uiv) E SU(I, 1), we see that 
Eqs. (4.5) represent three double cosets. It can be 
shown that they are distinct. In the following we 
disregard the third coset which has vanishing invariant 
measure. 

For every function lea), belonging to the space 
where the representations described in Sec. 2 operate, 
we introduce the following two functions defined over 
SU(I,I): 

f±(v) = f(b±v). (4.6) 

From Eqs. (4.6) and (2.17) it follows that these 
functions satisfy the covariance relation 

j±(hv) = LMl(b±h(b±rl)j±(v), hE H±, (4.7) 
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where H± are subgroups of SU(l, 1), defined by 
H± = SU(l, 1) (') (b±)-1Kb±, 

which coincide with the group H ofthe elements u.(p,). 
More explicitly, the relation (4.7) can be written as 

j±(u.(p,)v) = exp (=fiMp,)f±(v). (4.8) 

From a straightforward calculation using the 
change of variables (4.2), we have 

( If(uW dp, =.l (211 dv f"lf(uy{O)u.(v»1 2 sin 0 dO 
)SU2 47T )0 )0 

= 1.. ~ (2lr dv (00 1 fP(a",Wu.(v» 12 sinh, d, 
47T p)o )0 (cosh ,)2 

= ~ ( IFP(v)1 2 dv, (4.9) 
p )SUU,1) 

where p is an index which assumes the two values 
- and +, and F±( v) is defined by 

F±(v) = (cosh ,)-1j±(V), (4.10) 

where v and, are connected by Eq. (3.2). The func­
tions F±W satisfy the covariance relation (4.8). 

If we consider two Hilbert spaces Je+M and Je-M 
composed by the functions F±{v) with the norm 

IIFI12 = ( IF(v)12 dv, (4.11) 
)SUU,1) 

we have obtained, by means of Eqs. (4.7), (4.9), and 
(4.10), an isomorphism between the Hilbert space Je, 
where j)M)' acts, and the space 

Je+M EB Je-M. 

In this way we have split the representation j)M)' in 
the direct sum of two representations 0 ±M which act 
in Je±M. More explicitly, from Eq. (2.19) we have 

[O±M(v)f±](v') = I p[b±v'(b±v');1] If±(VV'), (4.12) 
p[ b±v' v( b±v' V);1] 

Writing v in the form (3.2), we have from Eq. (2.15) 

Ip(b±v(b±v);1)12 = cosh" (4.13) 
and, using Eq. (4.10), we can write Eq. (4.12) in the 

form [O±(v)F±](v') = F±(v'v). (4.14) 

From Eqs. (4.8), (4.11), and (4.14), we see that the 
representations 0 ±M are representations induced by 
the following representations of the subgroup H. 

u.<I-') -- exp (=fiMp,). (4.15) 

If we compare the representations O±M with the 
regular representation of SU(I, 1), we see that the 
only difference consists in the condition (4.8) which 
defines a subspace of the space L2(SU(I, 1» where the 
regular representation operates. This means that the 
representations O±M are contained in the regular 
representation, which admits a decomposition in a 
direct integral of irreducible representations by means 

of the Planchere1 formula (3.5), (3.6). The representa­
tions we are considering can be decomposed in a 
similar way. We introduce thefunctionF~± defined by 

( D~m,(v-1)F~v) dv = t5±M,m,F~±. (4.16) 
)SUU,l) 

We introduce the subsets Q±M of the set of the 
equivalence classes of irreducible unitary representa­
tions of SU(l, 1). An element A of this set belongs 
to Q ±M if the representation D~m' contains the 
representation (4.15) of the subgroup H-that is, if 
±M is one of the values that can be assumed by the 
matrix indices m and m' (see Sec. 3). Note that if 
A 1= Q±M the integral (4.16) vanishes. 

The P1ancherel formula (3.5) takes the form 

( IF(vW dv = ( ~ IF~±12 dA. (4.17) 
)SUU,1) )O±M m 

The integral can be extended to the subset Q ±M be­
because, outside, the integrand vanishes. If we introduce 
the Hilbert spaces JeA± formed by the functions F~± 
with the norm 

IIFA±1I2 = ~ IF~±12, (4.18) 
m 

from Eq. (4.17) we see that Eq. (4.16) defined the 
isomorphism between the spaces Je±M and the spaces 

(liB JeA±dA, (4.19) 
)O±M 

respectively. 
We determine how the functions F~± are affected 

by the transformation (4.14) of the function which 
generates them. 

F':;; -- ( D~,±M(V'-1)F(v'v) dv' 
)SUU,1) 

= ( D~,±M(VV'-1)F~v')dv' = ~ D~m,(v)F~~. 
)SUU,l) m' 

(4.20) 
This means that the representations which operate 
on the spaces JeA± are exactly the representations DA. 
Therefore the result of the decomposition process is 

[j)M)']SU(1,1) f"-.J O+M EB O-M 

;;;;;; (liB DA dA EB (liB DA dA. (4.21) 
)O+M )O-M 

Equations (4.6), (4.10), and (4.16) give a linear 
relation between the function f(a) and the funct­
ions F~±. If, in particular, we take 

feu) = <l>f".(u) (4.22) 

[see Eq. (2.22)], we have 

F( u.<I-' )a",Wu.( v» 
= (cosh O).-l<t>~(u.(±p,)uiO±)uzCv» 
= (2j + 1)l(cosh ,»).-1 exp (=fiMp, - imv)rkm(O±)? 

o ~ 0+ < t7T, t7T < (J ~ 7T, (4.23) 
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where the relation between O± and, is given by Eq. 
(4.2), and 

F~~ = (2j + 1)! f" dfl f" dv LX> (cosh ,/-1r~m(0±) 
X d~,,±M(0(-1)m'HI exp [i(m

f 
- m)v](47T)-2 

x sinh' d, = c5mm,K:f\A, ± ;j), (4.24) 
where 

K:f)'(A, ±;j) = (2j + l)!(_1)m'fM fO(COSh ,»).-1 

X rkm(O±) d~,±Mm! sinh' d,. (4.25) 

Note that this function is defined only for 
A E 0 ±M (\ Om. In general, from Eqs. (4.9) and (4.17), 
we have 

r !(1)(U)!(2)(U) du = ! r !Ftilm Ftt,m dA, 
JSU2 p JnpM m 

(4.26) 
and if we take 

!(l)(u) = <J)fm(u), !2(U) = [:oM).(v)<J)f!m'](u), 

v E SU(l, 1), 

we obtain from (4.24) and (4.26) 

:O!~'m'(v) 

=! r K:f)'(A, p;j) D~m.(v)K:f/(A,p;j')dA, 
pJn 

(4.27) 
where 

0= OpM (\ Om (\ Om" 

This is the basic formula which connects the repre­
sentations of SL(2C) and SU(l, I). 

If we consider the special case v = e, we obtain the 
othonormality condition 

! r K:f).(A, p;j) K:f)'(A, p;j') dA = c5w . 
p JnpMnnm 

(4.28) 

As the functions <J)!(u) form a complete set in the 
space of the functions feu) which satisfy Eq. (2.21) so 
also the functions K:f).(A, p;j) form a complete set 
in the space of the functions F~P defined for A E 

OpM (\ Om. Therefore we can derive in the standard 
way the completeness condition which can be written 
formally as 

! K:f'{A, p;j)K:f).(N, pf;j) = c5pp,c5(A, N), (4.29) 
; 

where the improper function c5(A, N) is defined by 

f 1p{A)c5(A, N) dA = 1p{N). (4.30) 

Equations (4.28) and (4.29) can be considered as uni­
tarity conditions if we consider the f~nctions 
K!).(A, p;j) as matrix elements ofa unitary operator. 

By means ofEq. (4.29) we can invert Eq. (4.27) and 
we obtain 
~ KM).(A . ')C/"\M)' ()KM).(Af f. 'f) k m ,p,],u;m;'m'v m' ,P,] 
ii' 

= ~ f c5pp"c5(A, A'f)D~:n.(v)c5p"p,c5(A", N) dA" 

= c5pp ,c5(A, N)D~m.(v). (4.31) 

5. PROPERTIES OF THE FUNCTIONS 
Kf:)'(A, p;j) 

In this section we find some properties of the 
functions defined by Eq. (4.25). 

If we take into account the identity19 

r:.om.(O) = (-I)m-m'r~m,_m'(O) (5.1) 
and Eqs. (3.10) and (3.17), we obtain easily the 
following symmetry properties: 

K=:f').(€, 1, p;j) = (-l)M-mK:f\€, 1, p;j), (5.2) 

K=;t:').(k±, p;j) = lMK:f).(k~, p;j). (5.3) 
From the reality of the functions r:.om,(O) and from 
the last of Eqs. (3.10) we obtain 

K:f).(€, 1, p; j) = K:;l(€, T, p; j), 

K:f).(k±, p;j) = K:fl(k±, p;j), 
and from Eq. (3.11) we have 

(5.4) 

K:f).(€, -1 - 1, p;j) = U;.I-1U~MK:;\€, 1, p;j). 

(5.5) 
From Eqs. (4.2) we know that the variables O± which 

appear in Eq. (4.25) are connected by the relation 

0- = 7T - 0+. (5.6) 

If we take into account the identity19 

r:.om,(7T - 0) = (-v-m'r~m,m'(O), 
we obtain at once the relation 

(5.7) 

K:f)'(A, - ;j) = (_l);-mK;.M').(A, + ;j). (5.8) 

On account of this equation, in the following we may 
consider only the functions K!).(A, + ;j). 

It is useful to introduce the following functions: 

E:f)'(l,j) = (2j + 1)!(-1)m-M!o'X>(COSh,»).-1 

X rkm(O+)a~Mm! sinh, d,. (5.9) 
This integral converges for Re 1 > Re A. - 1, whereas 
the integral which defines K!).(€, I, + ;j) converges 
only for Re A. - 1 < Re I < - Re A.. If we substitute 
in Eq. (4.25) the Eqs. (3.13) and (3.16) we obtain 

K:f).( €, 1, +; j) 

= E:f).(l,j) + U~U"iJ:-1E:;).(-1 - 1,j), (5.10) 

K:f)'(k+, + ;j) 

2[(m - k)! (M + k - 1)!]! EM).(k _ 1 '). (5.11) 
(M - k)! (m + k _ I)! m ,] 
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Therefore all the functions we are considering can be 
expressed in terms of the functions (5.9) by means of 
Eqs. (5.10), (5.11), (5.8), and (5.3). 

In Appendix B we show that the integral (4.25) 
can be evaluated in terms of a finite sum of Meijer 
G functions20 and the result is the following, for 
m ~ M21; 

K~\E, 1, +;j) 

= ~km[r(l + M + 1)r(m - l)ru - A + 1)]-1 
X I/2P-i-l(-IY[U - M - O()! (0( + M - m)! 

~fJ 

x(m+ j -0(-{3)!0(!{3!r1G;:(11{3-i, -1,1+1), 
2 {3 - A, m, M 

(5.12) 
where 

~3wm = [(2j + I)U + M)! U - M)! 

xU + m)!U - m)!]!. (5.13) 

For M > m we have to use Eq. (5.2). 
Equation (5.12) permits .the analytic continuation 

of the function K~).(E, I, + ;j) to complex values of 1 
and A for which the integral which defines this function 
does not converge. 

We show in Appendix B that this function is 
meromorphic in the whole complex planes of A and I; 
it has poles only for 

1 = A - n - 1, 

I = -A + n, 

where n is a nonnegative integer. 

(5.14) 

Also the functions E!).(/,j) defined by Eq. (5.9) 
can be written explicitly by. means of a finite sum of 
Meijer G functions and continued analytically in A 
and I. The result is21 

E~\/,j) = ~km[-2 cos Tr(1 - M)]-1 

X [r(l + M + l)r(m - l)ru - A + l)r1 

X I' 2fJ- i - 1( -1)~ 
~fJ 

X [U - M - O()! (0( + M - m)! 

X (m + j - 0( - {3)! O(! {3W1 

X G::(ll {3 - j, -I, 1 + 1). (5.15) 
2 {3 - A, m, M 

These functions are meromorphic for all the values of 
A and I and may have poles for 

I = A - n - 1 (5.16) 

20 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, 
Higher Transcendental Functions (McGraw-Hill Book Company, 
Inc., New York, 1953), Vol. I. 

21 We denote by l:~ the sum over all the values of <X for which the 
arguments in the factorials which appear in the denominator are 
nonnegative integers. 

and for half-integral values of 1 - M. The poles ofthis 
last kind, which arise from the factor [cos Tr(l- M)]-l, 
cancel each other in the right-hand side of Eq. (5.10). 

If we use the identity 

G~~(Xlal' a+n, a) 
bI> b2 , ba 

=C- 1t G:;(xla1
, a, a+n), (5.17) 

b1 , b2 , ba 
which holds for integral n and follows immediately 
from the definition of G function [see Ref. 20, Eq. 
(5.3.1)], we obtain from Eq. (5.15) for integral values 
of2k 

E!\k - l,j) = U~lU'jJE!\-k,j), (5.18) 

and from Eqs. (5.10), (5.11), (5.8), (5,2), and (5.3) we 
have 

K!).(k+, p;j) ! 
= [em - k)! (pM + k - 1)!J KlJU(E k - 1 .,) 

(pM - k)! (m + k _ I)! m' ,P,) , 

(5.19) 
K!).(k-, p; j) 

= (_I)m-PM[(-m - k)! (-pM + k -1)!J! 
(-pM - k)! (-m + k - I)! 

X K!).(E, k - 1, p;j). 

Note that the right-hand sides of these equations 
have not been obtained directly from the integral 
(4.25), but are the analytic continuation of the 
function K!).(E, I, p;j) defined by the integral (4.25) 
for Re 1 = -t. 

We use the following notation for the residues of 
the poles of the function K!).( E, I, + ;j); 

lim (1 - A + n + I)K!\E, I, + ;j) = w~).n. 
!-+l-n-l (5.20) 

From Eq. (5.5) we also have 

lim (I + A - n)K!\E, I, + ;j) 
!-+-).+n 

= _u-;;.).+nu1I1n-lw~).n. (5.21) 

The explicit form of the residues w~;'n has been 
calculated in Appendix B and for m ~ Mis 

. 2).-i-1r(n - 2A + l)(_l)lJI-m 
w~Un = ~3 

3m Mm r(n _ m _ A + l)r(n + m - A + 1) 
X I' (-1)11+12-Y[U - M - O()! 

IXPY 

X (0( + M - m)! (m + j - 0( - {3)! 

X (n - {3 - y)! O(! {3! yq-l[m + A - n]n-P-7 

X [M + A - n]n-P-yU - A + 1Mn - 2A + l]{J+y, 
(5.22) 

where 
[a]n = a(a + 1) ... (a + n - 1). 

From Eq. (5.2) we obtain the symmetry property 

W-:-M,).,n = (_l)M-mwMln (5.23) ',-m 3m , 
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which can be used to calculate these functions for 
M>m. 

A remarkable and perhaps unexpected property 
of the residues is the following: 

(_I)i-mWi~·.i·n = (_1) nWf!.in. (5.24) 

This formula has been proved by direct algebraic 
calculation for n = 0, 1 and has been tested numeri­
cally by means of an electronic computer for a 
very large number of choices of the parameters. We 
have not found a general proof for it. 

In order to prove the convergence of certain inte­
grals it is necessary to know the behavior of the function 
K~;'(E, 10 + il', p;j) when I' -- ±oo for fixed values 
of the other parameters. In Appendix B we show that 
this function decreases faster than any negative power 
of 1l'J. 

6. RELATIONS BETWEEN THE MATRIX 
ELEMENTS OF NONUNITARY 

REPRESENTATIONS 

If we use Eqs. (5.4) and (3.7) and note that for 
unitary representations it is X = -A. and I = -I - 1, 
we can write the basic formula (4.27) in the form 

f
-!+iOO 

~f!j'm.(v) = -i 2 K~·-.i(E, -I - 1, p;j) 
p -! 

x D~m,(v)K!f,.i(E, I, p;j'}rj(E, I) dl + g(v), (6.1) 
where E - M is an integer (this convention holds also 
for the following formulas) and g(v) is the contribution 
of the representations of the discrete classes, given by 

g(v) = 22 (2k - I)K~·-.i(k±, p;j) 
pk± 

x D':m,(v)K;';.;'(k±, p;j'), (6.2) 
where the sum over k± has to be extended to all the 
values of this index for which the quantities which 
appear in the equation have a sense (see Sees. 2 and 4). 

From Eqs. (3.8), (3.11), and (5.5) we see that the 
integrand in Eq. (6.1) is a function symmetric for 
1-- -I - 1. It follows that Eq. (6.1) can also be 
written in the form 

~t!.1'm'(v) =1.. 2 r K~·-.i(E, -I - 1, p;j) 
2z p Jo-! 

x D~m.(v)K;';..i(E, I, p;j'}rj(E, I) dl + g(v). (6.3) 
Here and in the following we indicate by C L a straight 
path from L - ioo to L + ioo. 

Equation (6.3) can be continued analytically in the 
complex plane of the parameter A.. The singularities 
of the integrand are poles which may appear only at 
the points 

1 = -A. + n, 1 = A. - n - 1, 

1 = A. + n, I = -A. - n - 1, (6.4) 

1 = E + n, 1 = -E - n - 1, 

where n indicates an arbitrary nonnegative integer. 
Note that some of the poles move when A. varies, and 
it is possible that some of them cross the integration 
path. In order to avoid this, the integration path has 
to be deformed as shown in Fig. 1, where the new 
path has been indicated by C. 

In the following we do not consider integral values 
of U. Then the poles of the integrand given by Eq. 
(6.4) can never coincide and the deformation of the 
integration path is feasible. Moreover, with this 
restriction the functions appearing in Eq. (6.2) can be 
continued analytically in the complex A. plane by 
means of Eq. (5.19). 

If Re A. becomes larger than 1, the poles at 1= 
A. - 1 - n and I = - A. + n with 0 ~ n ~ N(A. - i) 
cross the path C_!. Here and in the following we 
indicate by N(a) the largest integer smaller than Re a. 
If we want to obtain the analytic continuation of the 
integral in Eq. (6.3), we have to use the deformed 
integration path C shown in Fig. 1. Alternatively we 
can use the integration path C_! and take into account 
the contributions of the poles. 

Owing to the symmetry property of the integrand, 
the contributions of the poles at I = A. - 1 - nand 
at 1 = - A. + n are the same. The residues can be 
obtained from Eq. (5.20) and we have, taking Eq. (5.8) 
into account 

lim (1 - A. + n + 1) 2 K~·-.i(E, -I - 1, p;j) 
l~.i-n-l p 

x K;';..i(E, I, p;j') 
= K~·-.i(E, -A. + n, + ;j)Wff~?' + (_I)i-m+i'-m' 

X K-:;;.M·-.i(E, -A. + n, + ;j)Wj.~·.i·n 
= vt!..inwf!~?', (6.5) 

where 

vt!..in = K~,-.i(E, -A. + n, +;j) + (_I)i-m+n 

X K-:;;.M·-'{E, -it + n, + ;j). (6.6) 
The factorization (6.5) of the residues has been 
obtained by means of the identity (5.24). 



                                                                                                                                    

REPRESENTATIONS OF THE GROUP SL(2C) 1261 

By means of this procedure, the analytic continuation 
of Eq. (6.3) can be written as 

~:!.~'m.(v) = ~ z r K;";·-J.(E, -I - 1, p;j) 
21 p Jc-t 

x D<';'m,(v)K;"f,J.(E, I, p;j')rJ(E, I) dl 
NU-!) 

+ 27T Z 'f](E, A. - n - 1)v~n wf:,'! 
n=O 

(6.7) 

If Re A. < -t, the poles at I = A. + n and I = -A. -
n - 1 with n = 0,1, ... ,N( -A. - t) cross the path 
C_!. From Eqs. (5.5) and (6.5) we have, after some 
calculations, 

lim (I + A. + n + 1) Z K;";·-J.(E, -I - 1, p;j) 
!-+-J.-n-l p 

X K M'«E 1 p']") = u.<+nu-.<-n-1wM.-J..nvM.-J..n 
m' " , m m' 3m ,'m' 

(6.8) 

and the contribution of the poles takes the form 

N(-J.-!) 

27T Z 'f](E, A + n)W:!.·-.<·nv;¥,;,-;-J.·nD:;.~n(v), (6.9) 
n=O 

where we have used Eq. (3.11). 
From Eqs. (5.2) and (6.6) we have 

v-:-M.J..n = (_I)M-mvM.<n (6.10) 
3,-m 3m , 

and from Eq. (6.6) we obtain directly 

(6.11) 

Note the analogy between Eqs. (6.10), (6.11), and 
Eqs. (5.23), (5.24). 

The sum of the pole contributions in Eqs. (6.7) and 
(6.9) can be considered as an asymptotic approxima­
tion of the function ~%'1'm'(v) when ~ ~ 00 [here and 
in the following we assume that the elements v of 
SU(1, 1) are parametrized by means of Eq. (3.2)]. In 
fact, both the integral along C_! and the contribution 
~(v) of the representations of the discrete classes 
decrease for ~ ~ 00 as exp (-E) or faster. 

In order to obtain a complete asymptotic expansion, 
we have to modify Eq. (6.3) taking into account the 
identity 

K;";·-J.(E, -I - 1, p;j)D<';'m,(v)K;"f,J.(E, I, p;j') 

= K;";·-J.(E, -I - 1, p;j)Al",m.(v)K;"f,J.(E, I, p;j') 

+ K;";·-J.(E, I, p;j)A-;;';;;.~(v)K;"f,\E, -I - 1, p;j'), 

(6.12) 

which easily can be obtained from Eqs. (3.13), (3.18), 
and (5.5). The two terms in the right-hand side of 
Eq. (6.12) give the same contribution to the integral 

of Eq. (6.3), and therefore we have 

~:!.~'m'(v) = -i Z r K;";·-J.(E, I, p;j)A-;;';;;'~(v) 
p Jc 

x K;"f,\E, -I - 1, p; j')'f](E, 1) dl + ~(v) 
= -i 1 r K;";·-J.(E, -I - 1, p;j) 

p Jc 
x uI",A-;;';;;'~(V)U;;;.I,-lK;"f,J.(E, 1, p;j') 

X 'f](E, I) dl + ~(v). (6.13) 

Now we shift the integration path C on the left and 
take into account the contribution of the poles 
crossed by the path. As it is (see Appendix C) 

r K;";·-J.(E, 1, p;j)A-;;';;;.~(v)K;"f,J.(E, -1 - 1, p;j') 
JCL 

X 'f](E, I) dl = O(exp Ln. (6.14) 

If we let L ~ - 00, the contribution of the poles gives 
an asymptotic series for the left-hand side of Eq. 
(6.13). We have to consider the poles at! = A. - n - 1, 
at I = -A - n - 1, and at I = -E - n - 1. We call 
~'(v) the contribution of the poles of the last kind. 
The residues of the poles of the first two kinds are 
given by Eqs. (6.5) and (6.8), and we have 

00 

~%.~'m'(v) "" 27T Z 'f](E, A. - n - 1)V:!.J.n 
n=O 

x w;¥,:?'u:;n-lA;;;.~n(v)u;;;.~+n 
00 

+ 27T Z 'f](E, A + n)W!·-J.·nV;¥,;,-;-J.·n 
n=O 

x A:';;''!(v) + ~(v) + ~'(v). (6.15) 

The left-hand side of this equation can be decomposed 
by means of Eq. (2.30). From Eqs. (3.14) and (A12), 
we can see, after some calculations, that the functions 
A%.1'm'(v), A~+,:,(v), Aj~;;;/(v), A;;;.~,n(v) can be ex­
panded for v = a.g) in asymptotic series of the type 

00 

Z {Ji exp (lXi~)' (6.16) 
i=l 

where for the first two functions the coefficients lXi are 
of the type -A + v (v is an integer), and for the last 
two functions the coefficients lXi are of the type A + v. 
In a similar way, using Eq. (3.16), we can expand the 
functions ~(v) and ~'(v) in an asymptotic series of the 
type (6.16) where the coefficients lXi are of the type 
M+v. 

As we have assumed that 2A. is not integral, the 
coefficients (Xi of the three forms described above can 
never coincide. In an expansion of the type (6.16), the 
coefficients are unequivocally determined, and there­
fore we can split Eq. (6.15) into three different equa­
tions, collecting the terms which have asymptotic 
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expansions with coefficients lXi of the same type. In 
such a way we obtain 

~(v) + ~'(v) = 0, (6.17) 
00 

A;"!.1'm'(v)"", 271" L 'fJ(E, ,t + n) 
n=O 

X w;"!,'-).,n V j¥,;.-;).,n A!;;''!( v), (6.18) 
C\I ¥). d.-M:'-).(v)'l1-:-M,-). 
w, ~ jm3'm' " 

00 

,..., 271" L 'fJ( E, ,t - n - 1) vlJI,;n Wr.:.,: 
n=O 

x u!.-n-lA;,~n(v)u;,~+n. (6.19) 

Of course, Eq. (6.17) could be proved directly by 
means of Eqs. (3.16) and (5.19). We have not tried 
to prove the convergence of the series appearing in 
Eqs. (6.18) and (6.19). For the physical applications 
we have in mind it is only necessary to know that 
these equations represent asymptotic expansions, as 
we have proved above. 

7. DECOMPOSITION OF A "LORENTZ 
POLE CONTRIBUTION" 

It has been shown in Ref. 5 that the scattering 
amplitude at fixed momentum transfer can be con­
sidered as a function defined over a subgroup of 
SL(2C). This subgroup is homomorphic to the group 
of the Lorentz transformations which do not change 
the four-momentum transfer. If the momentum trans­
fer is a spacelike four-vector, this group isSU(I, 1); 
and if the four-momentum transfer vanishes, this 
group is SL(2C) itself. 

It has also been showns that the contribution of a 
Regge pole with factorizable residue can be written 
in the form 

f(v),..., L Pmp~,A-;;;;;.f(v), v E SU(I, 1). (7.1) 
mm' 

Following the ideas suggested in the Introduction, 
when the four-momentum transfer vanishes, we define 
a "Lorentz pole contribution" to the scattering 
amplitude [defined over SL(2C)] in the following 
way6.7: 

f(a),..., ! PimP;'m,Ai~r;n~(a), a E SL(2C). (7.2) 
#mi'm' 

A contribution of this kind can be expanded into 
Regge pole contributions of the form (7.1) by means 
of Eq. (6.18) in the following way: 

where 

00 

f(v)"",! ! P!:) p;!!')A;,~n(v), (7.3) 
n==Omm' 

,(,.) - ~ , V-M .)..,. 
Pm' - "'" Pi'm' i'm' • 

i' 

(7.4) 

In conclusion, we see that a Lorentz pole contri­
bution with factorizable residue can be decomposed 
into a series of Regge pole contributions, each with 
factorizable residue and with In = ,t - 1 - n, n = 0, 
1,2' . '. 

The factorizability of the residues of the generated 
Regge poles is not a trivial result and is a consequence 
of the identity (5.24). 

Of course, one of the sums in Eq. (7.4) could give 
a vanishing result and the corresponding pole contri­
bution could disappear. 

Note added in proof" Results similar to those 
obtained in the present paper have been obtained 
independently by S. Strom [Arkiv Fysik 34, 215 
(1967)] by means of the infinitesimal method. 

APPENDIX A. PROPERTIES OF THE 
FUNCTIONS d!{;7,m 

The matrix elements of the irreducible representa­
tions of SL(2C) have been calculated by Strom.22•23 

Here we give a short treatment consistent with the 
notations and the phase conventions used in the text. 

In order to calculate the matrix element (2.27), we 
have to find the matrix [ua.(Dlo. It is easy to verify 
directly that, if u is given by Eq. (2.3), we can write 

[ua'(Dlo = u.(p.)ull(O')u.('lI), (AI) 
where 

tan to' = exp 'tan to. (A2) 
Moreover it is the case that 

p[ua.W(ua.(m;l] = exp (-to cos to(cos to'rl
, 

(A3) 
and from Eqs. (2.18), (2.20), and (2.22) we have 

i)~'m,(a.(m 

= r <l>j!!(u)[i)M\a.(m<l>j¥m'](u) du 
)SU2 

= (2j + 1)t(2j' + 1)t(471")-2 

x l4""dp. f""d'll exp [i(m - m')'lI] 

x exp [(1 - ,tm(cos to)2IJ.-ll(cos to,)2(1-).)rkm(O) 

X r~m'(O') sin 0 dO = t5mm, d~:W, (A4) 
where 

d!{;1,<') = (2j + 1)t(2j' + l)t 

X So"" exp [(1 - Am ( cos ~r)'-l) 

( 
0')2(1-)') __ 

X cos "2 rMm(O) r~m(O') t sin 0 dO. 

II S. Strom. Arkiv Fysik 29, 467 (1965). 
18 S. Strom, Arkiv Fysik 33, 465 (1967). 

(A5) 
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We use for the matrix elements of the representa­
tions of SU(2) the expressionl 9.21 

r;"m'(O) = [(j + m)! (j - m)! (j + m')! (j - m,)!]i 

x!' (_l)«+m-m'{(j - m - ~)! 
« 

X (j + m' - ~)! (~ + m - m')! ~!tl 

( 
0)2i+m'-m-2"(: 0)m-m'+2" 

X cos- sm-
2 2 

(A6) 

These functions have the symmetry properties 

r;"m.(O) = r;"m'(O) = r~m,,_m(O) = (_l)m-m' r;"'m(O). 

(A7) 
Inserting these relations in Eq. (AS), we obtain the 
following properties of the functions d!ii'(~): 

d~1,a) = d~1,a), 
d~1·(~) = d=~:li'm 

= d'fl;fu·(O. 
(AS) 

Ifwe use the expression (A7) for the functions r!.m.(O), 
the integral (AS) can be evaluated in terms of ele­
mentary functions by means of the following change 
of variable: 

x = exp ( - O( cos to)2( cos to')-2, 

(cos !O')2 = [x-1 - exp (- O1[exp ~ - exp (-0l-1, 
(cos to)2 = [exp ~ - x][exp { - exp (-01-1, 

! sin 0 dO = [exp { - exp ( - 0l-1 dx. (A9) 

In this we may obtain 

d~1,({) = akma~m[exp { - exp (_O]-H'-l 

X !'(_l)'z+«'[(j - M - ~)! 
IZIZ' 

X (j + m - ~)! (~ + M - m)!~! 

X (j'- M - ~')! (j' + m - ~')! (~' + M - m)! ~'Wl 

X exp [{(M - m - j' + 2~'») 

i
exp

, '" 1 '+ "+ 11" , X x"-' - (exp { - x)' , m- ~-,,-a 

exp (-{) 

X [x - exp (_OlM-m+a+«' dx, (AlO) 

where aiw-m is given by Eq. (5.13). We can expand the 
integrand in Eq. (AIO) by means of the binomial 
formula and perform the integration term by term. 
Ifwe separate the contributions of the upper and lower 
integration limits, we obtain 

d~1,({) = a~1,(O + (-ly-j'a;.~!r'-(n, (All) 
where 

M'< (Y) A i A l' [Y (nri-i'-l amJi, '" = uMmuMm exp '" - exp -'oj 

X !' (_lY'-m+s(j + j' + m - M - ~ - ~')! 
!X!X',.s . 

X (M - m + IX + IX')! 

X [(j - M - ~)! (j + m - ~)! (~ + M - m)!~! 

X (j' - M - ~')! (j' + m - ~')! 

X (IX' + M - m)! ~'! (r - ~)! (~ + j' - M - s - r)! 

X (j + j' + m - M - ~' - r)! 

X (2M - m - j' + ~' + r + s)Wl(M + s - A)-l 

X exp [{(-A + j + j' - M + m - 2r)J. (Al2) 

If we substitute Eq. (All) into the equation 

d;'~:-'«{) = cu,jM.-.< d~1.mcu,f,'" (A 13) 

which is a simplified form of Eq. (2.29), and identify 
terms which have a similar dependence on " we obtain 

(-1)H'a~~;(') = cu,jM·-'<a~1,({)cu,f,'<. (AI4) 

Therefore Eq. (All) can also be written in the form 

d~1,m = a~1,m + 'U)j'f'<a;.~:-.<mcu,j,M,-;', (A1S) 

from which Eq. (2.30) follows immediately. In a 
similar way, if we substitute Eq. (All) into Eqs. (AS) 
we obtain 

a~1,(') = a~1,(n, 
a~1,a) = a=:f./ra) = aAi'ii'({)' 

(A16) 

From Eq. (AI2) we can derive, after some calcula­
tions, an asymptotic expression for the functions 

a~iH')' 
If M ~ m, 

a~1,a) = (2j + l)t(2j' + l)t 

X [(j - m)! (j + M)! (j' - m)! (j' + M)!Ji 
(j + m)! (j - M)! (j' + m)! (j' - M)! 

X (_l)i'+m[A - m + l]i'+m 

(M - m)! [-A - MJi'+M+1 

X exp [{(-A - I - M + m)][l + O(exp (-2,»J. 

(AI7) 

If we perform the limit { ~ 00 in Eq. (A14) by means 
of Eq. (AI7), we can compute the coefficients cu,j'f'<. 
The result is 

cu,¥.!. = IT s - A . (A1S) 
, 8=IM! S + A 

APPENDIX B. CALCULATION OF THE 
FUNCTIONS K!1){€, t. +;j) 

In order to evaluate the integrals (4.25) and (5.9) we 
perform the following change of variable: 

(sinh g)2 = z, t sinh, d, = dz, 

(cos °if = 11: ;z' (Sin 0;)2 = 1 : 2z' (Bl) 

The functions d!.m.( {) and a!nm'( 0 can be written by 
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means of the Meijer G functions using the Eqs. (5.6.24) 

and (5.3.9) of Ref. 20. The result is 

d!nm,a> = [rem - l)r(m' + I + 1)]-1 

X C ~ z)(m+m'l/2G~:(z 1-:' '~, 1) 
(m ~ m'), (B2) 

a!,.m'(') = [-2 cos'lT(l- m')r(m -l)r(m' + 1 + l)r1 

x C ~ z)(m+m'l/2G:i( Z I-"'~' l~, 1). (B3) 

If we use for the functions r!..m,(8) the expression 
(A6), the integral (4.25) becomes, for m ~ M21, 

K![A(£, I, + ;j) = ~km[r(m - l)r(M + [ + 1)]-1 

x!' (-I)'"[(j - M - ot)! (j + m - ot)! 

" 
X (ot + M - m)! ot!]-IL"'(1 + 2z)A-Hz,,-m 

X (1 + Z)m+i-«G~:(z I~: 1 ~ 1) dz, (B4) 

where ~km is given by Eq. (5.13). If we expand the 
term (1 + Z)m+i-" by means ofthe binomial formula, 
we obtain 

K![A(£, I, +;j) 

= ~km[r(m - [)reM + I + 1)]-1 !' (_1)"2A- H 

"fJ 
X [(j - M - ot)! (ot + M - m)! ot! P! 

X (m + j - ot - p)!]-lL"'(Z + l)A-Hz,,+fJ-m 

X G~~( z /-",:' 1 ~ 1) dz. (B5) 

This integration can be performed by means of the 
formula (20.5.4) of Ref. 24, and the result, after the 
change P -+ m + j - ot - P in the summation index, 

is given in Eq. (5.I2). The result (5.15) is obtained in 
a completely similar way. 

From the general definition of the G function given 
by Eq. (5.3.1) of Ref. 20, we have 

G~~(! I P - j, -1, 1+ 1) 
2P-A, m, M 

= ~ j+i"'r(p _ 1.- s)r(m - s)r(1 - P + j + s) 
2'1Tl -ioo 

X r(1 + 1 + s)r( -1 + s)[r(1 - M + s)r12-' ds, 
(B6) 

where the integration path leaves the poles of 

rep - 1.- s)r(m - s) (B7) 

on the right and the poles of 

r(1 + I + s)r( -/ + s) (BS) 

on the left. The poles of r(1 - P + j + s) are 
canceled by the poles of r(1 - M + s). 

The singularities in the G function arise when the 
integration path is pinched by two of the above­
mentioned poles. This happens for 

m + 1 + 1= -n, 
m -1= -n, 

P + I - A + 1 = -n, 
P - A -1= -n, 

(B9) 

where n is a nonnegative integer. The first two con­
ditions give rise to poles which are canceled by the 
poles of the r functions appearing in Eq. (5.12), and 
the last two conditions give rise to the poles described 
by Eq. (5.14). 

The discussion of the singularities of the function 
(5.15) can be performed in a similar way. 

In order to determine the residues W::;"An defined by 
Eq. (5.20), we use Eq. (5.3.5) of Ref. 20 and write Eq. 
(5.12) in the form 

K![A(£, I, + ;j) = ~km!' (-1)'"2fJ- H [(j - M - ot)! (ot + M - m)! (j + m - ot - P)! ot! PW1 

afJ 

X {2A
-

pr(A + m - P)r(-A + 1 + P + 1)r(-A - 1 + P) 
r(l + M + l)r(m -l)r(-A - M + P + 1) 

X F32[ -A + j + 1, -A + 1+ P + 1, -A + 1 + P;] 
-A. - m + P + 1, -A - M + P + 1; i 

+ 2-mr(-A - m + p)r(m + j - P + 1)r(m + 1 + 1) 

r(l + M + 1)r(m - M + 1)r( -A + j + 1) 

X FS2[ m + j - P + 1, m + 1 + 1, m - I;]}. 
A + m - P + 1, m - M + I; i 

(BIO) 

14 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms (McGraw-Hill Book Company, New 
York, 1954), Vol. 2. 
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We can easily see that the only singularity for 1 ~ A - n - 1 is due to the function r( -A + 1 + 
P + 1). Therefore, using the formula 

(_1)n 
lim (z + n)r(z) = -- , 
z~-n n! 

(Bll) 

we have 

w~).n = ~1m I' (_I)«+II+n2).-i-l[U - M - oc)! (oc + M - m)! (j + m - oc - P)! oct P! (n - P)!]-l 
all 

X rcA + m - P)r( -2A + n + P + 1) 

rCA - n + M)r(m - A + n + l)r( -A - M + P + 1) 

XFS2[ -A+j+1, p-n, -2A+P+n+1;]. 
-A - m + P + 1, -A - M + P + 1; t 

(B12) 

As P - n is a nonpositive integer, the generalized 
hypergeometric series is a finite sum. If we write it 
explicitly, after some calculations using well-known 
properties of the r functions, we obtain Eq. (5.22). 

At last we want to study the behavior of the function 
K!).(€,/o + iI', + ;j) when I' ~ ± 00 for fixed values 
of the other parameters. We use for the G functions 
which appear in Eq. (5.12) the integral representation 
(B6), and we shift the integration path on the left 
taking into account the contributions of the poles 
which are crossed. The new integration path is along 
the line Re S = So where So < P - A, SO < m. 

From the Stirling formula [Ref. 20, Eq. (1.18.6)], 
we see that for real a and for x ~ ± 00 

W(a + ix)1 "" (27T)llxla-l exp (-t7T Ixl). (BI3) 

It follows that a function ({J(a) exists with the property 

Ir(a + ix)1 ~ ({J(a)(l + Ixl)a-l exp (-t7T Ixl). (B14) 

From this equation, if So < -1/0 + tl, after some 
calculation we have 

Ir(1 + So + 10 + i(s' + 1'»r(so - 10 + i(s' - 1'»1 
~ ({J(so + 'o)({J(so - '0) 121'1110+ll+s0 exp (-7T 11'1). 

(B15) 
This inequality can be used to find an upper bound 
for the integral along the shifted path. We obtain 
easily that this integral is of the order 

O[lI'lllo+il+oo exp (-7T 11'1)]. 

If we explicitly evaluate the contributions of the 
poles, we see by means ofEq. (B13) that they decrease 
more rapidly than exp (-27T 11'1), and are therefore 
dominated by the contribution of the integral along 
the shifted path. As So can be chosen arbitrarily 
negative, we see that the G function is of the order 
0(11'1 a exp [-7T 11'1)], where oc is arbitrary. 

If we insert this result into Eq. (5.12) and again use 
Eq. (B13), we see that the function K!).(€,/o + il', 
+ ; j) decreases faster than any negative- power of 
11'1. 

APPENDIX C. ASYMPTOTIC PROPERTIES 
OF AN INTEGRAL 

In order to prove Eq. (6.14) we need the following 
inequality: 

IA!"m,(v)1 = la!,.m,WI 
~ Itan 7T(1 + m) cot 7T(Re 1 + m)a!~!ml 

(Re I > 1 - m). (C1) 

This inequality is an immediate consequence of the 
following integral representation, which holds for 
Re I> 1 - m and is a consequence of Eq. (2.1.10) of 
Ref. 20. 

a!"m,m = (27T )-l( -1 )m+m' tan 7T(l + m)( sinh to-2
1-2 

X (tanh tom+m'ftz-m(1 - t)Hm 

X [1 + t(sinh E)-2]-I-1+m' dt. (C2) 
From Eq. (CI) we see that the integral (6.14) is 
smaller in modulus, then 

la;.~l(Ocot 7T(L + m)lf:a)a)IK~'-).(€' L + ii', p;j)1 

X IK:).(€, -L - 1 - il', p;j')1 '12L + 2il' + 11 dl'. 

(C3) 
As from Eq. (3.14), we have that 

a;fm-;la) = O(exp (-L{». 

Eq. (6.14) is proved if we show that the integral in 
Eq. (C3) converges. But this follows from the fact 
proved in the Appendix B that 

IK!).(€, 10 + il', p;j)1 
decreases faster than any power of 11'1. 
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Mathematical Methods for Evaluating Second-Order Three-Body 
Interactions between Atoms or Ions with Gaussian Wavefunctions 

SmMSHON ZIMERlNG 

Battelle Institute, Advanced Studies Center, Geneva, Switzerland 

(Received 7 July 1966) 

It is shown that the integrals occurring in the expression for the interaction energy between three 
atoms or ions in second-order perturbation theory with Gaussian wavefunctions can be reduced to 
single integrals of three different types. The first two types are erf x and erf ix functions, whereas the 
third type is a single integral of the error function which is easily evaluated by electronic computation. 

INTRODUCTION 

I T is well known that Gaussian-type electron wave­
functions are particularly simple for the evaluation 

of multicenter integrals occurring in the energy ex­
pressions for atomic and molecular systems via a 
variational method. Equivalently, first-order pertur­
bation energies can be equally and readily evaluated on 
the basis of such Gaussian functions. 

In a previous publication,1 we have shown that 
Gaussian-type wavefunctions can also be utilized in 
second-order perturbation theory for interacting sys­
tems of atoms or ions, in the evaluation of both 
direct and exchange integrals. However, the methods 
developed were essentially based on asymptotic 
expansions, which are sufficiently accurate only if the 
distances between the atoms are relatively large. This 
condition is fulfilled in the problem of evaluating the 
three-atom energy in rare-gas crystals; on the other 
hand, they cannot be applied to ionic solids, since in 
this case the distances are much smaller because of 
electrostatic compression of the crystals (Madelung 
energy). 

For the evaluation of three-ion crystal energies it is 
necessary, therefore, to avoid asymptotic expansions of 
the integrals. In this paper we present general methods 
for evaluating three-atom and three-ion interaction 
energies in second-order perturbation theory, valid 
for all distances between the atoms or ions. It appears 
that all expressions can be written as linear combina­
tions of three types of integrals; two of these are the 
well-known erf x and erf ix functions, whereas the 
third type can be readily evaluated by electronic 
computation. In this analysis we will consider the 
general case of atoms or ions of two different sizes, 
i.e., the inverse widths of their Gaussian wavefunctions 
are generally different. 

1 s. Zimering, J. Math. Phys. 6, 336 (1965). 

TYPES OF INTEGRALS OCCURRING IN 
THE EXPRESSION FOR THE SECOND­

ORDER INTERACTION ENERGY 

We consider a triplet of atoms or ions (abc) and 
three electrons, denoted by 1, 2, 3. The distances 
between the atoms are denoted by Rab , that between the 
electrons by r12, and those between nuclei and electrons 
by ral , etc. 

We introduce the following notations: rpa' rpb, and 
rpc are the ground-state wavefunctions for atoms a, 
b, and c, respectively, 

rpi1) = (PaIn!)! exp (-P!r!1/2) etc., 

where Pa is the Gaussian parameter for atom a, etc. 
H~b is the electrostatic interaction (perturbation 

Hamiltonian) between atoms a and b. 

~ab = I f{Jaf{Jb dT is the overlap integral between a and b, 

~!bC = ~!b + ~!c + ~~c - 2~ab~aAbc, 
'¥ is the zero-order total wavefunction (Slater deter­
minant), 

'¥ = [3! (1 - ~!t,c)J-! det {rpa(1)f{Jb(2)f{J.(3)} (1) 
and 

'¥(ab) = [2! (1 - ~:b)J-! det {rpa(1)rpb(2)}. 

We have, for the first-order perturbation energy, 

<H~b.) = <H~b) + <H~c) + <H~c), 
where 

(H~b> = III '¥* H~b'¥ dT1 dr2 drs· 

On the other hand, the sum of pair interactions for 
the triplet (abc) is, in first order, given by 

with 
(H~bc)O = <H~b)O + <H~c)o + <H~c)o, 

1266 
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The expression for the second-order energy is 

E2 = L (H~bC)oxCH~bC)y.o/(Eo - Ey') 
y'"o 

= -{(H~~c) - (H~bc)2}/Eav, 

where X numbers the excited states of the system 
(energy Ey') and Eav is defined by the averaging 
procedure. On the other hand, the second-order total 
pair energy is given by 

E~O) = -(l/Eav){ (H~~)o - (H~b)~ + [Cae), (be)]), 

where [Cae), (be)] signifies that the corresponding 
expressions for the pairs (ae) and (be) are to be added. 
Since (H:bC ) and (H:bC)o can be obtained readily from 
first-order calculations, I the only difficulty lies in the 
evaluation of (H::c)' defined by 

(H~~c) = fff 'Y*H~~c'Y dTI dT2 dTS. 

We consider the general case where the interacting 
atoms or ions are represented by two different 
Gaussian parameters (3 and (3'. 

By substituting the expression for H:bC into (H::c)' 

we find, using (I), that this quantity is a linear combi­
nation of the following seven types of volume integrals 
(some of them multiplied by overlap integrals): 

J = (!!:-.)Sf exp ( -oc2r~I) dT , (2) 
I nt ()2 I ocrBI 

J2 = ,.!( oc
t
\6ffexp -[oc2(r~I2+ 'r~2)]dTldT2' (3) 

n J (ocr12) 

J7 = ,i1]i(~t) 
X fff exp [-oc2(r~I + 'r~2 + 1]r~s)] dTI dT2 dTa. (8) 

ocr12ocr13 

In Eqs. (2)-(8),dT denotes the element of volume, r Al 
the distance between a fixed point A on the triangle 
(abc) and electron 1 [for example, A may be the 
middle of the side (be)]; oc takes the values (3, (3', and 

(3[t(1 + (3'21 (32)]t and , and 1] are different ratios 
between these last parameters. These seven integrals 
are generalizations of Eqs. (41)-(50) given in Ref. 
1 for oc = (3 = (3'. 

Upon inspection of the volume integrals JI to J7 , 

it appears possible to reduce them to the three follow­
ing basic integrals: 

A(X) = - e-X eU du, 2 "LX" 
X 0 

B(X) = _2_ (X e-U" du = erf X , 
xnt Jo X 

and 

C«XI' 1]), (X2' '), Xs) = 
2 i<"'+1)! e-x ."z2 erf([P(z)]![1]/l + fJ(l - Z2)]!) 
-- dz nt 0 [P(z)]! ' 

(9) 
where 

P(z) = X~ + (Xi - x; - X~)Z2 + X;z', 

" 1] > 0 and Xl' X 2 , Xs are dimensionless quantities 
proportional to the lengths of the three sides of the 
triangle specified by Xl' X 2 , Xs. 

We note that P(z) > 0 (1 ~ z ~ 0) for every trian­
gular configuration except when <}:(XI' X 2) = O. In 
particular, when Xl = X 2 and Xs = 0, we have 
P(l) = 0 and 

C«X, (0), (X, (0),0) = A(X). 

We note also that in many cases the function 
C«XI' 1]), (X2' n, Xs) can be simplifiedl ; for example, 

C«X, (0), (0,1), X) = 1 - X2B2(X) + (2/n!) 

. [B(2!X) - e-x"B(X)]. 

Finally we remark that A(O) = 2, B(O) = 2n-t . 
The relations between the volume integrals J1 - J7 

and the basic integrals A to C are as follows: 

JI = A(ocRAB), (10) 

J 2 = -' A( (-' )!OCRAB) , 
,+1 {+1 

(11) 

Js = B(ocRAB), (12) 

J, = (, ll)lB( (, ll)lOCRAB)' (13) 

J" = C«ocRBO' (0), (ocRAO' (0), ocRAB), (14) 

J6 = C«ocRBO' (0), (ocRAO' '), ocRAB), (15) 

J7 = C«ocRBO' 1]), (OCRAO' '), ocRAB)· (16) 
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DERIVATION OF EQS. (10~(16) 

Equations (10)-(13) follow by using the formulas 

(17) 

and 

(18) 

and by integrating with respect to the coordinates of 
electrons 1 and 2. We sketch the derivation of J2 , 

which is the most complicated one. Taking Cartesian 
coordinates (x, y, z) for electron 1 and (u, v, w) for 
electron 2 and using (17), we obtain 

X exp [_1X2(X2 + l + Z2)] 

X exp [_'1X2{U2 + (v - RAB)2 + w2}] 

X exp [-tIX2{(X - U)2 + (y - V)2 + (z - W)2)] 

X dx dy dz du dv dW} dt. 

Integration with respect to x, y, z, U, v, and W gives 

J 2 = ,i exp ---[ 
R*2 J 

(I + ') 

1<10 exp ['R*2/(1 + 0(' + t + tm d 
x i t, 

o (' + t + t') 
(19) 

where R* = ,lIXRAB . :Equation (11) is obtained by 
putting in (19), 

For the derivation of Eqs. (14)-(16), we sketch the 
first and the last ones, since the derivation of J6 is very 
similar to that of J6 • 

Let the Cartesian coordinates of the vertices A, B, 
e be (b1 , b2 , 0), (a, 0, 0), and (0, 0, 0), respectively, 
and that of electron 1 be (x, y, z). Then, using (18), 
we obtain 

J 6 = 4lXsn-i 

x L<1O £<10 {(1: exp {_1X2[X2 + (x - a)2u2 

+ (x - b1)2t2
]) dX) 

x (1: exp {-1X2[l(1 + u2) + (y - b2)2t2]) dY) 

x (1: exp [_1X2z2(1 + t2 + u~] dZ) } du dt. 

By integration with respect to x, y, and z we find 

J 6 = - J(t, u) dt du, 4l<1Ol<1O 
n 0 0 

(20) 

where 

exp [_(a2t2 + b2u2 + c2t2u2)/(1 + t2 + u2
)] 

J(t, u) = i 
(1 + t2 + u2

) 

and 
a = IXRBO ' b = IXRAO ' C = IXRAB . 

By using the substitution 

{ 
P(u) t2 }l 

W = u2 + 1 1 + t2 + u2 ' 
where 

P(u) = a2(u2 + I) - b2u2 + C2U2(U2 + I), 
we obtain 

(1 + t2 + U2)-~ dt = {(u2 + I)P(u)}-l dw; 

exp [-(a2t2 + b2u2 + c2t2U2)/(l + t2 + u2)] 

(21) 

(22) 

= exp {-b2u2/(l + u2)} exp (-w2) 
and, finally, 

J5 = 2n-l L<1O 

exp {_b2[u 2/(1 + u2)]} erf {[P(u)/(l + u2)]l} 
x 1 du. 

[(u 2 + l)P(u)] 
(23) 

Equation (14) is obtained from (23) by the substitu-· 
tion 

z = {u2/(1 + u2)}t. (24) 

For the derivation of J7 we use the formula 

erf r = 2n-l [1 e-N dt. (25) 
r Jo 

Let, again, the Cartesian coordinates of the vertices 
A, B, e be (b1 , b2 , 0), (a, 0, 0), (0,0,0), respectively, 
and that of electron I be (x, y, z). Selecting for elec­
trons 2 and 3 polar coordinates u = r A2' IX = 1: I A2 
and w = rBS, P = 1:IB3, respectively, we obtain 

J7 = J7{(IXRBO , 'f), (IXRAO ' 0, IXRAB) = 41X7n-i ,i'f)i 

x 1: 1: 1: {exp [_1X2(X2 + l + Z2)] 

[ 
[<1Oi1 u2e-\",a,,1 dm du J 

X Jo -1 (r~l1 + u2 - 2r A1um)l 

X [[<1Oi
1 

w
2
e-"",I

W

" dn dw tJ} dx dy dz, 
Jo -1 (r~l + w2 

- 2rBlwn) 

where m = cos IX and n = cos p. 
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By putting x = {locu and using the formulal 

[00 [1 x2e-~1 dm dx = II! erf R , 

Jo J-l (R2 + xl - 2Rxm)l 2R 

we obtain 

J 7 = oca{!rJ!n-il: l: l: [exp(-ocllr~l) 

erf({locrAl) erf(rJ!ocrBl)] d d d (26) 
x! 1 x Y z, 

{ ocr Al rJ ocrBl 
where 

r Al = {(x - bl)1I + (y - bll)1I + Zll}!, 

rBl = {(x - a)1I + yll + Zll}!, 
and 

rOl = {XII + yll + zll}l. 

Further, using (25) and integrating in (26) with 
respect to x, y, and z, it is found that 

4 J'i i"i J7 = II J(t, u) dt du, 
u-o t-O 

(27) 

with/(t, u) defined by (21). 
The formula (16) follows now from (27), by using 

the substitutions (22) and (24). 

ASYMPTOTIC EXPANSIONS FOR INTEGRALS 
A, B, AND C 

In the previous sections we have given analytical 
expressions for the integrals A, B, and C occurring in 
the evaluation of three-atom or three-ion interactions. 
Values for the integrals A and B are available in the 
form of tables, whereas C must be evaluated by elec­
tronic computation. The computation of C can be 
simplified considerably for large values of Xl' XII' Xa 
(~2.5) by using asymptotic series expansions. We 
here give the expansions used, including for complete­
ness also the corresponding series for the integrals 
A and B, and discuss briefly their derivation. The 

asymptotic series expansions are 

A(X) = 1. + _1_ + 1 . 3 + ~ + ... 
Xl 2X' 4X6 8X8 

= f(2n - 3)!! + O(X-2N-~ 
n-l 2n- l Xlln 

' 

1 e-
xl 

( 1 1 . 3 ) 
X - B(X) = IIlX2 1 - 2X2 + (2X2)1I - ... 

= e-
xl 

(f(-I)n-l(2n - 3)!! + O(X-2N») 
IIlXII n-l (2xlI)n-l 

[where (-I)!! = 1], and 

C«Xl' rJ), (XI' {), Xa) 

= _1_ + cos 0 + 3(3 cos
ll 

0 - 1) 
X l X 2 2X~X: 8X~X: 

+ 15 cos 0(5 cosll 0 - 3) 
16X~X~ 

+ 105(35 cos' 0 - 30 cosll 0 + 3) 
128X~X: 

+ O(xt·X;'), (28) 

for Xl ~ XII -- 00 and 0 = -9::(Xl , XJ ~ tn. 
The first two expansions are easily established by 

applying l'Hospital's rule. For C, we consider a tri­
angular configuration for which 

Xl ~ XII and 0 ~ II/3. (29) 

We assume, moreover, that Xl and W(1 + mlX. 
are sufficiently large {i.e., Xl and W(1 + m! XII ~ 2, 5} 
and that rJ is not too small (rJ > 0,8). 

Putting 

k = Xll1(3X~ + X: - X:) = 2(1 + XII cos 0/Xl), 

f.l = 1 - (XII/Xl )1I (30) 

and 
g(z) = {z/(1 + Z2)}II(k + f.lZIl), 

we have, by definition, 

{P(z)}! = Xl (1 + z2){1 - g(z)} 
and obtain 

e-xzz.z erf{Xl(1 + z2)[(1 _ g(z» rJ ]l} 
1 + rJ(1 - z~ d (31) 

(1 + z2)[1 _ g(z)]l z. 

Since 
o ~ {z/(1 + Z2)}1I < 1, (1 > z ~ 0), 

it follows from (29) and (30) that 1 > g(z) ~ 0 
(1 > z ~ 0). Equation (28) is obtained from (31) by 
developing the function {(I + z2)[1 - g(Z)]!}-l in a by 
power series for 1 > z ~ 0, approximating foo 2n _X.I.Z d IIl(2n - I)!! z e • z = 

1 0 2n+1 x~n+1 ' 

erf {Xl (1 + z2)[(1 "- g(z» rJ II]} 1 + rJ(1 - z ) where E is of small positive value. 

(n=012"·) , " , 
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To indicate the accuracy of the third asymptotic 
expansion, we mention that, for Xl ~ X 2 = 3 and 
o ~ tn, Eq. (28) gives an accuracy of 5 x 10-5 with 
four terms. 

EVALUATION OF THE INTEGRALS A TO C 

In this paper we have shown that the evaluation 
of the second-order three-atom or three-ion energy of 
interaction can be reduced to that of calculating a 
number of volume integrals [(2)-(8)]. These integrals 
can all be expressed in terms of three basic integrals A 
to C [(10)-(16)]. Two of these last three integrals, 
A and B, can be obtained from tabulated values of 
the error function2 and of Dawson's integral3.4 

2f'" 2 e-'" 0 et dt, 

respectively. On the other hand, values of the integral 

2 National Bureau of Standards, Tables of the Error Function and 
its Derivative, Applied Math. Series 41 (U.S. Government Printing 
Office, Washington, D.C., 1954), 2nd ed. 

3 B. Lohmander and S. Rittsten, Kung!. Fysiogr. Siillsk. i Lund 
Forh. 28, 45 (1958). 

, W. Lash Miller and A. R. Gordon, J. Phys. Chem. 35, 2874 
(1931). 

JOURNAL OF MATHEMATICAL PHYSICS 

C [Eq. (9)] are not available, but these can be readily 
obtained by electronic computation. 

It should be noted that, compared with our previous 
analysis of second-order three-body interactions,1.5 
the present results constitute a considerable simpli­
fication. In particular, Eqs. (10)-(16) are valid for 
the whole range of triangular dimensions, whereas the 
asymptotic expansions were only applicable in the 
range of large dimensions (in terms of the Gaussian 
parameter {3 and the nearest-neighbor distance R in a 
solid, this range of validity is (3R ~ 2). The latter 
limiting case applies for rare-gas crystals. In ionic 
crystals, however, {3R is considerably smaller because 
of electrostatic compression.6 
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Several theorems are proved concerning the asymptotic behavior of Stieltjes transforms as Izl 
approaches infinity, in a sector of the complex z plane which does not include the cut in the transform. 
The asymptotic behavior of the transform is related to the asymptotic behavior, for large values of the 
argument, of the function whose transform is taken. 

I. INTRODUCTION 

STIELTJES transforms have become familiar to 
physicists because of the extensive use of dispersion 

relations in calculations concerning elementary par­
ticle interactions. Their asymptotic properties are 
important in discussing questions such as the number 
of subtractions required in dispersion relations. Some 
results concerning these properties are given in a paper 
of Lanz and Prosperi,l which includes a list of earlier 
papers containing some discussion of such asymptotic 
properties. Lanz and Prosperi concentrate on results 

1 L. Lanz and G. M. Prosperi, Nuovo Cimento 33, 201 (1964). 

in which a bound on the transform is derived from a 
bound on the original; results in which a precise 
asymptotic behavior of the transform can be estab­
lished are mentioned only in passing. 

In this paper we prove a number of results on the 
behavior of Stieltjes transforms as Izl approaches 
infinity in a direction away from the cut in the trans­
form. These results are, in fact, shown to hold uni­
formly in a sector in the complex plane which does 
not include the cut. The proof of theorems on the 
asymptotic behavior of principal value integrals and 
their extension to hold uniformly in a sector which 
includes the cut requires further conditions on the 
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To indicate the accuracy of the third asymptotic 
expansion, we mention that, for Xl ~ X 2 = 3 and 
o ~ tn, Eq. (28) gives an accuracy of 5 x 10-5 with 
four terms. 

EVALUATION OF THE INTEGRALS A TO C 

In this paper we have shown that the evaluation 
of the second-order three-atom or three-ion energy of 
interaction can be reduced to that of calculating a 
number of volume integrals [(2)-(8)]. These integrals 
can all be expressed in terms of three basic integrals A 
to C [(10)-(16)]. Two of these last three integrals, 
A and B, can be obtained from tabulated values of 
the error function2 and of Dawson's integral3.4 

2f'" 2 e-'" 0 et dt, 

respectively. On the other hand, values of the integral 

2 National Bureau of Standards, Tables of the Error Function and 
its Derivative, Applied Math. Series 41 (U.S. Government Printing 
Office, Washington, D.C., 1954), 2nd ed. 

3 B. Lohmander and S. Rittsten, Kung!. Fysiogr. Siillsk. i Lund 
Forh. 28, 45 (1958). 

, W. Lash Miller and A. R. Gordon, J. Phys. Chem. 35, 2874 
(1931). 

JOURNAL OF MATHEMATICAL PHYSICS 

C [Eq. (9)] are not available, but these can be readily 
obtained by electronic computation. 

It should be noted that, compared with our previous 
analysis of second-order three-body interactions,1.5 
the present results constitute a considerable simpli­
fication. In particular, Eqs. (10)-(16) are valid for 
the whole range of triangular dimensions, whereas the 
asymptotic expansions were only applicable in the 
range of large dimensions (in terms of the Gaussian 
parameter {3 and the nearest-neighbor distance R in a 
solid, this range of validity is (3R ~ 2). The latter 
limiting case applies for rare-gas crystals. In ionic 
crystals, however, {3R is considerably smaller because 
of electrostatic compression.6 
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Asymptotic Behavior of Stieitjes Transforms. I 
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(Received 21 June 1966) 

Several theorems are proved concerning the asymptotic behavior of Stieltjes transforms as Izl 
approaches infinity, in a sector of the complex z plane which does not include the cut in the transform. 
The asymptotic behavior of the transform is related to the asymptotic behavior, for large values of the 
argument, of the function whose transform is taken. 

I. INTRODUCTION 

STIELTJES transforms have become familiar to 
physicists because of the extensive use of dispersion 

relations in calculations concerning elementary par­
ticle interactions. Their asymptotic properties are 
important in discussing questions such as the number 
of subtractions required in dispersion relations. Some 
results concerning these properties are given in a paper 
of Lanz and Prosperi,l which includes a list of earlier 
papers containing some discussion of such asymptotic 
properties. Lanz and Prosperi concentrate on results 

1 L. Lanz and G. M. Prosperi, Nuovo Cimento 33, 201 (1964). 

in which a bound on the transform is derived from a 
bound on the original; results in which a precise 
asymptotic behavior of the transform can be estab­
lished are mentioned only in passing. 

In this paper we prove a number of results on the 
behavior of Stieltjes transforms as Izl approaches 
infinity in a direction away from the cut in the trans­
form. These results are, in fact, shown to hold uni­
formly in a sector in the complex plane which does 
not include the cut. The proof of theorems on the 
asymptotic behavior of principal value integrals and 
their extension to hold uniformly in a sector which 
includes the cut requires further conditions on the 
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original function and involves quite different tech­
niques from those used in this paper. It is appropriate, 
therefore, to discuss these latter results in a separate 
paper. 

In Sec. II we establish our notation and write down 
conditions on the original function which will be 
assumed to hold for all the theorems and corollaries 
to be proved. We also make some preliminary trans­
formations and state two theorems which are used in 
Sec. III. Section III itself contains the proof of several 
results on the precise asymptotic behavior of Stieltjes 
transforms. Section IV repeats a result of Lanz and 
Prosperi; it is included here for completeness. 

The aim has been to put down all the results on the 
asymptotic behavior of Stieltjes transforms that we 
have been able to discover, in the hope that it may be 
of value to have these collected together. Of the results 
in Sec. III, the first theorem is an extension of a well­
known result which is given, for example, by Widder.2 
The main preliminary transformation in Sec. II 
follows Widder's proof of this result. We have not 
been able to find the other theorems and coronaries 
in Sec. III in the mathematical literature. 

We dispose of the complication at the lower end 
of the range of integration by writing 

fez) = f1(z) +f1 get) dt , 
"'0 t + z 

where 

Now 

zf1 get) dt _f1 get) dt = _f1 tg(t) dt 
->0 t + z ... o "'0 t + z 

Defining the continuous function 4>(x) by 

cP(x) =f'" get) dt (x > 0) 
.... 0 

and applying the formula for integration by parts4 

to the interval [IX, IJ, with 0 < IX < 1, we have 

(l tg(t) dt = t4>(t) 11- z r1 4>(t) dt
2 

• 

JIt. t + z t + z" JIt (t + z) 

Letting IX - 0, 

J1 tg(t) dt = 4>(1) _ z11 4>(t) dt . 

....0 t + z 1 + Z 0 (t + Z)2 
n. PRELIMINARIES 

The integral on the right side exists in the ordinary 
Let g(x) be a real valued function defined for' Riemann sense. Moreover, for Z E SlJ and fixed r :;t!:. 0, 

x ~ 0, and let g(x) belong to L([a, b]) for any choice 
of a, b with 0 < a < h. Let the limits 

f .... <Xl g(x) dx and J g(x).dx 
x ->0 

exist. (The notation is that of Titchmarsh.3) 

The Stieltjes trans/arm /(z) of the function g(x) is 
defined by 

fez) =f-+<Xl g(t) dt 
.... 0 t + z 

for z :;t!:. 0, Arg z :;t!:. '1'1'. For each such z, the manipula­
tions carried out in this section show that the integral 
defining fez) does indeed converge at both limits. 
(For every z :;t!:. 0, Arg z is unique, and -'1'1' < Arg z S 
'1'1'.) The function/(z) is an analytic function, regular 
in the whole complex plane cut along the negative 
real axis. We are going to study the behavior of/(z) as 
Izl- co in any direction for which Arg z :;t!:. '1'1'. 

Uniform convergence properties are established in 
a sector IArg zl S '1'1' -~, where 0 < 0 < '1'1'. This 
sector is henceforth denoted by Sa. 

• D. V. Widder, The Laplace Transform (Princeton University 
Press, Princeton, N.J., 1941), Chap. VIII, Theorem 3d, p. 333. In 
the notation of Sec. II, Widder's result states thatf(x) -+ 0 as x -+ 00 

through real values. 
3 E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals 

(Oxford University Press, New York, 1948), 2nd ed., pp. 9-10. 

III 4>(t) dt I < 11 14>(t)1 dt . 
z 0 (t + Z)2 - r 0 (t _ r cos 0)2 + r2 sin2 <> 

1 11 S -. 2- 1cP(t)1 dt. 
rsm <> 0 

It follows that 

It get) dt =f1 get) dtjz + o(1/lzl) 
-+0 t + z -+0 

as Izl---)oo co in any direction for which Arg z :;t!:. '1'1', 

and uniformly for z in S;, as Iz! - co. This result 
means that the theorems of Sec. III need be proved 
only for /1(Z). 

Next we write h(z) in a different form. Defining 
the continuous function '!f(x) by 

1p(x) =1-+<Xl get) dt (x ~ 1) 
'" t 

and applying the formula for integration by parts to 
the interval [I, Xl, with X> 1, we have 

(X get) dt = _ t'!f(t) IX + z (X '!f(t) dt , 

J1 t + z t + z 1 J1 (t + Z)2 

4 This holds for absolutely continuous functions and Lebesgue 
integrals. See, for example, Theorem (18.19) of E. Hewitt and K. 
Stromberg, Real and Abstract Analysis (Springer-Verlag, Berlin. 
1965). 
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Now let X - 00. Since 'P(x) - Oasx - 00, the integral 

(CO 'P(t) dt 

J1 (t + Z)2 

is absolutely convergent and 

fl(Z) = 1p(1) + Z rco 
1p(t) dt . 

1 + Z Jl (t + Z)2 

This form for !1(Z) is very convenient for proving 
the theorems of the next section. 

We now give statements of two theorems which we 
use in Sec. III. 

Theorem A: Let the complex valued function h(t, r) 
of the real variables t, r, defined for all I ~ 10 , r ~ ro, 
belong to L([lo, T]) for each T> 10 and each r ~ ro, 
and let the limit 

(-+CO h(t, r) dt 
Jto 

exist for each r ~ ro. 
Suppose that, as r - 00, 

limh(t, r) 
...... CO 

exists for each I ~ to; denote this limit function by 
hl(t). Let the convergence of h(l, r) to h1(t) be uniform 
in each interval [to, T] with T > 10 , 

Then the limits 

and 

1
-+ co 

lim h(t, r) dt 
r-+oo to 

exist and are equal if and only if, given E > 0, there 
exists T (depending on E) such that, for each t > T, 
there is a number R (depending on t) for which 

li-+
co 

h(u, r) dul < E for all r> R. 

This theorem is a simple application of a theorem 
on repeated limits given in Sec. 305 of Vol. I of 
Hobson.5 We do not use the full power of this theorem; 
in particular we are always able to find a number R 
which is independent of t. 

Theorem B: Let h(u, r) be a complex valued function 
of the real variables u, r, defined for all u ~ Uo, r ~ ro 
and belonging to L([uo, 00]) for each r ~ ro. Let 

lim h(u, r) 
"-+co 

6 E. W. Hobson, The Theory of Functions of a Real Variable and 
the Theory of Fourier's Series (Cambridge University Press, New 
York, 1927), 3rd ed., Vol. I. 

exist almost everywhere on [Uo, 00]. Suppose that 
there exists a (real valued) function M(u) belonging 
to L([uo, 00]) such that Ih(u, r)1 S M(u) almost every­
where on [uo, ooJ for each r ~ roo Then 

lim h(u, r) 
.. ... CO 

belongs to L([uo, 00]) and 

lim foo h(u, r) du =foo lim h(u, r) duo 
r-+ex> Uo uor-+co 

This is just Lebesgue's dominated convergence 
theorem,8 written in a way which can be applied 
immediately in Sec. III. 

m. PRECISE ASYMPTOTIC BEHAVIOR 

We turn now to the main results of this paper and 
give a sequence of three theorems. It is assumed that 
the conditions in the first paragraph of Sec. II hold 
throughout. 

Theorem 1: The transform!(z)-O as Izl- 00 in 
any direction for which Arg z F 7T, and uniformly 
for z in S6 as /zl - 00 . 

Proof It suffices to prove that 

z rco 1p(t) dt _ 0 
Jl (t + Z)2 

under the conditions just stated. Now, for Z E S6 and 
fixed r F 0, we have 

I (CO 'P(t) dt I < (tX> /'I'<t)1 dt 
z Jl (t + Z)2 - r Jl (t _ r cos d)2 + r2 sin2 tJ • 

Theorem A may be applied immediately, with 

h( ) 
_ r lV'Ct)1 t, r - ------"~..:..:....-~:--

(t - r cos d)2 + r2 sin2 d 
(t ~ 1, r ~ 1 say). 

As r - 00, h(l, r) -+ 0 for each t ~ 1. Moreover, this 
convergence is uniform in each interval [1, T] with 
T> 1, since, for t E [1, T], 

h(t, r) S m(T)/r sin2 d, 

where meT) = max {1'PCt)l: 1 E [1, T]}. 
Finally, given E > 0, we can find T such that 

/'P(t)1 < E sin d/(7T - d) for all t ~ T, since 'P(t) - 0 
as t -+ 00. Hence, for t ~ T, we have 

itX> h(u, r) du 

< E sin CJ ftX> du 
--r =E, 
7T - tJ 0 (u - r cos tJ)2 + r2 sin2 tJ 

---
• See, for example, Theorem (12.30) of Hewitt and Stromberg 

Ref. 4. 
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independently of r. The conditions of Theorem A 
are therefore satisfied and the result follows. 

An alternative proof7 using Theorem B requires the 
transformation t = ru. Then 

fa> Itp(t)1 dt 
r J1 (t _ r cos b)2 + r2 sin2 <5 

= fa> X[1/r,oo](U) 1 tp(ru) 1 du , 
Jo (u - cos <5)2 + sin2 15 

where X[l/r.oo](u) is the characteristic function of the 
interval [1/r, 00]. Now with 

h(u r) = X[l/r,,,,iu) Itp(ru)1 (u ~ 0, r ~ 1 say), 
, (u - cos 15)2 + sin2 <5 

M(u) = M/[(u - cos 15)2 + sin2 15], 

where M = max {ltp(t)I: t ~ I}, the conditions of 
Theorem B are satisfied, since, for each u > 0, tp(ru) 
[and therefore h(u, r)] - ° as r - 00, and clearly 
M(u) belongs to L([O, 00]). Hence the result. 

Corollary: Let the limit S-'" get) dt exist. Then 

zJ(z) -J .... '" get) dt, 
-+0 

as Izl - 00 in any direction for which Arg z >;c 1T, 

and uniformly for z in S~ as Izl- 00. 

Proof 

zJ(z) - get) dt = - -g- . J .... '" J-+'" t (t) dt 
-+0 -+0 t + z 

Apply Theorem 1 to the Stieltjes transform on the 
right side. 

Theorem 2: Let either of the following conditions 
hold: 

(i) the limitf .... '" g~~~:x exists; 

(ii) x"g(x) - 0 as x - 00, 

where 0 < Cl < 1. Then z,,/(z) - 0, as Izl - 00 in any 
direction for which Arg z >;c 1T, and uniformly for 
z in S" as Izl - 00. 

[Notes: (1) The alternative conditions above are not 
comparable. For, if x'"g(x) = sin x, then 

f .... '" g~L~X 
exists, but x"g(x)~ 0 as x - 00. On the other hand, 

7 The author is indebted to H. Kestleman for pointing out this 
alternative method of proof. 

if x"g(x) = (In x)-l, then 

f-+'" g(x) dx 

x1-" 

does not exist, but x"g(x) - 0 as x - 00. 

(2) Theorem 1 extends Theorem 2 under condition 
(i) to the case Cl = 0, while the corollary to Theorem 
1 extends it to the case Cl = 1.] 

Proof The proof amounts to showing that 

z"+1 f'" tp(t) dt _ 0 
J1 (t + Z)2 

under the conditions stated above. We first prove 
that x"tp(x) - 0 as x - 00 under each of the conditions 
(i), (ii) in turn. 

To use condition (i), write 

C
"--\ = f .... '" get) .!. dt 

11' ."'" j,. t1-" tl1. 

and apply the second mean value theorem for integrals. 
(See, for example, Sec. 422 of Hobson.S) This gives 

fX get) 1. dt = 1. i; get) dt , 
j.. t1

-" t" x" '" t1
-11. 

where ~ is some number, depending on X, such that 
x :s; ~ ~ X. Letting X - 00 and then x - 00, it 
follows from the existence of the limit 

that x"tp(x) - 0 as x - 00. It is obvious that this result 
holds under condition (ii). 

For z E S~ and fixed r >;c 0, we have 

I ,,+1 f'" tp(t) dt I < ,,+1 f'X> Itp(t)1 dt 
z J1 (t + Z)2 - r J1 (t _ r cos 15)2 + r2 sin2 15 . 

Again we may apply Theorem A with 

r"+1ltp(t)1 
h(t, r) = . 

(t - r cos 15)2 + r2 sin2 15 

(t ~ 1, r ~ 1 say). 

Since Cl < 1, h(t, r) - 0 as r - 00, for each t ~ 1. 
This convergence is uniform in each interval [1, T] 
with T> I since, for t E [1, T], 

h(t, r) ~ m(T)/r1
-" sin2 15. 

Finally, given E > 0, we can find T such that 

1 t"tp(t) \ < E sin 15 sin 11.1T 

1T sin (Cl( 1T - <5)] 
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for t ~ T. Thus for t ~ T, we have 

U, r u < r foo h( ) d € sin b sin IX7T ,,+1 

t 7T sin [IX( 7T - b)] 

X roo du = E, 

Jo u"[(u - r cos b)2 + r2 sin2 b] 
independently of r. The result follows. 

To apply Theorem B, put t = ru as before. Then 

r"+1 (00 "P(t) dt 
J1 (t - r cos b)2 + r2 sin2 b 

With 

= (oo X[1/r,ooJ(u)(ru)" 1"P(ru)1 du . 
Jo u"[(u - cos b)2 + sin2 b] 

h(u r) = XWr,ooJ(u)(ru)" 1"P(ru)1 
, u"[(u - cos b)2 + sin2 b] 

(u ~ 0, r ~ 1 say), 

M 
M(u) = 2" 

u"[(u - cos b) + sm2 b] 
where M = max {tot 1"P(t)I: t ~ I}, the conditions of 
Theorem B are satisfied, since, for each u > 0, 
(ru)""P(ru) [and therefore h(u, r)] -+ 0 as r -+ 00, and 
M(u) belongs to L([O, 00 D. This proves the theorem. 

Corollary: Let either of the following conditions 
hold: 

(i) the limitf-+oo (x"g(x) -; A) dx exists; 

(ii) for large x, g(x) ,....., Ax-", 

where A, IX are constants and 0 < IX < 1. Then, for 
large Izl, 

f(z)""'" A7T csc (7TIX)Z-", 

for fixed Arg z ¥= 7T, and uniformly for z in Sa. (The 
function z" has its principal value in the complex 
plane cut along the negative real axis.) 

Proof Put (x"g(x) - A) = x"h(x). Then the con­
ditions (i), (ii) above are equivalent to the conditions 
(i), (ii) of Theorem 2 on the function hex). Now 

fez) = Af-+OO dt +f-+oo h(t) dt . 
.... 0 t"(t + z) .... 0 t + z 

The first term on the right side is A7T csc (7TIX)Z-". 
Applying Theorem 2, we see that 

"f .... oo h(t) dt z ---+0, 
.... 0 t + z 

as Izl-+- 00 in any direction for which Arg z ¥= 7T, and 
uniformly for z in Sd as Izi -+ 00. Under these condi­
tions, therefore, z"j(z) -+ A7T CSC 7TIX, which is the 
required result. 

Finally we extend Theorem 2 under condition (ii) 
to at = 1. 

Theorem 3: Let xg(x) -+ 0 as x -+ 00. Then zj(z)/ 
log z -+ 0, as Izl -+ 00 in any direction for which 
Arg z ¥= 7T, and uniformly for z in Sa as Izl-+ 00. 

(The function log z denotes the principal value of 
log z in the complex plane cut along the negative real 
axis.) 

Proof" It is enough to show that 

Z2 i oo "P(t) dt -- -+0 
log z 1 (t + Z)2 

under the conditions stated. In exactly the same way 
as in Theorem 2 it follows from the condition on 
g(x) that x"P(x) -+ 0 as x -+ 00. 

For z E Sa and fixed r > 1, we have 

I 
Z2 (00 "P(t) dt I 

log z J1 (t + Z)2 

< _r_2 ioo ___ ,,-,-"P..:....(t,-,-)'_d_t_--:--
- log r 1 (t - r cos b)2 + r2 sin2 <5 • 

We apply Theorem A once more, with 

h(t r) = r21 "P(t)1 
, log r[(t - r cos b)2 + r2 sin2 b] 

(t ~ 1, r ~ 2 say). 
Again h( t, r) -+ 0 as r -+ 00, for each t ~ 1. The 
convergence is uniform in each interval [1, T] with 
T> 1 since, for t E [1, T], 

h(t, r) ::::;; m(T)/log r sin2 b. 

Also, given € > 0, we can find Tsuch that It"P(t)1 < !€ 
for t ~ T. Hence, for t ~ T, we have 

i oo 

h(u, r) du 

< - - ------:---::----::--€ r2 i oo 
dt 

2 log r 1 t[(t - r cos b)2 + r2 sin2 b] 

::::;; E[! + _1_ {log (1 + !) + -;-}] 
2 2 log r r sm b 

< E for all sufficiently large r. 
The conditions of Theorem A are satisfied and the 
result follows . 

Theorem B cannot be applied in this case, but, by 
making the transformation t = ru once more, an 
alternative proof can be found. We need to show that 

_1_ i oo 
(ru) 1"P(ru)1 du -+- 0 as r -+ 00. 

log r 1/r u[(u - cos b)2 + sin2 b] 
Let M = max {t 1"P(t)l: t ~ I}. Since 

(00 (ru) 1"P(ru)1 du 

Jl u[(u - cos b)2 + sin2 b] 

::::;; M (00 du 
Jl u[(u - cos <5)2 + sin! <5] , 
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a constant, it is sufficient to show that 

_1_ (1 (ru) 1 V'(ru) 1 du _ 0 as r _ 00. 
log r Jl/r u[(u - cos (5)2 + sin2 b] 

Now, given E > 0, there exists T (~1) such that 
t IV'(t)1 < tE sin2 15 for t ~ T. Thus, for r > T, 

I 
1 (1 (ru) 1 V'(ru) 1 du I 

log r Jl/r u[(u - cos (5)2 + sin2 15] 

< 1 [M (T/r du + h sin2 CJI
1 

dU] 
- log r sin2 CJ Jl/r u T/r U 

= 1. 2 (M log T + tE sin2 15 log !..) 
log r sm CJ T 

< E(! + M log T ) 
- 2 E sin2 15 log r 

< E for all sufficiently large r. 

Corollary: Suppose that, for large x, g(x) ,...., A/x, 
where A is a constant. Then, for large Izl, 

fez) ,...., A log z/z, 

for fixed Arg z ¢ 71', and uniformly for z in S~. 

Proof" If we put (xg(x) - A) = xh(x), the function 
hex) satisfies the condition of Theorem 3. Now 

ftCz) = A (-+00 dt +f-+OO h(t) dt 
Jl t(t + z) 1 t + z 

= :i log (1 + z) + (-+00 h(t) dt . 
Z Jl t + z 

Thus 

zftCz) = A log (1 + z) + _z_ (-+00 h(t) dt . 
log z log z log Z Jl t + z 

Since, from Sec. II, 

_z_ II get) dt _ 0 
log z -+0 t + z ' 

it follows from Theorem 3 that zf(z)/log z - A, as 
Izl - 00 in any direction for which Arg z ¢ 71', arid 
uniformly for z in S~ as Izl - 00. 

We conclude this section by noting that, if g(x) = 
h(x)x-'P, where p is a positive integer and hex) satisfies 
the conditions of any of the theorems (or their corol­
laries) given above, one can apply these results by 
writing 

ftCz) = (-+00 h(t) dt = i (-lr-1z-m (-+00 h(t) dt 
Jl t'P(t + z) m=1 Jl t'P-m+1 

+ (_I)'Pz-'P (-+00 h(t) dt . 
Jl t + z 

IV. BOUNDS ON TRANSFORMS 
Our final theorem is due to Lanz and Prosperj1; 

in it a bound on fez) for large Izl is derived from a 
bound on g(x) for large x. 

Theorem 4: Let Ig(x) 1 < A/xa for all x ~ X (>0), 
where 0 < IX. :::;; 1. Then 

If(z)1 < C/lzla (0 < IX. < 1), 

fez) < C' log Izl/Izl (IX. = 1), 
for all sufficiently large Izl, for fixed Arg z ¢ 71' and 
uniformly for z in S~. 

[Note: For IX. > 1, f--+oo g(x) dx converges and the 
corollary to Theorem 1 applies.] 

Proof: In each case, write 

fez) =IX get) dt +f-+oo get) dt . 
-+0 t + z x t + z 

Just as in Sec. II, 

Ix get) dt "-'Ix get) dt 
-+0 t + z -+0 z 

for large Izl. We need deal, therefore, only with the 
second integral on the right side. 

For z E S~ and fixed r ¢ 0, we have 

I 
(-+00 get) dt I < A (00 dt 
Jx t + z - Jx ta[(t - r cos (5)2 + r2 sin2 b]! 

A (00 du 

= ;; JX/r ua[(u - cos (5)2 + sin2 b]! . 

For 0 < IX. < 1, 

I 

(-+00 ~(t) dt 1 < :i (00 du , 
Jx t + z ra Jo ua[(u - cos (5)2 + sin2 b]! 

which is the required result. 
For IX. = 1, 

I f-+OO get) dt I 
x t + z 

<:i (00 du 
- r JX/r u[u2 - 2u cos 15 + 1]1-

= :i log [ X(1 + cos b) ] 
r X cos 15 - r + (X2 - 2Xr cos 15 + r2)! 

= A l~g r + 0 (;) for r _ 00 as required. 

ACKNOWLEDGMENTS 

The author is greatly indebted to H. Kestleman for 
several discussions, criticisms and helpful suggestions. 

This work was supported in part by a grant from 
the Office of Aerospace Research (European Office), 
U.S. Air Force. 



                                                                                                                                    

10URNAL OF MATHEMATICAL PHYSICS VOLUME 8, NUMBER 6 JUNE 1967 
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Various aspects of the mathematics of the probability distribution PN(S~) of one component of the 
square of the radius of gyration of an ideal B~ownian .chain ~ith N units ar~ p~sented .. A r~goro,!s 
expression for PN(Sz) in the form of a contour IntegrallS obtamed. The resultmg mtegralts wntten In 
terms of Tchebichef pol~omials. Several rigorous and approximate results are obtained for both the 
limiting distribution (N infinite) and for finite N. 

I. INTRODUCTION 

A SIMPLE and widely used model for the configura­
tion of a large flexible polymer molecule in 

solution is the Brownian motion model. According 
to this model the position of the jth unit of the mole­
cule relative to one of the ends is given by the sum 
of j steps in a Brownian motion, i.e., 

R i = r1 + r2 + ... r j , (1) 

with the r i independent, identically distributed random 
variables. We confine our attention to a chain wherein 
the probability of the individual step is given by a 
spherically symmetric Gaussian distribution 

P(x, y, z) = (21Ta2)-i exp [-(x2 + y2 + z2)/2a2]. (2) 

Although this is not as realistic as a model in which the 
steps are confined to the surface of a sphere or re­
stricted to allowed angles, for many purposes the 
Gaussian model is adequate and it makes the mathe­
matics more tractable. 

An important measure of the size of the polymer 
is its radius of gyration S. The x component is given 
by1.2 

SfI) = N-1! (Xi - N-1 !Xk)2 
i-I k=1 

= N-lix~ - N-2(!Xi)2, 
i=1 i=1 

(3) 

where Xi is the X component of R i • the vector from 
one end of the polymer to the jth unit, and N is 
the total number of elements in the chain. The 
probability distribution of SfI)' 8.", and S. is of impor-

• Consultant to the National Bureau of Standards. 
1 The variable S,. defined here is, of course, the x part of the 

square of what is customarily called the radius of gyration. To avoid 
the awkwardness of writing our variable as the square of another 
one or of introducing a new or longer name for Sz, we simply 
refer to Sz as the "radius of gyration." 

a P. J. Flory, Principles of Polymer Chemistry (Cornell University 
Press, Ithaca, New York, 1953). 

tance in the light scattering, adsorption, expansion, 
and viscosity of polymers,2 and there has been a 
great deal of current work on the calculation of the 
probability distribution.3- s 

In this paper we present an extensive discussion 
of the mathematical properties of the probability 
distribution function of the radius of gyration P,ASfl)' 
This includes its properties as a function of N for 
large but finite N as well as calculations relevant to 
the limit function as N goes to infinity. In the limit 
the distribution becomes a function of SfI)/Na2 alone. 
The fact that this is true has the physical significance 
that the radius of gyration never behaves like a 
"macroscopic" variable no matter how large N 
becomes. Its distribution does not become more 
sharply peaked as the chain grows longer. 

The mathematical problem is a quite complicated 
one. Even for the case N -- a::>, the result, which is 
obtained as a contour integral, is difficult to evaluate. 
For N finite, not only does the corresponding contour 
integral become more complicated, but there is the 
additional complexity attendant to the presence of yet 
another variable, N. The first paper to treat the prob­
lem was by Fixman.3 Fixman obtained the limiting 
distribution for the three-dimensional radius of 
gyration (SfI) + S1I + Sz), calculated its moments, and 
obtained asymptotic approximations. In a series of 
papers on the problem for finite but large N, Forsman 
and Hughes6•6 and Forsman7•8 presented the results 
of extensive investigations of the distribution function 
with particular emphasis on the function for very 

• M. Fixrnan, J. Chern. Phys. 36, 306 (1962). 
• M. Fixrnan, J. Chern. Phys. 36, 3123 (1962). 
• W. C. Forsman and R. E. Hughes, J. Chern. Phys. 38, 2118 

(1963). 
• W. C. Forsman and R. E. Hughes, J. Chern. Phys. 38, 2123 

(1963). 
7 W. C. Forsman, J. Chern. Phys. 42,2829 (1965). 
8 W. C. Forsman, J. Chern. Phys. 44, 1716 (1966). 
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small values of the radius of gyration, as this is 
related to the increase in entropy of a polymer when 
it is deposited on a surface. 

We present a wide variety of results, both exact 
and approximate, relating to the function PN(S",) and 
to the limiting distribution function for the radius of 
gyration divided by N in the limit as N approaches 
infinity. We obtain an integral expression for PN(S",) 
which is exact for all N. At no point do we assume 
N to be large in the derivation. Working from the 
new form for P~S",), we present a broad survey of the 
mathematical properties of the function. Many of 
the results we obtain have been presented previously in 
the aforementioned papers.3- 8 Much, however, is new. 

In Sec. II, we derive the integral expression for 
P~S",). The derivation involves the evaluation of a 
characteristic determinant, which is performed by a 
generating function technique. It is shown that the 
characteristic function of P~S",) may be written in 
terms of the Tchebichef polynomial of order N - 1. 

We have placed all of our exact results on the 
properties of P~S",) for finite N in Sec. III. This 

includes a derivation of an expression for P~S",) as 
a sum of real integrals (obtained by deforming the 
contour to go around the branch cuts of the charac­
teristic function), an exact evaluation of the moments, 
and a derivation of the form of P N in the limit as 
N- 00. 

In Sec. IV, we use the method of saddle points on 
the finite N integral. We show that a single equation 
for the saddle point may be used to obtain simple 
approximations to P N over various ranges of the 
values of the variable, S",. 

In Sec. V we obtain a form for P 00 which is suitable 
for evaluation by quadrature. The results of the 
numerical integration are presented and compared 
with the asymptotic results for P 00 • 

n. DERIVATION OF CHARACTERISTIC 
FUNCTION 

According to Eq. (2), the probability of an x 
displacement, Xi - Xi_I> at the jth step is 

P(Xi - Xi_I) = (27T<T2)-i exp [-(X; - X;_1)2j20'2]. (4) 

The distribution of S", is then 

P~S",) = L:·· ·L:dX1··· dXN{15[S", - ~ LX; + ~2(LX;)2J 
exp [_XU20'2] exp [-(X2 - Xl)2/20'2] ... exp [-(XN - XN_l)2/2~]} 

X ~ (2'IT0'2)N/2 ' 

where 15 is the Dirac delta function. Introducing the Fourier representation of the delta function, 

p~SJ = J... foo dtfOO •. . foo dX1 ... dXN 
2'IT -00 -00 -00 (2'IT0'2)N/2 

X exp {iA'[ S", - ~LX~ + ~2(LXiJ - [x~j2a2] - '" - [(XN - XN_l)2/2aZ]}. (6) 

The X integrations yield 

P~S ) = 1 foo dA'ei ).'", ~/2qN 
'" 2TT(2'ITa2)N/2 -00 I DIl-

- dA'-
l foo ei ).'''' 

- 2TT(2)N/2 -00 I Dli ' 
(7) 

where IDI is the determinant of the matrix D defined 
by 

Dkl = _(iA/N2) + [1 + (iA/N)]15kl - t15kN15 IN 

- t(15k ,l+1 + 15k.l-l), (8) 

where A = a2A' and 15kl is the Kronecker delta. 
We evaluate IDI by a generating function method, 

and obtain the characteristic polynomial of D. In the 
Appendix we present an alternative method of 
evaluating IDI by transforming the matrix D to a 
known form. Let [CI> Cz,' . " CN] be an eigenvector 

of D with eigenvalue p., i.e., 

N 
~ Dk,C, = p.Ck (k = 1, ... , N). 

1=1 

We define the generating function/(x) by 

N 

f(x) = ~ C;X;. 
;=1 

(9) 

(10) 

Multiplying Eq. (9) by xk and summing over k, one 
obtains with Eq. (8), 
f(x) 
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For x = 1, the above equation yields 
N 

C1 = 2flIC j • (12) 
;=1 

As the normalization of the eigenvectors is arbitrary, 
for simplicity we choose If=l C j = 1. Then C1 = 2fl, 
and Eq. (11) becomes 

2'A N 
- _t_ X I Xi - C NxN+1 + C NXNH + 2flx 

N2 ;~1 
f(x) = x2 _ 2xt + 1 

then the eigenvalues of the matrix Dare fli = bi/d •• 
The determinant of Dis 

N N 
I DI = IT fli = IT (hi/d;). (20) 

i=1 i=1 

The product IT!l di is the coefficient of flN in Eq. 
(18). Thus, using Eq. (15), we get 

N 
IT d; = 2( - 2)N-l = (-1 )N-12N. (21) 
i=1 

The product IT!1 (-bi ) is the constant in Eq. (18), 
(13) and is given by 

where t = 1 + (O./N) - fl. We now make use of the 
fact that (X2 - 2xt + 1)-1 is the generating function 
for Tchebichef polynomials of the second kind, 
Uj (t),9 i.e., 

00 

(x2 - 2xt + 1)-1 = I Uj(t)x i . 
j~O 

The Tchebichef polynomials are given by 

[ .. /2]( -1)m(n _ m)! (2tt-2m 
U .. (t) = I , 

m~O m! (n - 2m)! 

(14) 

(15) 

where [nI2] is nl2 for n even and (n - 1)/2 for n odd. 
Using Eq. (14), we write Eq. (13) as 

f(x) = {-(2iA/N2) ~IXi+1 - CNXN
+1 

+ CNXN+
2 + 2flX}~oUit)xj 

(16) 

Equating coefficients of xm in Eq. (16), we obtain for 
l::;;:m::;;:N 

m-2 
-(2iA/N2

) I Ult) + 2flUm_l(t) = Cm. (17) 
;~o 

Summing the above equation over m from m = 1 to 
N and using the normalization condition for the Cm , 

I~=1 Cm = 1, yields 

N-2 
-1 - (2iAfN2

) I (N - 1 - m)Um(t) 
m~O 

N 
+ 2fl I U m_l(t) = O. (18) 

m=1 

Recalling that t = 1 + (iA/N) - fl, we see that 
Eq. (18) is an Nth degree polynomial in fl for the N 
eigenvalues of the matrix D and is proportional to the 
characteristic polynomial of D. If Eq. (18) is then 
written in the form 

N 

IT (-hi) = -1 - (2iA/N~ 
i=1 

X 12 (N - m - I)Um(1 + iA). (22) 
m=O N 

We use the identity 

N-2 
I (N - m - I)U met) = [N - U N_l(t)]/[2(1 - t)]. 

m=O 

(23) 

One may verify Eq. (23) with the help of the equation9 

Uk(t) = sin [(k + 1) arccos t]/sin [arccos t]. (24) 

If one then uses the formulas10 for If=l sin kO and 
If=1 k sin kO, one obtains Eq. (23). Substituting from 
Eq. (23) into Eq. (22), we obtain 

IT (-hi) = - (1.) U N-l(1 + iA). 
.=1 N N 

(25) 

Thus, we find that 

I DI = (N2N)-IU N-l(1 + iA/ N), (26) 

Thus the distribution of the x component of the 
radius of gyration is 

PNCS~) = N i(21T)-lL: dA'ei;"s", [ UN- 1 (1 + iA:) rl. 
(27) 

Using Eq. (24), this may also be written 

PN(S~) = Nl(21Trlioo dA'ei;"S",[ (~in 0) Jl
, (28) 

-00 (sm NO) 
where 

o = arccos (1 + iA' (f2/N). (29) 

m. PROPERTIES OF THE DISTRIBUTION 
FUNCTION, PN(S~) 

N 

IT (difl - bi ) = 0, 
;=1 

The distribution function P NCS~) of the x component 
(19) of the radius of gyration of an ideal Brownian chain 

of N steps is given by a complex integral in Eq. (27) 
9 A. Erdeiyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, 

Higher Transcendental Functions (McGraw-Hill Book Company, 10 L. B. W. Jolley, Summation of Series (Dover Publications, Inc., 
Inc., New York. 1953), Vol. II. New York, 1961). 



                                                                                                                                    

RADIUS OF GYRATION OF A FLEXIBLE POLYMER 1279 

y' 

~4' (iN/cr z l [I-COS (47T/ Nl] 

X,, (iN/crZl[I-COS( 7TlNl] 

x' 

FIG. 1. Branch cuts for [UN-l(l + i).'a2/N)] t. 

or (28). This section is devoted to a variety of the 
properties of the finite N solution. In particular we 
first locate the branch points, specify branch cuts, 
and obtain a real integral for PN(Sz) by integrating 
along the branch cuts. We also use the integral to 
calculate exactly the moments of the distribution. 
Finally we show how one may obtain an integral for 
the radius of gyration in the limit as N becomes 
infinite, i.e., 

lim PN(Sz). 
N-+oo N 

A. Analytic Properties 

The integral of Eq. (28) has a branch point at each 
of the zeros of sin NO except those for which sin 0, too, 
is zero. That is, there are branch points at 

Ok = hr/N (k = 1, ... N - 1). (30) 

Therefore, from Eq. (29), the branch points in the 
A' plane are 

A~ = (iN/a2)(1 - cos kTr/N). (31) 

We see from this equation that values of k other than 
those specified to the right of Eq. (30) would not 
yield any additional value of the .A.~ . As we see all of the 
branch points are on the positive imaginary axis. We 
choose to make branch cuts between A~j_l and A~j 
withj = 1,2, ... teN - 1), for N odd orj = 1,2, ... 
teN - 2), for N even. For N even, there is an additional 
branch cut along the imaginary axis from .A.~_l to 
infinity. The branch cuts are illustrated in Fig. 1. 

The fact that there are no singularities in the lower 
half-plane means that PN(Sz) is identically zeroll for 

11 L. v. Ahlfors, Complex Analysis (McGraw-Hill Book Company, 
Inc., New York, 1953). 

Sz negative-as, of course, it must be since Sz by 
definition is a positive variable. 

B. Integral Over Branch Cuts 

We now obtain an expression for PN(Sz) in terms 
of definite integrals of real functions. This is done by 
showing that the integral over the real axis [Eq. (27)] 
is equal to integrals around the branch cuts in Fig. 1. 
As illustrated in Fig. 2, to the integral over the real 
axis we add: (1) the quarter circle of radius R(R ---.00) 
from (R, 0) to (lei, [R2 - e2]*) (Iel---' 0 and A' = 
x' + iy'); (2) the line x' = lei from R to 0; (3) the 
line y' = 0 from lei to -lei; (4) the line x' = -lei 
from 0 to R; (5) the quarter circle of radius R from 
(-lei, [R2 - e2]*) to (-R, 0). This contour does not 
enclose any singularities and hence the integral over 
the total contour vanishes. The integrals over the 
quarter circles (paths 1 and 5) vanish as R ---. 00, since 
the real part of the exponent is negative in the upper 
half plane.H 

As e ---. 0, the integrals on either side of the positive 
imaginary axis cancel each other everywhere expect 
on opposite sides of a branch cut. Recalling that the 
first branch cut went from branch point A~ to A~ , the 
second from A~ to A~, etc., and introducing the defini­
tion A~ = ioo for N even, we have 

N*. [N/21{i l£I+A'2i ., [(Sin 0) ]* 
PN(Sz) = - hm ! dA'e'A Sx ~. =-=-~ 

27T £-+0 j=l 1£1+'<"01-1 (sm NO) 

_1-1
£/+A'21 dA'eiA'Sx[ (~in 0) ] *}, (32) 

-1£/+'<"21-1 (sm NO) 

where [N/2] is the greatest integer ~(N/2). 
In order to understand the behavior of the integrand 

near the branch points, it is convenient to write 

[
sin 0]* [ ( iA l

(

2)]-* -- = UN - 1 1 +--
sin NO N 

{(
2 2)N-l N-l }-* = ; !! [i(A' - AJ] . (33) 

Here, the last equality is obtained from the fact that 

R --+ <Xl 

1<1-+ 0 

).'. x' + iy' 

FIG. 2. Contour used in evaluating the integral of Eq. (27). 
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the A~'s are the roots of the Tchebichef polynomial, 
and that the coefficient of A'(N-l) in U N-l is (2ia2/N)N-I. 
We write (A' - A~) == PIc exp i(ep~), where, on the 
visible Riemann sheet, -17T < ep~ < l7T. We further 
define 

and 

Thus 

~ = Kl P exp i! ep" . [ . 0]1 { [N-l ]}-l 
sm NO "=1 

(34) 

This expression is convenient for examining the 
behavior of [sin O/sin NO]l. The positive square root 
must be taken, as, at A' = 0, the result must go into 
that obtained from Eq. (6) with A' = 0, and this, of 
course, is positive. Thus, 

[ 
~in 0 ]1= Kllpll exp [_ ! !,lep,,]. (35) 

sm NO 2 "=1 

As we move upward along the imaginary axis with 
Re A' > 0, ept ~ ° or 7T depending on whether we 
are below or above A~, respectively. For Re A' < 0, 
ept ~ ° or (-7T) depending on whether 1m (A') is 
less than or greater than 1m (A~), respectively. Since 
the integrals in Eq. (32) are evaluated between A~;_1 
and A~I' we see that the argument of [sin O/sin NO]l 
is exp [-li7T(2j - 1)] = i(-I)1 for Re A' > 0, and is 
exp [+li7T(2j - 1)] = -i( _1)1 for Re A' < O. Thus 
the integrands are of different sign on the two sides 
of the branch cut. We further see that because of the 
(_1)1 factor the integrands alternate in sign on neigh­
boring branch cuts. Since [sin Olsin NO] is real along 
the imaginary axis, we directly 0 btain 

P~S",) = Nl 7T-P'I2] i( -1)1 C"'li dA'ei"'s~ I[ ~inO J11. 
1=1 )"'11-1 sm NO 

(36) 

Upon making the substitution "I = -(2j - 1)7T + 
N x arccos (1 + iA' a2IN), the above integral can be 
w~ttenas 

P~S",) = Ni 7T-1a-2 

[N/2] CIr 
X ~1 (-1)1+1)0 dy{exp [-(NS",la2

) 

x {I - cos [(yiN) + (2j - 1)(7TIN)])] 

x [sin {(yiN) + (2j - 1)(7TIN)}]t[sin yrl}. 

(37) 
Thus, the problem of finding PN(S",) for all values of 
N is reduced to that of evaluating a sum of integrals 
with real integrands, which is amenable to numerical 
computation. 

In addition, Eq. (37) can be used to find an approxi­
mation to P N(S",) for large S",. For S", large, the j = 1 
term in the sum dominates the series. Assuming 
(27TIN) « 1 we have 

P~S",) = N- I 7T-1a-2 

X 50" dy exp [( -lS",INa2)(y + 7T)2](y + 7T)i(sin "1)-1, 

(38) 
or, in terms of y = S",INas, 

P~y) = 7T-I 50" dyexp [-lY(7T + y)2](7T + y)i(sin ytl. 

(39) 
For large y, the only significant contribution to the 
integral occurs near "I = O. The above integral can 
then be written 

P~y) = 7Tl exp (-l7T2y) LOO dyy-l exp (-Y7TY), (40) 

where we have replaced the upper limit by infinity. 
Evaluation of the above integral yields 

PIh) = (7Tly)l exp (_!7T2y). (41) 

This is in agreement with the result stated by 
Forsman. 12 

C. Exact Moments 

We can obtain the moments of P~S",) from Eq. 
(27). Defining the mth moment, 

we find 

IXm = L:s:,p~S",) dS"" (42) 

IXm = (_I)mNl(a
2

)m d: {[UN_1(y)rl } I . (43) 
N dy 1/=1 

Using the fact that the derivatives of the Tchebichef 
polynomials are Gegenbauer polynomials one obtains13 

d
m

UN_1(y) 1 = 2m(N+m)!m! . (44) 
dym 1/=1 [N - (m + I)]! (2m + I)! 

As U N-l(1) = N, one may readily evaluate the mo­
ments. The first four are seen to be 

IX = - Na 1 - -1 2[ 1 ] 
1 6 N 2 ' 

12 See Eq. (I) of Ref. 7. 
13 Reference 9, pp. 186 and 174. 
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D. Limiting Distribution as N ...... 00 

We now consider the distribution function in the 
limit N -- 00. For this case it is not difficult to verify 
that the part of the integral in Eq. (27) which does 
not go to zero as N -- 00 corresponds to A'a2IN« 1. 
We then have (I = i[2iA.'a2/N]! and sin e = e. Letting 
s = Na2A.', we obtain from Eq. (28) 

P ",(S",) = (27TNa2rlf'" ds exp [is,,,!] 
-'" Na 

x {[Sinh (2iS)t]}-t. (46) 
(2is)t 

Defining y = S",INa2, we write Eq. (46) as 

P ",(y) = (27T)-1 f'" dsei1J8{[Sinh (2iS)!]}-!. (47) 
J-", (2is)! 

We note that the limiting distribution is only a function 
of S",/Na2•14 Equation (47) is the one-dimensional 
analog of the result obtained by Fixman.3 In Sec. V, 
we evaluate this integral numerically to obtain P ",(y). 

IV. SADDLE POINT METHOD 

In this section we show how the integral for PN(S",), 
as given in Eq. (27), may be evaluated approximately 
by the method of steepest descent. We see that the 
saddle point ao is always on the imaginary axis, 
running from ao = -ioo for S", = 0 to the bottom of 
the first branch point, ao = i(Nla2)(1 - cos 7T/N) for 
S", = 00. That is, for all values of the radius of 
gyration S"" there is a saddle point on the imaginary 
axis below the lowest branch point. Thus the contour 
of integration along the real axis may always be 
displaced to go through the saddle point, without 
the contour crossing any singularities. The approxi­
mation yields 

PN(S",) = exp [g(ao)][ -27T/g"(ao)]t, (48) 
where 

g(A.) = In (Nt/27T) + iA.'S", 

+ t In (sin 0) - t In (sin NO). (49) 

and the equation for the saddle point, og/OA.' = 0, is 

Y = tN- 2 csc 0a[cot Oa - N cot Nea], (50) 

where Oa = arccos (1 + iaoa2/ N). Differentiating, we 
obtain 

g"(ao) = (a4/2N2) csc!! Oa[csc2 Oa + cotll Oa 

- N cot ea cot NOa - Nil cscll Nea]. (51) 

1& It is interesting to note that here we have an example of a 
quantity which does not have a "macroscopic limit" as the number 
of elements N approaches infinity. 8y this we mean that the 
fluctuation of the observable quantity (the radius of gyration) does 
not become relatively smaller as N increases. 

TABLE I. Position of saddle point for 
y = (S~/N(JI) = 00, \' and O. 

(Ja y J.' 

(1T/N) 00 iN( 7ff c; I-COSH 

0 t (= y) 0 
ioo 0 -ioo 

a First branch point in X plane. 

It is also convenient to define Pa = -iea, in terms of 
which Eq. (50) becomes 

y = -tN-II csch Pa[coth Pa - N coth NPal. (52) 

A study of Eqs. (50) and (52) shows that there is a 
solution such that ao lies on the imaginary axis beneath 
the first branch point for any value of y. In the limit 
y -- 00, ao approaches the first branch point, Le., 
ao -- (iN/a2)[1 - cos (7T/N)] and ea tends to (7TIN). 
As y decreases, Oa decreases and ao moves down the 
imaginary axis. At y = i (the mean value of y), 
Oa = ao = O. For y < t. ao lies on the negative 
imaginary axis while ea is now on the positive imag­
inary axis. As y becomes smaller, ao and (}a move 
further from the origin. In the limit y -- 0, ao ap­
proaches (-ioo) and ea approaches (ioo). The values 
of y for Oa = (7T/N), 0, and (ioo) are given in Table I 
along with the corresponding values of ao . We can 
obtain simple approximate expressions for the 
solutions of Eq. (50) and (52) for three ranges of y. 
viz., (i) 27Ty » I ; (ii) Y '"'-' i; and (iii) y « t. Whenever 
Oa « 1, which holds for case (ii) and also for case (i) 
when N» 1, then, as discussed in Sec. III,the expres­
sion for P,.{y) reduces to P ",(Y), and our treatment is 
simply the one dimensional analog of Fixman's 
three-dimensional results. However, for case (iii) 
(small y), we obtain a more general result than has 
previously been derived. 

Case (i) 27TY» 1 
We have 

Oa '" (7T/N) - (a2/27TS",), 

ao '" i(7T2/2Na2)[1 - 1/7T2y], 

g"(ao) '" -2(yNa2)2, 

P(y) '" (7Te/2y)t exp (-t7T2y). 

(53) 

This differs only by the factor (eI2)! from the result 
obtained in Sec. III [Eq. (41)]. 

Case (ii) Y ro.J t 
In this region we obtain an approximate expression 

for the distribution near its mean. For the approxi­
mation to the solution of Eq. (50) [or Eq. (52)] to be 
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valid, we must have NOa « I (Oa = 0 corresponds to 
y = t). In terms of the region of validity for y, this 
inequality is 

[90(y - l)]t « I. 

In this region we have 

ao ~ (iNO!/2(j2), 

and 
g"(ao) ~ _(N2(j4/45)[1 + (20/7)(6y - 1)], (54) 

P(y) ~ (45/21T)t[1 - (60/7)(y - l)]. 

It is seen in the last section, where we present the 
results of a numerical integration for P(y), that Eq. 
(54) is indeed in excellent agreement with the computed 
function. 

Case (iii) Y « i 
Here we obtain an approximation to P(y) in the 

region where y is much less than its mean value. In 
terms of the equation relating the value of y to the 
saddle point, Eq. (52), we can obtain a simple result 
as long as 

coth fJ« N. (55) 

Then Eq. (52) becomes 

Ny ~ t csch fJa. (56) 

Here we have used the fact that Eq. (55) implies 
NfJ » 1. Inserting Eq. (56) into Eq. (55) we see that 
the range of y over which this approximate form holds 
is y« t. 

We then have the results 

ao ~ -i(N/(j2){[1 + «(j4/4S!)]t - 1}, 
g"(aoL::::. -(2/N)(yN(j2)2[1 + 4lN2]t, (57) 

P(y) 
exp (N2y{ -1 + [1 + (2Ny)-2]t)) 

If 1/2N «y« t, then Eq. (57) reduces to 

P(Y) ~ tn-- ty-2 exp [_(8y)-I]. (58) 

If Y « 1/2N, Eq. (57) becomes 

P(y) ~(N/81T)ty-ieN/2(yN)N/2. (59) 

From this we see that the single expression for 
P(y) given in Eq. (57) covers both of the small y 
cases discussed in Ref. 7 by Forsman. 

v. NUMERICAL EVALUATION OF THE 
DISTRIBUTION FUNCTION AS N -+ 00 

An integral representation of the distribution func­
tion PN(Y) in the limit N ->- 00 is given by Eq. (47). 

In this section, we obtain an integral representation 
of P oo(y) with a real integrand and evaluate P oo(y) 
numerically. To accomplish this we need to express 
the quantity {[sinh (2is)t]/(2is)t}-t in terms of its 
real and imaginary parts. Defining 

E(s) = {[sinh (2is)t]/(2is)t}t 

= {A(s) + iB(s)}t, (60) 

where A(s) and B(s) are real, we have 

A(s) = ts-t[cos st sinh st + sin st cosh st], (6Ia) 

B(s) = ts-t[ -cos st sinh st + sin st cosh st]. (61 b) 

It can be seen that A(s) is even while B(s) is odd. We 
can then write 

E(s) = ER(s) + iEis), (62a) 

where ER(S) and Eis) are real and may be written 

ER(S) = 2-t SR(s){A(s) + [A2(S) + B2(S)]t}t, (62b) 

E[(s) = 2- t Sis){ -A(s) + [A2(S) + B2(S)]t}t, (62c) 

where SR(S) and Sis) are functions of s and are equal 
to plus or minus unity. These functions are discussed 
in the next paragraph. It can be seen that, since A(s) 
and B(s) are even and odd functions of s, respectively, 
the functions ER(S) and Eis) are even and odd, 
respectively. We can now write P ooCy) as 

p oo(y) = (21T)-IL: dseiSlI{ER(s) + iEis)}-1 

= (21T)-IL: ds[E~ + E~rl[ER cos (sy) 

- E[ sin (sy) + iE[ cos (sy) + iER sin (sy»). 

(63) 

Because of the symmetries of ER(s), Eis) , sin (sy), 
and cos (sy), the integrals containing E[ cos (sy) and 
ER sin (sy) vanish. Similarly we can change the limits 
of integration to zero to infinity, obtaining 

p oo(y) = 1T-1 Loo ds[E~ + E;)-1 

X [ER cos (sy) - E[ sin (sy)]. (64) 

Making use of the fact that P oo( -Iyl) = 0, we have 

p oo(y) = 21T-ILoodS[E~ + E~rlER cos (sy). (65) 

It is necessary to determine the function SR(S) in 
order to evaluate P ooCy) as given in Eq. (65). To do this 
we recall the discussion of Sec. III concerning the 
branch cuts. Using the nomenclature of Sec. III, we 
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The maximum in P ",,(Y) occurs at y = 0.060 ± 0.001. 
The zero, first, and second moments were computed 
from P oo(y) and agree within 1 % with the exact 
moments. Numerically, we obtain P ",,(!)""'" 2.61 and 

dP oo/dy ,....., 23.8, 
1I=! 

while the saddle point method of Sec. IV gives 
P ",,(l) = 2.68 and 

dP/dy = 23.0. 
lI=l 

Forsman and Hughes5 have obtained an approxi­
mation to P oo(y) by an iterative procedure. Their 
results are in reasonable agreement with the results 
obtained here, e.g., the maximum in P oo(y) as obtained 
by Forsman and Hughes occurs at y = 0.066 and 
P ",,(0.066) = 5.5 (estimated from Fig. 1 of their 
paper) while our maximum is at y = 0.060 ± 0.001 
with P 00(0.060) = 6.30. Equation (58), which was 
obtained by the saddle point method and which is 
valid for y« t, predicts a maximum in P oo(y) at 

FIG. 3. The probability distribution P",,(v) of one component of the y = 1.\ with P 00(l6) = 4.9. 
square of the radius of gyration. 

write E(s) as15 

1[ sin 0 J-1 
1 1 [i N-1 J E(s) = N-~ -.-- = N-~K;1p~ exp - I c?k . 

sm NO 2k=1 

(66) 
Hence we have 

( -)1 [N-1 J E R = ~ cos t I c?k , 
NK1 k=1 

(67) 

( -)1 [N-1 J E I = ~ sin t I c?k . 
NK1 k=1 

(68) 

When s is near the origin, (t If::l c?k) « 1 and ER 
is positive. It is clear that E R changes sign whenever 
( .1 "'N-1 A.) - (2n + 1).17T· n - 0 ±l ±2··· At 2 ":::'k=1 'f'k - 2, -, , , • 

these values E R = 0 and we can find the values of s 
at which (!- If,:;.1 c?k) = (2n + 1)t7T by setting ER(S) = 
O. This is given by the solution of the equation 
cos (st) sinh (st) = sin (st) cosh (st) with cos (st) < 
o and sin (st) < O. The approximate solution is 
Is .. 1 '" {27Tn + 57T/4 - exp [-2(27Tn + 57T/4)])2, n = 
0, 1, 2, .... Thus ER(s) is positive for 0 < s < S1, 
negative for S1 < s < S2, positive for S2 < s < Sa, and 
so on, which specifies the function SR(S) introduced 
in Eq. (62b). 

The integral for P oo(y) as given in Eq. (65) has been 
evaluated numerically. The results are shown in Fig. 3. 

15 Rather than rewrite the corresponding functions in the limit 
as N -.. OCJ we use the finite N forms from Sec. III [i.e., Eq. (34)]. 
The explanation is not affected by leaving N finite. 
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APPENDIX 

In this appendix, we present another method of 
finding the determinant of the (N X N) matri!!. D, 

Dkl = -(iAfN2) + [1 + (iA/N)]bkl - tbkNb lN 

- ![bk •l+1 + bk ,I-1]' (AI) 

We define the (N X N) matrices Land B by 

(A2) 

Bkl = !bkl - (iA/N2)(k - 1)(/- 1) + (iA/N) 

X [(k - I)S(I- k) + (/ - I)S(k - I)], (A3) 
where 

{

I; x> 0, 

Sex) = t; x = 0, 

0; x < o. 
(A4) 

By matrix multiplication, it can be shown that D = 
LT BL. Since ILl = ILTI = 1, we have IDI = IBI. The 
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matrix B has the form 

B= (~ ~), (A5) 

where the (N - 1) by (N - 1) matrix A is defined by 

i.e., 

Akl = It5kl - (iA/N2)kl + (iA/N) 
x [kS(1 - k) + IS(k - I)], (A6) 

and we have IBI = IIAI. 
We next define the (N - 1) by (N - 1) matrix C 

by the equation 
A = !I + (iA/ N2)C, (A7) 

where I is the identity matrix. Thus, 

Ckl = -kl + N[kS(1 - k) + IS(k - I)]. (A8) 

The inverse of C is given by 

(C-I)kl = (I/N)[2t5kl - t5k./+I - t5k+l,/]' (A9) 

which can be proved by matrix multiplication. Noting 
that A = C[!C-I + (iA/N2)/], we have 

or 

IDI =! IClI!C-
I + ~~II 

IDI = INC-I + (2iA/N)II . 
2N INC-II 

(AIO) 

Let PN-I(X) be the (N - 1) by (N - 1) matrix defined 
by [PN-I(X)]kl = Xt5kl - t5k •l+I - c5k+I. I • It has been 
shown by Wolstenholme16 (see Rutherfordl7) that 

I PN- 1(X) I = sin N()/sin () = UN_1(!X) , (All) 

where () = arccos (Ix). Combining this 
Eq. (A 10) , we obtain 

I
DI = U N-l(1 + iA/N) 

N2N ' 

which is the same as Eq. (26). 

18 J. Wolstenholme, Educ. Times 27,67 (1874). 

result with 

(AI2) 

17 D. E. Rutherford, Proc. Roy. Soc. Edinburgh 62A, 229 
(1946-47). 
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The existence of a Bose-Einstein condensation in an interacting many-boson system at T = OaK is 
proved under certain conditions on the particle density and the interparticle potential. Starting with the 
tentative assumption that the condensation exists, we study the fluctuation in the occupation number 
of the condensate with due regard to its interactions (1) with particles outside the condensate as well as 
(2) with the fluctuation itself. If the condensate fluctuation has a normalizable ground state, then the 
assumed existence of the condensation is tenable. For the case of the pair-Hamiltonian model satis­
fying the conditions for condensation, the interactions of the second category are of no importance. In 
the limit of infinite volume, this Hamiltonian can be diagonalized in an irreducible representation of a 
Bose-field operator </>(x), where </>(x) has nonvanishing ground state expectation value, in accordance with 
the usual c-number replacement of creation and destruction operators for the condensate particles. The 
full Hamiltonian for a system of pairwise interacting bosons is studied only in a low-density limit. 
Bose-Einstein condensation exists when the over-all space integral of the interparticle potential is 
positive. In this case the interactions of the second category play an important role in ensuring a nor­
malizable ground state for the condensate fluctuation. There is an indication that in the limit of infinite 
volume the Hamiltonian cannot be diagonalized in any irreducible representation of the field operator </>. 
Yet the c-number replacement of the condensate operators is legitimate as far as states of particles 
outside the condensate are concerned. Some speculations are made as to what may happen for systems of 
moderate density. 

I. INTRODUCTION 

I T is universally believed that at sufficiently low 
temperatures a Bose-Einstein (B.E.) condensation 

occurs in a system of N ---+ 00 interacting bosons.! To 
date no proof has been given to support this belief 
except for several simplified model systems.2 In a 
classic paper on interacting bosons, Bogoliubov3 

proposed that one simplify the second-quantized 
Hamiltonian, so as to take advantage of the assumed 
B.E. condensation, by replacing aJ and ao, the 
creation and destruction operators for the zero­
momentum single-particle state, by a c number Nt. 
The quantity No is the average number of particles 
occupying this state, and it is supposed to be O(N), 
of course. Bogoliubov's procedure has been very 
useful for the purpose of providing a first-principles 
explanation of some of the low-temperature prop-

erties of liquid 4He. Nevertheless, it is necessary to 
ascertain the domain of applicability of this otherwise 
ad hoc procedure. In this regard, an a posteriori 
verification4- 6 that No = O(N) does not establish its 
legitimacy. 

• Present address: Department of Physics, Gakushuin University, 
Mejiro, Toshima-ku, Tokyo, Japan. 

t Present address: Department of Physics, Bar-Ilan University, 
Ramat Gan, Israel. 

1 The limit we are referring to is that for which both the number 
N of particles and the volume V enclosing the system become 
infinitely large, with the particle density p = N/ V held fixed. Such 
a limit is caned the volume limit. 

S W. H. Bassichis and L. L. Foldy, Phys. Rev. 133, A935 (1964). 
Their study concerns a model system which, in the absence of 
interactions, consists of only three energy states. The existence of a 
B.E. condensation can also be demonstrated for the Hartree--Fock 
model of interacting bosons. 

aN. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947). 

Based on a result7·8 from the theory of the repre­
sentation of canonical commutation relations, one of 
us (H. E.)8 proposed the operator replacement 

(1.1) 

where the operator c and its adjoint c t satisfy the 
usual boson commutation relations, 

[c, ct ] = 1, [c, c] = [ct , ct] = 0, 
[cIt), a~t)] = 0 (k =F 0). 

(1.2) 

It is the main subject of this paper to study the use­
fulness of the replacement (1.1) for the purpose of 
obtaining an existence criterion for the B.E. con­
densation. 

Two remarks are in order about this operator 
replacement. First, if we adhered to the usual Fock 

• T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135 
(1957). 

• N. M. Hugenholtz and D. Pines, Phys. Rev. 116,489 (1959). 
• S. Beliaev, Soviet Phys.-JETP 7, 289 (1958). 
• H. Araki and E. J. Woods, J. Math. Phys. 4, 637 (1963). 
8 H. Ezawa, J. Math. Phys. 6, 380 (1965). 
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representation9 for the operators a~t), then any state 
vector describing B.E. condensation would keep 
rotating in the Fock space and therefore no con­
vergence could be expected in the volume limit when 
No -+- 00. It should be recognized here that the B.E. 
condensation can be defined only in the volume limit, 
N, V-+- 00, HI V = p fixed. Io Thus we need some 
replacement for the quantum mechanical variables 
a~t>. The idea of the replacement (1.1) is to shift the 
"origin" of a~t> in accordance with the size No of 
the condensate. The new operators em describe the 
fluctuations of the k = O-state occupation number 
from its average. Underlying (1.1) is the hope that 
c(t> remain "finite" in the volume limit when No -+- 00. 

If unfortunately the condensate of a given system is 
such that its fluctuationsll cannot be described by any 
finite c(t), then a further change of variables will be 
needed. The proper choice of the variables will be 
determined by the Hamiltonian of the system.12 

Parenthetically we note here that a finite description 
of the condensate may be achieved in some other ways 
too. For instance, we may try the variables P, Q 
defined by ao = 2-!(NlP - iN;!Q) and 

aJ = 2-!(Ntp + iNo!Q); 

they satisfy the commutation relation [P, Q] = -i. 
The number of condensate particles, aJao = tNo X 

(P2 + N;2Q2 - NOI), can be O(N) for finite operators 
P, Q. 

The second remark concerns the particular features 
of our choice of variables (1.1). For one thing, the 
Bogoliubov replacement a~t> -+- Nt is closely related 
to (1.1). If it can be shown in fact that c(t> = o(NtHor 
the condensate of a given system, then the Bogoliubov 
replacement is justified for the treatment of the system. 
The notation cIt) = o(Nt) should be understood to 
mean that the operators cIt) can be treated as if they 
are quantities of o(Nt). The precise meaning can be 
given only after we find a Hilbert space appropriate 
for describing c(t). Another interesting feature of the 
replacement (1.1) is that it leads to an irreducible 
representation of boson-field operators if em = o(Nt). 

• For the classification of the representation of canonical com­
mutation relations, see L. Go\rding and A. S. Wightman, Proc. Nat!. 
Acad. Sci. U.S. 40, 622 (1954); A. S. Wightman and S. S. Schweber, 
Phys. Rev. 98, 812 (1955); R. Haag, Lectures in Theoretical Physics 
(Interscience Publishers, Inc., New York, 1961), Vo!. III. 

10 For the general definitions of B.E. condensation, see o. 
Penrose and L. Onsager, Phys. Rev. 104,576 (1956); C. N. Yang, 
Rev. Mod. Phys. 34, 694 (1962). 

11 The size of the condensate fluctuation is given by the formula 

a(atao) = Noa(c + ct ) + 2Nla(c + ct , ctc) + a(ctc), 
where 

a(A, B) = l(AB + BA) - (A)(B), a(A) = a(A, A), 
and .the angular bracket means expectation value. 

11 H. Araki, 1. Math. Phys. 1, 492 (1960). 

If we used the representation in terms of the finite 
operators P, Q defined above, the term N;;! Q becomes, 
in effect, negligible in the volume limit and only the 
operator P remains relevant, so that P can be treated 
as a c number. The representation of the boson-jie/d 
operators becomes a direct sum of representations, 
each corresponding to a particular value of the c 
number P. The representation is thus reducible in the 
volume limit. 

We now formulate within the context of the 
operator replacement (1.1) the existence criterion for 
the B.E. condensation for the special case of T = OaK. 
Let Je denote the form of the Hamiltonian which 
obtains when the operators ao and aJ are replaced in 
accordance with (1.1). Since we have to use a repre­
sentation in which the total number of particles is 
not sharp, we introduce:re = Je - ftX, where X = 
2k a~ak and ft are the total number operator and the 
chemical potential, respectively. We call :re, rather 
than Je, the Hamiltonian of the system. Since the 
Hamiltonian :re and therefore its ground state In) 
involve two parameters No and ft, we can impose two 
subsidiary conditions on the ground state, 

(nl c In) = (nl ct In) = 0, (1.3) 

(n/x In) = No +(n/ etc + 2' atak In) = N, 
k 

besides the usual normalization requirement 

(n I n) = 1. 

(1.4) 

(1.5) 

Here and in the following a prime on a summation 
symbol for momentum states k means that the k = 0 
term is to be omitted. Note that if we understand the 
canonical transformation as providing an analog of 
the method of small oscillations, then (1.3) should be 
compared to the equilibrium condition with which we 
determine the center of oscillation. A B.E. conden­
sation occurs if the number No determined from 
(1.3)-(1.5) is in fact macroscopic, No = O(N). For 
the purpose of practical calculations, it is actually 
more convenient to start by assuming that No is 
macroscopic. Then one must determine whether or 
not the Hamiltonian has a bona fide ground state 
satisfying the restrictions (1.3)-(1.5). 

To facilitate such calculations, in Sec. II of this 
paper we present a modified version of the Born­
Oppenheimer met~od, 13 which, as is well known, was 
originally designed for the treatment of molecular 
vibrations. Just as Born and Oppenheimer eliminated 
the electron-nucleus interactions to obtain an effective 

11 M. Born and R. Oppenheimer, Ann. Physik 84, 457 (1927); 
R. de Kronig, Z. Physik SO, 347 (1928). 
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nuclear potential, so we construct an effective 
Hamiltonian An for the condensate fluctuation by 
solving an "eigenvalue problem" for the particles 
outside the condensate (k y6 0). To be specific, let 
5B and 50 denote the Hilbert spaces appropriate to 
operators a~f), (k y6 0), and eW , respectively. Then 
An is an operator on 50 such that 

(1.6) 

where "Pn is a vector of 5B describing the state of the 
k y6 0 particles and, at the same time, an operator 
defined on 50' In other words, "Pn is a linear combi­
nation of vectors of 5B whose coefficients are functions 
of the operators e(f). The reason why we call An an 
effective condensate Hamiltonian is that, given the 
"state" "Pn of the k y6 0 particles, the spectrum of the 
associated condensate fluctuation is obtained by 
solving the eigenvalue problem 

(1.7) 

where the l1>n) E 50 are the state vectors of the 
condensate. The physical meaning of the eigenvalue 
En,. can be found by combining (1.6) and (1.7): 

(1.8) 
where 

Thus En,. is the energy eigenvalue of the total system. 
The differences En,. - Eno give the excitation energies 
of the condensate fluctuation. Let us denote the 
ground state of the total Hamiltonian by n = (J. = 0: 
10, 0> = In). As we see in the following sections the 
condition (1.3) serves to determine the chemical 
potential14 by requiring that Ao has no term linear in 
e(f). The number No is then determined by (1.4). If the 
above program yields a normalizable ground state 
and if the number No turns out to be macroscopic as 
desired, then we can conclude that the boson system 
undergoes a B.E. condensation. 

In Secs. III-VI we study the eigenvalue problem 
(1.6) and (1.7) for the case of the pair Hamiltonian 
model, whose thermodynamical properties have been 
studied by one of us (M. L.).15 Then in Sec. VII we 
try to discuss some challenging problems one meets 
when one examines the case of the full boson 
Hamiltonian. Note that the pair Hamiltonian includes 
only a small subclass of interaction terms included in 
the latter. Despite several unphysical properties, the 

14 It may be seen that the chemical potentials /1n determined, 
respectively, by the condition that An has no terms linear in N:c(t), 
all coincide, /1,. = /10' as long as the states 'Pn differ from 'Po by a 
finite number of k "" 0 excitations. 

16 M. Luban, Phys. Rev. 128,965 (1962). 

pair Hamiltonian is interesting because it admits of a 
complete mathematical analysis. 

In Sec. III we begin our study of the pair Hamil­
tonian by solving (1.6), the first part of our eigenvalue 
problem. Reasonable solutions can be obtained only 
when the interparticle potential and the particle 
density p = N/ V satisfy certain conditions (k ¢ 0 
stability conditions), e.g., v(O) > 0, where v(k) is the 
potential in the momentum representation.16 For the 
moment we assume that these conditions are satisfied. 

In Sec. IV we calculate the effective condensate 
Hamiltonian Ao by making use of the perturbation 
formulas presented in Appendix A. The Hamiltonian 
consists of two parts, a finite part Ag and an infini­
tesimal part A~; both are power series in e(t), and the 
coefficients are 0(1) in the former and 0(1) in the 
latter as N -- 00. In the second-order approximation 
we obtain 

(1.9) 

where Wo/N,fo, and ho are c numbers of 0(1).17 For 
the present case of the pair Hamiltonian, the use of 
Green functions shows that there is good reason to 
believe that this expression for Ag is· asymptotically 
correct to all orders as N -- 00. The Hamiltonian 
(1.9) can be studied more conveniently after the 
canonical transformation, 

p = rl(e + et), q = i2-l(e - et); (LlO) 

the new variables satisfy the usual momentum­
coordinate commutation relation, 

[p, q] = -i. (1.11) 
Then (1.9) becomes 

Ag = Wo - Ho + t(fo + hO)(p2 + Aq2), (1.12) 
where 

(1.13) 

It is now clear that Ag has a normalizable ground 
state 11>00> if and only if 

fo ± ho > O. (1.14) 

The inequalities (1.14) constitute what we call the 
k = 0 stability conditions. When (1.14) is satisfied, 
the requirements (1.3) and (1.5) can be satisfied by 
In) = "Po 11>00)' The number No we get from (1.4) is 
macroscopic in accord with our presupposition of the 
B.E. condensation. Further, as desired, the operators 

16 The condition v(O) > 0 means, therefore, that the space 
integral of the interparticle potential must be positive. 

17 We can calculate the effective condensate Hamiltonian An 
corresponding to the state 'Pn of the k "" 0 particles. It may be seen 
that A,. = Ao as long as the state 'P,. differs from 'Po by a finite 
number of k "" 0 excitations. 
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cIt) are finite in the sense that all matrix elements18 

(01 (Ct)i(C)i 10), i,j = 0, 1,2, . ", are 0(1). Thus the 
Bogoliubov replacement a~tl ........ Nj is valid. 

In Secs. V and VI we study the implications of the 
k = 0- and k :;1= O-stability conditions on the inter­
particle potential and the particle density p. In 
particular, the condition/o - ho > 0 is found to imply 
that iJ must be partially attractive.19.2o Thus a 
potential that is purely repulsive, iJ(x) > 0, in co­
ordinate space will lead to a violation of (1.14). For 
a many-boson system with such a potential, the 
discussion in Appendix B shows that the operator part 
c(t) of (1.1) must be comparable in order of magnitude 
with the c number part Nj. Two possibilities are 
therefore open. Either (1) a B.E. condensation 
occurs in such a system but the operator replacement 
(1.1) is not useful, or (2) a B.E. condenr.ation, at 
least of the usual variety, fails to occur in the system. 
Regarding the latter possibility, we can also show 
that the assumption of no condensation for such a 
system is untenable (see Sec. V). 

When we turn our attention to the case of the full 
Hamiltonian in Sec. VII, the situation becomes less 
clear because we are unable to calculate the effective 
condensate Hamiltonian in an asymptotically exact 
fashion. In the low-density limit, where a second­
order perturbation calculation is believed to be 
meaningful, the finite part Ag of the condensate 
Hamiltonian turns out to have the form of (1.9) with 
the coefficients21 / 0 + ho = 2pov(0), and /0 - ho = 0; 
the restoring force term in (1.12) vanishes and there­
fore the operators c(f) cannot remain 0(1) as N ........ 00. 

Vanishing of the restoring force is closely related to 
the Hugenholtz-Pines theorem5•22 and the corre­
sponding result of Gavoret and Nozieres,22.23 which 
assert, respectively, that the one- and two-particle 
excitation energies vanish in the low-momentum 
limit. Since c(t> may become large, the infinitesimal 
part A~ of the condensate Hamiltonian will play a 
significant role. Inclusion of A~ leads to a Hamiltonian 
Ao of the form a constant times the following: 

(c + Ct)2 + 2No!(ctcc + ctctc) + NolctctcC 

= [(a~ao - No - t)2 - t]/No, (1.15) 

which is diagonal in the occupation number repre­
sentation of aJao. The energy is minimum when 

18 In view of the previous footnote. the expectation values with 
respect to the excited states are also 0(1). 

10 The precise condition on v is given in Sec. V. See (5.5), (5.15). 
and the lemma preceding (5.19). 

80 The quantity v(x) is the Fourier transform of v(k). 
It Note that v(O) > 0 when the k #< 0 stability conditions are 

satisfied. 
II K. Huang and A. Klein. Ann. Phys. (N.Y.) 30, 203 (1964). 
13 J. Gavoret and P. Nozieres. Ann. Phys. (N.Y.) 28, 349 (1964). 

aJao = No or No + 1 so that the system undergoes a 
B.E. condensation. It is remarkable that Ao is diagonal 
only in the occupation number representation of 
aJao, a representation which is reducible in the 
volume limit. 7 The reducibility is a reflection of the 
nonconvergence of the state vector, a situation 
mentioned at the beginning of this section. 

Finally, in Sec. VIII we discuss the relevance of 
our present results to the theory of representations 
of canonical commutation relations. 

n. MODIFIED BORN-OPPENHEIMER 
APPROXIMATION 

In order to discuss the condensate fluctuation we 
use a perturbation method which can be regarded as 
a natural extension of the Born-Oppenheimer 
approximation.13•24 Deferring the presentation of the 
mathematical details until Appendix A, in this 
section we discuss the pertinent features of our 
method. 

Suppose we are given a dynamical system which 
consists of two subsystems Band C. The Hamiltonian 
consists of three parts, 

(2.1) 

where ;reB and ;rea are the Hamiltonians of the 
subsystems and ;reI that of their interaction. Under 
the assumption that the Hamiltonian ;reB has been 
completely diagonalized, our method is designed to 
give an "effective Hamiltonian" for the system C 
with due regard to its interaction with the subsystem B. 

Let the Hilbert spaces appropriate to the sub­
systems Band C be ~B and ~a, respectively. The 
state vector of the entire system then belongs to 
~B ® ~a· The diagonalization of the total Hamil­
tonian is achieved in two steps. First we find 1Jln and 
An' the former being a vector in ~B and at the same 
time an operator in ~a, and the latter an operator 
in ~a' such that 

and 
t 

1Jln1Jln = 1, (2.3) 

where 1 is the identity operator in ~a. More precisely, 
1Jln has the form 

(2.4) 

where lUi) E ~B and the coefficients L j of the linear 
combination belong to the ring of operators in ~a. 

24 A detailed comparison between the present method and the 
original method of Born and Oppenheimer1" as applied to the 
problem of the hydrogen molecule will be presented by one of us 
(H. E.) in a forthcoming publication. 
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The product in (2.3) means that 

tp~tpn = I (U i I ui)L!L j • 

i.i 
(2.5) 

It should be noted here that An is a Hermitian 
operator; in fact, by the isometric property (2.3) of 
tpn, we see from (2.2) that 

An = tp~Jetpn' (2.6) 

the product being understood in the sense of (2.5). 
We call An an effective Hamiltonian for the sub­
system C. The second step in the diagonalization of 
the total Hamiltonian Je is to diagonalize An: 

(2.7) 

where Icfona) is a normalized eigenvector in ~a, 

(2.8) 

and Ena. is a c number eigenvalue. Note carefully that, 
because An stands to the right of tpn in (2.2), 

In, ex) = tpn Icfona.) (E ~B ® ~d (2.9) 

is a normalized eigenvector of Je with eigenvalue Ena. . 
The solution to the system of equations, (2.2) and 

(2.3), can be obtained at least formally in the frame­
work of our perturbation expansion with respect to 
the interaction JeI . In the zeroth-order approximation 
in which we ignore Je I completely, the solution is 
simply given by 

.,,(0) _ In) A(O) = W(O) + Je 
Tn - , n n A' (2.10) 

where W~O) and In) E ~B are an eigenvalue and the 
corresponding eigenvector of JeB : 

(2.11) 

Note that tp~) is just a vector in ~B and has no 
operator character. The formulas for the perturbation 
corrections are obtained in Appendix A on the 
assumption that the eigenvalue problem (2.11) has 
been completely solved. It is worth noting that 
despite its operator character such an eigenvector of 
(2.2) as tp' = In) + Ii lUi) L j can be normalized 
without difficulty when the operator part is small as 
compared with the zeroth-order c number vector 
In); the normalization factor (which is to be multiplied 
from the right) is obtained in the form of a power 
series in L~t) . 

ID. DIAGONALIZATION OF :reB 

Consider N identical bosons confined to a cubic box 
of volume V. Then, the "pair Hamiltonian" is 

defined by15.25 

Jep = I (k2 
- Il)ata" + (2V)-IV(0) 

" 
x (t ata,,) [(~ a!ap) - 1J 

+ (2 V)-l I v(p - k)ata"a~ap 
k.p("±k) 

+ (2V)-1 I v(p - k)a~a~"apa_p, (3.1) 
".p("k) 

where v(k) is the Fourier transform of the inter­
particle potential, ak and at are the usual boson 
destruction and creation operators, respectively, for 
plane wave states satisfying periodic boundary 
conditions with respect to V. The quantity Il is the 
chemical potential; it is introduced here because we 
have to use a representation in which the total 
particle number is not sharp. Our task is to find the 
ground state of Jep that satisfies the requirements 
(1.3)-(1.5). 

On the basis of the discussion of Sec. I we replace 
the operators a~f) by Nt + c(f) assuming that the 
number ofk = 0 particles is macroscopic, No = O(N). 
The density of the condensate No/V is denoted by Po. 
Then we use the method of Sec. II to split Jep into 
three parts: 

Jep = JeB(a"(,,O» + Jea(c) + JerCak("Ol' c), (3.2) 
where the symbols in the brackets indicate the 
variables included in each part of the Hamiltonian. 
It is understood that ak , c mean a~tl, c(t), respectively. 
Specifically, 

JeI = V- IBoI 2' (v(O) + tl(k)]Bkt 

" 
+ (2V)-1[ B~2 r v(k)Bk2 + H.c.] - Je~, (3.3) 

where H.c. stands for Hermitian conjugate, and the 
renormalization term has the form 

Jef} = IlJoctc + tllho(cc + ctct ). (3.4) 
Moreover, 

Bot = a~ao - No = ctc + N:(c + ct ), 
i (3.5) 

B02 = aoao - No = cc + 2Noc, 
t 

Bkl = a"a" - ~'" (k ~ 0), (3.6) 
Bk2 = a"a_" - 'fJk' 

The quantities Ilfo, !J.ho and ~k' 'fJ" are c numbers to be 
determined later. Further JeB is given by28 

(3.7) 

0& We use a unit system h = 2m = I, where m is mass of the 
boson. 

18 The single prime on a double summation sign 

I' 
k,p 

means that terms for k and/or, = 0 are to be omitted. 
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where 

x'1 = Wo + :r ([X + J(k)]atak 
k t t + Ih(k)(aka_k + a_kak )} (3.8) 

and 

X B = (2V)-lV(0) 2' Bt1Bpl 
k,p 

+ (2V)-1 2' v(p - k)Bt1Bpl 
k,p("±kl 

+ (2VrI 2' v(p - k)Bt2Bp2' (3.9) 
k.II(,.k) 

the symbols here being defined as 

Wo = (2Vrl{,'(0) 2' ';,,';p - (2V)-1 2' v(p - k)';,,';p 
k,p k.p! ,. ±kl 

- (2V)-1 2' v(p - k)WI']p + [!pov(O) - It]No, 
k.p( ,.ok) (3.10) 

J(k) = k 2 + Pov(k) - V-I 2' V(PP7p 
II 

+ V-I 2' [v(p - k) - v(p»)';p, (3.11) 
II 

h(k) = Pov(k) + V-I 2' v(p - k)1}p. (3.12) 

Further, Xo is given by 

Xo = X~ + Xa + xf; • (3.13) 
where 

X~ + :reg = XN1(c + ct
) 

+ (X + Jo)ctc + Iho(cc + ctct ), (3.14) 

Xa = V-INgv(O)(ctcc + ctctc) + (2Vrlv(0)ctctcc, 

(3.15) 
and 

X = -It + (PO + V-l t' ';k)V(O) 

+ V-I 2' v(k)(';k + 1}k)' 

Finally. 
10 = /(0) + illo, 
ho = h(O) + tlho, 

k 

(3.16) 

where 1(0) and h(O) are given by (3.11) and (3.12), 
respectively. It may be seen in the following that the 
condition (1.3) requires the chemical potential to be 
such that 

x=O. (3.17) 

At this point we note only that (3.17) removes the term 
linear in cIt) from Xo. Note that this linear term 
contains the large factor Nt. We take X = 0 through­
out the following calculations. 

Now, in order to carry out the diagonalization 
procedure as presented in the previous sections, we 
must first solve the eigenvalue problem fer X B and 
this forms the subject matter of the remainder of this 

section. For this purpose we can use a many-body 
perturbation theory27 by taking (3.8) and (3.9) as 
unperturbed Hamiltonian and perturbation, respec­
tively. 

Let us first study the unperturbed Hamiltonian 
X'k. It is convenient to use a new set of variables 
gk:!::,7Tk:!::} which is obtained by two successive 
canonical transformations,8 

(3.18) 

and 

'k+ = 2-i (qk + fJ-J, 7Tk+ = 2-i (Pk + P-J, 
'k- = 2-i (Pk - P-'k), 7Tk_ = -2--t(q" - q-J. 

The new variables satisfy the usual momentum­
coordinate commutation relations, 

[7Tk+' 'k+] = - i, [',,+, 'k-] = 0, 

[7Tk+' 'k-] = 0, etc. 

Then X'k takes on the form of the standard harmonic 
oscillator Hamiltonian, 

X'1 = - 2 J(k) 
irk]. 

+ t 2' [M;1(7T:+ + 7T:_) + )'k(':+ + {:_)], 
ilk] (3.19) 

where Uk} under the summation symbol means that 
the allowed momenta k should belong to a half-space 
only, k. > 0, say. We can now see clearly that X'k has 
a normalizable ground state if and only if 

M;l == J(k) + h(k) > 0, 

Ak == J(k) - h(k) > O. 

(3.20) 

(3.21) 

These are what we call the k :¢ O-stability conditions. 
How these conditions restrict the interaction potential 
v(k) is studied in Sec. VI. For the moment, let us 
assume that the conditions are satisfied. Under this 
assumption,X'k can readily be diagonalized by a 
Bogoliubov transformation, 

(3.22) 

where l4t ) are new boson operators and their com­
mutation relations are secured by requiring the real 
c number coefficients ock ' P

k 
to satisfy 

(3.23) 

111. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957): 
C. Bloch, Nucl. Phys. 7, 451 (1958). 
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If we choose the coefficients such that28 

where 

11.: = tUf(k)/E(k)] + I}, 
I1.k{3k = -th(k)/E(k), 

E(k) = [f2(k) - h2(k)]!, 

(3.24a) 

(3.24b) 

for f(k) and h(k): 

(k) = k2 + Pov(k) + (2V)-1 l' [v(p - k) - v(p)] 
p 

X Uf(p)/E(p)] - I} + (2Vr11' v(p)h(p)/E(p), 
p 

(3.30) 

then Je'k is diagonalized in the new representation, h(k) = Pov(k) - (2V)-1 l' v(p - k)h(p)/E(p), (3.31) 
~~ p 

Je'b = Wo + l' E(k)bZbk • (3.25) 
k 

The quantity E(k) is real as a consequence of the 
assumed k ¢ 0 stability conditions (3.20) and (3.21).29 
The ground state is given by the no-particle state 
10} of bk , 

bk 10} = 0 (all k ¢ 0), (3.26) 

and its energy is 

Wo = Wo + t l' [E(k) - f(k)]. (3.27) 
k 

The motivation for the separation (3.7) is that if the 
;k and rJk are chosen as 

;k = {Ol aZak 10}, 

rJk = {Ol aka-k 10}, 
(3.28) 

then we can show that in the volume limit the 
Hamiltonian JeB is essentially equivalent30 to Je'k in 
the following sense: (1) The eigenvalue spectra are 
identical, and (2) the expectation values of quantities 
of 0(1) with respect to the corresponding eigenstates 
are equal in the volume limit. The proof of this claim 
is given in succeeding paragraphs. Using (3.22)-(3.24) 
the matrix elements in (3.28) are easily found to be 

~k = (3~ = t{[f(k)/E(k)] - I}, 

rJk = I1.k{3k = -th(k)/E(k). 
(3.29) 

Now we substitute these equations into (3.11) and 
(3.12) to obtain a set of coupled integral equations 

28 The stability conditions can be obtained without using the 
canonical transformation to the standard form of the harmonic 
oscillator Hamiltonian (3.19). After the Bogoliubov transformation 
(3.22), JC~ becomes a sum of E(k)btbk + !h'(k)(bkb -k + btb !k) 
overk, where E(k) = (cx~ + {1~)!(k) + 2cxkiJkh(k), h'(k) = 2cxk{1k!(k) 
+ (cx~ + {1~)h(k). Now, the equation h'(k) = 0 has real solutions for 
cxk ' {1k if and only if !(k) ± h(k) have the same sign. But, ifthey were 
both negative, then !(k) < 0, which implies E(k) < 0, because by 
using h'(k) = 0 to eliminate cxk{1k, we get E(k) = (cx: + {1~)[!(k)2 -
h(k)2]1 !(k). Thus we reach the stability condition. At the same time 
we know that the sign of cxk{1k must be opposite to the sign of 
h(k)I!(k) • 

•• When !(k) > 0, cxk{1k has the sign of -h(k). See footnote 28. 
30 There is no surprise in this equivalence. A beautiful argument 

has been given for the case of pairwise interacting fermions (BCS 
model) by R. Haag, Nuovo Cimento 25, 287 (1962); see also 
H. Ezawa, J. Math. Phys. 5, 1078 (1964); H. Umezawa, Y. Taka­
hashi, and S. Kamefuchi, Ann. Phys. (N.Y.) 26,336 (1964). 

In these equations we have set X = 0 in accordance 
with (3.17). 

We turn now to the proof of the asymptotic 
equivalence of JeB and Je'k. According to Goldstone27 

the ground state of the total Hamiltonian JeB can be 
written as 

IQB) = z!! [CWo - Je'b)-lJeB]iinked 10}, (3.32) 
n=O 

where Z! is a normalization factor and 10} the 
unperturbed ground state (3.26). It should be observed 
here that (3.6) and (3.28) mak'" the operators Bki the 
normal products in the b representation as defined 
by (3.22) and (3.26). Namely, {O IBkil O} = 0, (i = 1,2). 
The vectors [CWo - Je'k)-lJe~]n 10} can be represented 
in a well-known way by diagrams like those of Figs. 
lea) and l(b). If every part of a diagram is linked to 
some external lines, then we call it a linked diagram. 
If, on the contrary, a diagram has some isolated 
bubbles, then such a diagram is said to be unlinked. 
The diagrams in Fig. lea) and in Fig. l(b) are linked 
and unlinked, respectively. The suffix "linked" in 
(3.32) means that we should take only those terms 
which are represented by linked diagrams; this is 
because all terms represented by unlinked diagrams 
can be absorbed by the normalization factor z!. 

The pair Hamiltonian has some special features 
that greatly assist us in calculating its energy spectrum 
and various matrix elements with respect to its 
eigenstates. First of all, the perturbation term Je~ is 
made up of the pair operators Bki' so that for any term 
of the perturbation series the particles in the inter­
mediate states or the final state can be paired off 
according to their momenta. Now consider a diagram 
that contributes to (3.32) a term, 

lu) = 1 V-AA(kl>"', k.)bZ,b!k
1 

••• bLb!ksIO}, 
k 1 •· .•• k. (3.33) 

(a) (b) 

FIG.!. (a) Linked diagram. (b) Unlinked diagram. 
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(a) (b) (c) 

FIG. 2. Miscellaneous contractions appearing in the expansion 
(3.32) of the state vector lOB). 

where A is a certain function of the s external 
momenta not involving any volume factor; the volume 
dependence is factored out as V-A in front. It is not 
difficult to see that the exponent of the volume 
factor should satisfy an inequality, 

A ~ ls. (3.34) 
In fact, if the diagram involves no internal lines we 
have the equality A = ls, because there is a factor V-I 
for each product of four b operators, or B~i Bp; in 
(3.9). Now if in such a diagram we apply a contraction 
of the form shown in Fig. 2(a), !J.S = 2 pairs of 
external lines are removed whereas the summation 
over the internal momentum contributes a factor V~\ 
!J.A = 1. Therefore such a contraction changes A 
into A' = A-I and s into s' = s - 2, so that the 
equality in (3.34) remains valid: A' = ls'. For the 
contraction shown in Fig. 2(b) we have !J.s = 3, 
!J.A = 1 so that A' = l(s' + 1) ~ ls' in accordance 
with (3.34). A contraction of the type shown in Fig. 
2(c) need not be considered since it is an unlinked 
diagram. Continuing the process of adding con­
tractions, we can verify (3.34) for all diagrams 
involved in the perturbation series (3.32). As a 
consequence of (3.34) we can conclude that the norm 
Ilull of the vector (3.33) is of the order one or smaller31 
as V~ 00. 

With the aid of (3.34) we can now prove that in the 
asymptotic sense (V ~ 00) the excited states of JeB 
are given simply by 

Ip ... p) = bt ... bt 10) (r = 1 2 ... ) 
1 , 'f' PI Pr B '" 

(3.35) 

and. the corresponding energies are Wo + I~=l €(Pi)' 
Note that, this eigenvalue spectrum is the same as 
that of Je~. The. proof begins with the observation 
that the vector 

IRI ) = [JeB, bp ] lOB) 
has a vanishing norm as V ~ 00: 

IIRl1l2 = O(V-I). 

(3.36) 

(3.37) 

81 This is not the case for the full Hamiltonian because its 
interaction term 

I v(k)aJ+kaZ_kapaq 
k,p,q 

involves three independent momenta which are to be summed. 

In fact, the commutator applied on a constituent of 
lOB), 

[JeB , b!] lu) = (2V)-IV(0) I' Btl [BpI , b~] lu) + ... 
k 

increases only one momentum summation at the cost 
of one volume factor V-I. Hence we get (3.37).32 By 
a similar argument we can also prove that 

(3.38) 

and therefore that b! lOB) is asymptotically nor­
malized: 

(3.39) 

We can now conclude that, as V ~ 00 asymptotically, 
bllOB ) is an eigenstate of JeB , because 

JeBb! lOB) = b~JeB lOB) + [Je~, b~] lOB) + IRI ) 

= [Wo + €(p)]b! lOB) + IRI ), 

and the residual IRI ) has a vanishing norm by (3.37). 
Repeating a similar argument, we can verify the above 
statement concerning (3.35). A generalization of (3.38) 
shows that it is impossible to create a state lying lower 
than lOB) by applying the destruction operators bp on 
lOB)' From this result we know that the set of vectors 
of the form (3.35) is asymptotically complete as a basis 
for the cyclic representation9 of b~tl . 

Let us turn to the calculation of various matrix 
elements. We have the formulas 

(3.40) 

(p, -pi Bki lOB) = {p, -pi Bki 10} + O(V-I), etc., 

(3.41) 
where 

(3.42) 

To prove (3.41), for example, we have only to observe 
that the matrix element can involve two kinds of 
contractions. Namely, the momentum k of Bki can 
be contracted either with the momenta of the virtual 
pairs contained in the ground state lOB) or with the 
momentum p of the real pair. For the same reason 
that we obtain (3.38), the former contraction yields 
only a vanishing contribution of O(V-I). The latter 
leads to {p, -pi Bki 10}, which is the main term of 
(3.41). In general, nonvanishing contributions to 
any matrix elements ("P'I Bpi' •• Bq; I"P) come only 
from contractions of p, ... , q with the momenta of 
real pairs involved in the states Itp) and I"P'). This 
completes the desired proof that JeB is asymptotically 

.2 This conclusion remains valid if we consider a wave packet 
state, 

If) = I v-l f(p)bJ lOB) 
for which S Ifl2 dp < co. p 
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equivalent to Je'1, and the diagonalization of JeB is 
thereby accomplished in the asymptotic sense. 

IV. EFFECTIVE CONDENSATE HAMILTONIAN 

We are now in the position to construct the 
effective Hamiltonian Ao for the condensate fluctua­
tion which is associated with the ground state of 
the particles outside the condensate by using the 
modified Born-Oppenheimer method of Sec. II. The 
present calculation makes use of our perturbation 
method through second order (see Appendix A). 
The result for Ao actually incorporates the ladder-type 
corrections which occur in the higher orders of 
conventional perturbation theory. In the case of the 
pair Hamiltonian model, which we are going to study 
in this section, we have good reason to believe that 
the present result for Ao is actually correct through all 
orders of our perturbation theory in the volume 
limit. In fact, the excitation spectrum of the conden­
sate fluctuation as well as the ground-state expectation 
values of products of the operators cIt) can be 
calculated in an asymptotically exact fashion by 
making use of a Green function approach, and all the 
results therefrom will prove to be in complete agree­
ment with the results from our second-order per­
turbation calculations. The Green function approach 
and our method of perturbation are complementary 
to each other: The former, though the more convenient 
to handle, rests upon the assumption that the 
Hamiltonian Jep has a bona fide ground state in the 
representation based upon the operator replacement 
(1.1), while the latter is useful for studying this 
assumption. 

A. Modified Born-Oppenheimer Approach 

The total pair-model Hamiltonian Jep is given by 
(3.2). For the purpose of applying the perturbation 
method as developed in Sec. II and Appendix A, it 
proves convenient to subdivide JeI , the interaction 
part of Jep , as 

e = o(NI), in particular when the k = 0 stability 
conditions (1.14) are satisfied. 

Let us calculate the effective condensate Hamil­
tonian Ao associated with the ground state (3.32) of the 
k =;1= 0 particles. We treat HI = Je1nt and H2 = -Je~ 
as small perturbations of first and second order, 
respectively.33 As is well known, this procedure leads 
to a low-density expansion4; the expansion parameter 
is (poa3)1 with a being the zero energy scattering length 
of the interparticle potential v. According to (AI6) 
the zeroth-order condensate Hamiltonian is 

A~O) = Wo + Jeo , (4.4) 

and the formula (A17) gives the first-order correction, 

A~I) = (nBI Je1nt InB) = O(N-ie, N- Ie2
), (4.5) 

where use has been made of (3.40). It is understood 
that e in the Landau symbol stands for the operators 
cIt). In order to calculate the second-order correction 
by (A18),34 i.e., 

A~2) = H.P. (nBI Jeint 11p~I» - (nBI Je~ InB), (4.6) 

we have to know the first-order correction 1p~I) to the 
"wavefunction" of the k ¢ 0 particles. Inserting a 
complete set of intermediate states we can write the 
matrix element in the first term of (4.6) as 

(nBI Je1nt 11p~IJ) = ! (nBI Je1nt In)(n 11p~IJ). (4.7) 
n 

Due to the particular features (3.40)-(3.41) of the 
pair Hamiltonian, the only intermediate states 
significant in the volume limit are Ik, -k); for 
notation see (3.35).35 Using (3.41) we find 

(k, -kl JeJ InB ) 

= (2NgfV)[y+(k)e + y_(k)et ] + O(N-ie), (4.8) 

where 
(k, -kl JeI InB ) = O(N-2e2

), (4.9) 

y+(k) = [v(O) + v(k»)OCkPk + v(k)oc:, 

y_(k) = [v(O) + v(k»)OCkPk + v(k)P:. 
(4.10) 

Jel = Je1nt - Je~, Jeint = Je1 + JeI , (4.1) Note that 
where 

Je~ = NtV-I(e + et
) !' [v(O) + v(k)]Bkl 

k 

+ N!V-I[e t' v(k)Bt2 + H.C} (4.2) 

JeI = V-let e !' [v(O) + v(k)]Bkl 
k 

+ (2V)-1[ee t' v(k)Bt2 + H.C} (4.3) 

It may be seen that Je~ + Je~ is negligible as long as 

y+(k) - y_(k) = v(k). (4.11) 

The first-order correction 1p~1J to the state vector is 
obtained by solving the operator equation (A19). Let 
us momentarily ignore the "small" quantities Je~ 

83 One may start with ).H1 and ;.sH,. by employing a parameter ). 
and putting J. = 1 after the perturbation calculation. The re­
normalization counter term is then necessarily O().2) if one takes 
).H1 for the interaction. 

8& H.P. stands for "Hermitian part of." 
35 The summation over momenta k of the intermediate states 

Ik, - k) should be restricted to a half of the momentum space so as 
to avoid double counting. 
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and the matrix element (4.9) of Je~. Then substitute 
the trial form 

(k, -k I tp~ll) = (2Ng/V)(Xk + Yke + zket ) (4.12) 

into (A19), where Xk, Yk' and Zk are e number un­
knowns. On comparing the coefficients of e, et and the 
e number term on both sides of(AI9), we get a system 
of simultaneous equations for those unknown 
coefficients, which gives 

Xk = 0, 
Yk = [4E2(k) - w~rl{[-2E(k) - fo]y+(k) + hoy_(k)}, 

Zk = [4E2(k) - w~rl{[ -2E(k) + fo]y_(k) - hoy+(k)}, 

(4.13) 
where 

w~ =f~ - h~. (4.14) 

Then, the first term of (4.6) turns out to be 

H.P. (OBI Je I Itp~ll) = bfoet e + tbho(ee + et et
) 

+ O(N-te, N-le~ ... ), (4.15) 
where 

bfo = 2poy-l If [y+(k)Yk + y_(k)Zk]' 
k (4.16) 

bho = 2poy-1If [y+(k)Zk + y-Ck)Yk]' 
k 

If we had included Je~ and Je~ in the calculation of 
tp~ll, we would have obtained additional terms in 
(4.15), some of which are of higher degree in the 
operators c<tl and are denoted by the dots in the 
Landau symbol. They are negligible if c = o(Nt). 
Thus (4.6) becomes 

A~2) = O(N-te, ... ) (4.17) 

if we choose the renormaflZation coefficients I1fo and 
I1ho such that 

I1fo = bfo, I1ho = Mo. (4.18) 

Combining the results (4.3), (4.4), and (4.17) we get 

(4.19) 
where 

Ag = Wo + foete + tho(ee + ctet), (4.20) 

A~ = V-1Ngv(0)(etee + ctete) + (2V)-lv(O)et etee 

+ O(N-te, N-1e 2, ••• ), (4.21) 

and the coefficients/o and ho of Ag, given by (3.16), 
(4.16), and (4.18), are 

fo =f(O) + 2poV-1 If [y+(k)Yk + y_(k)Zk]' 
k (4.22) 

ho = h(O) + 2Poy-l If [y+(k)Zk + y-(k)Yk]' 
k 

But this is a system of coupled linear equations 
because Yk and Zk depend linearly on fo and ho through 

(4.13). Decoupling is immediate if we formfo ± ho. 
Then, 

fo - ho = 2D-1
{ - 1- If V(k)ClkfJk 

Vk 

_ Po If 2E(k)V
2
(k)} (4.23) 

V k 4E2(k) - w~ , 

• + h = 2D-1{ v(O) _ Po ~f 2E(k) 
JO 0 Po v.of 4E2(k) - w~ 

X [y+(k) + y_(k)]2}, (4.24) 

where use has been made of (4.11), and 

D = 1 + 2po If v(k) y+(k) + y_(k). (4.25) 
y k 4E2(k) - w~ 

This completes the calculation of the effective 
condensate Hamiltonian through the second order 
of our perturbation scheme. The presence of the 
denominator Din (4.23) and (4.24) shows, however, 
that some higher-order effects are already taken into 
account. 

The first term Ag of (4.19) has exactly the same 
form as (1.9), whose properties depend on the sign 
of fo ± ho. When they at:e both positive, 

fo ± ho > 0, (4.26) 

so as to satisfy the k = 0 stability condition (1.14), 
Ag is a harmonic oscillator Hamiltonian having a 
normalizable ground state 100). Since the coeffi­
cients fo and ho are 0(1), it follows that the matrix 
elements (001 (Ct)iC i 100) are all 0(1) (i,j = 0, 
1, 2," .), verifying the statement that c = 0(1), 
which is stronger than our presupposition c = o(Nt). 
Further, when (4.26) is satisfied the second term A~ 
of (4.19), if treated as a perturbation to Ag, has no 
effects in the volume limit. In the asymptotic sense, 
therefore, 

Ao = Ag, (stable case, V -- (0). (4.27) 

The physical meaning of the Wo in (4.14) is now clear: 
it is the frequency of the harmonic oscillator (4.27). 
Thus in this approximation the excitation energies 
of the condensate fluctuation are integer multiples of 
the energy quantum Wo. The Green function method 
discussed in the next subsection tells us that this 
excitation spectrum is asymptotically exact. 

In Secs. V and VI we study how the stability 
conditions (3.20)-(3.21) and (4.26) restrict the form 
of the potential v and the particle density p. We find 
that there actually exist some potentials that can 
satisfy all these conditions. In Appendix B we study 
cases where some of the conditions are violated. 
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A remark is in order about the denominator 
4E2(k) - wg in (4.23)-{4.25). Clearly we have to 
require that 

[2E(k)]2 > w~, (all k ¥= 0). (4.28) 

Physically speaking the role of the inequality (4.28) 
is to prohibit a condensate excitation from decaying 
into two k ¥= O-excitations. Here we wish to show 
that it is a consistent assumption to assume that (4.28) 
is satisfied if 

D>t. (4.29) 

By consistency we mean that if (4.29) and the k ¥= 0 
stability conditions, (3.20) and (3.21), are assumed 
satisfied-which in tum requires that (4.28) holds­
then in fact (4.28) is satisfied. For this purpose, it 
suffices to show that [2E(0)]2 > w~ since, according 
to (3.30),f(k) contains the rapidly increasing term k2• 

Now it follows from (4.23) and (4.24) that 

10 - ho < _2D-I 1- I' V(k)CXkPk = [/(0) - h(O)]D-t, 
V k 

(4.30) 

10 + ho < 2V-l pov(0) = [/(0) + h(O)]D-t, (4.31) 

and thus 
wg < E(0)2V-2 < [2E(0)]2. (4.32) 

B. Method of Green Functions 

We now proceed to show that our second-order 
approximation (4.27) gives the complete effective 
condensate Hamiltonian in the volume limit. The 
argument is based on the observation that the 
excitation spectrum of the condensate fluctuation as 
obtained from (4.27) agrees exactly with the corre­
sponding result from our Green function treatment, 
which is asymptotically exact as V -- 00. To prove 
this result within the approach described in Sub­
section A would be very difficult if not impossible. 

In almost all works on low-temperature boson 
systems the Green function method has been 
formulated after one makes the Bogoliubov replace­
ment a~t> -- Nt. Recently, Popov and Faddeev36 pro­
posed that one use the operator replacement (1.1) so 
as to include the condensate fluctuation within the 
Green function formalism. All the conventional 
graph techniques can readily be adapted to the new 
situation. The only necessary addition to the con­
ventional set of prescriptions is that the chemical 
potential should be determined so as to eliminate the 
tadpole diagrams due to c and c t; this condition is 
equivalent to (1.3). 

88 v. N. Popov and L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 47, 
1315 (1964) [English trans!.: Soviet Phys.-JETP 20, 890 (1965)]. 

Now we define one-particle Green functions for 
the condensate fluctuation by 

g(w) = :Ft (01 T[c(t), ct(O)] 10), 

g(w) = :Ft (01 T[ct(t), ct(O)] 10), 
(4.33) 

where 10) is the ground state (assumed to exist) of the 
pair Hamiltonian Jep in the representation based upon 
(1.1), T denotes the Wick chronological operator, 
c(t) is the Heisenberg operator 

c(t) = exp (iJept)c exp (-iJept), 

and :Ft denotes the Fourier transform in time 

:FtA(t) = (21TrIL: A(t) exp (iwt) dt. (4.34) 

In order to carry out a perturbation calculation 
for g and g we use37 

Ho = I' E(k)b~bk + I(O)ctc (4.35) 
k 

as the free Hamiltonian to define the interaction 
picture 

OCt) = exp (iHot)() exp (-iHot), 

where () is a Schrodinger operator. The rest of the 
Hamiltonian, Jep - Ho, is regarded as a perturbation. 
Thus the unperturbed k ¥= 0 Green functions are 
given simply by 

G(O)(k, ko) = :Ft{T[bk(t), b!(O)]) = (ko - E(k) + ib)-\ 
A(O) _ r;,- -t -t 

G (k, ko) - j"t{T[bk(t), b_tCO)]) = 0, (4.36) 

and the k = 0 Green functions, which are defined 
analogously, are given by 

g(O)(w) = (w - 1(0) + ib)-\ g(O)(w) = 0, (4.37) 

where the parentheses mean the expectation values 
with respect to the ground state of (4.35). In this 
section we assume that c = o(Nf) so that Je~ in 
(3.15) may be ignored. The standard equations for 
the k ¥= 0 Green functions 5•6•38 can be immediately 
modified to apply to the k = 0 Green functions: 

(4.38) 

-oiw)g(w) + [( -w + i(5) - O"l( -w)]g(w) = 0, 

where O"I(W) and 0"2(W) are the irreducible self-energy 
parts of the condensate fluctuation; see Fig. 3. Note 
in particular that the term 1(0) of the condensate 

87 See (3.14) and (3.25). 
88 A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, 

Methods of Quantum Field Theory in Statistical PhysiCS, translated 
by R. A. Silverman (Prentice-Hall, Engelwood Cliffs, New Jersey, 
1963). 
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FIG. 3. Irreducible self-energy parts of the condensate fluctuation. 
To be attached are C]tternallines for C]tcitations of the condensate 
fluctuation (shown by dotted lines) carrying momentum zero and 
energyc.o. 

"kinetic energy" in (4.35) is amalgamated into aiw). 
We have written i~ explicitly in (4.38) since this is 
needed in the following discussion. The solutions of 
(4.38) are 

g(w) = [w - u(w) + s(w)]/d(w), 

g(w) = -(f2(w)/d(w), 
(4.39) 

where 

dew) = [w - U(W)]2 - ([sew) - i~]2 - (f2(W)2}, 

(4.40) 
and 

sew) = t[(fl(W) + (fl( -(,0)], 

u(w) = U(fl(CO) - (fl( -w)]. 
(4.41) 

In the case of the pair Hamiltonian (3.1), the 
irreducible self-energy parts are simply represented 
by the diagrams in Fig. 4, all further corrections 
vanishing as V ~ 00 if the matrix elements of care 
o(Nl), which we assume in this subsection. With the 
aid of Fig. 4(a) one finds 

(fl(W) = 1(0) + J... 2po Ifdko 
21T V k 

X {G(O)(k, lw + ko)G(O)( - k, lw - ko)y!(k) 

+ G(O)(k, -lw + ko)G(O)( -k, -lco - ko)y~(k)}, 

where the vertex functions Y:l:(k) are given by (4.10). 
The method of residues applied to the ko integration 
gives 

(fl(W) = 1(0) + 2po I' [ y!(k) 
V k w - 2E(k) + M 

y~(k) ] 
- w + 2E(k) _ M . (4.42) 

., .,., 
: : I 
: 'I 
: : I 

t OY+ !K"1Y-
Ho'+ ~ Ur" 

I Y., Y- I 
I : 

I 

h 10' ;,)Y. I'A Y-
,,.\ Yo t-"i y.l--"'i 
,\ I I I I 

" '. ,I I I I \ I I I I , , 
.,., III 

I \ ~ .. .1, I I 
CII ... CII -III flo! 

(a) (b) 

FlO. 4. Irreducible self-energy parts (a) O"I(c.o) and (b) O".(c.o) of 
the condensate fluctuation for the case of pair Hamiltonian model. 
Dotted lines are for the condensate fluctuation (to be attached) and 
full lines represent C]tcitations of k '" 0 particles. 

In the same way, with the aid of Fig. 4(b), we obtain 

(f.(w) = h(O) _ 2po I' 2E(k) - M 
V k [2E(k) - i~]2 - co2 

x 2y+(k)y_(k). (4.43) 

Thus according to the definitions (4.41) 

() 1(
0) 2po ~, 2E(k) 

s w = - V t [2E(k) _ M]2 _ w2 

x [y!(k) + y~(k)], (4.44) 

u(w) = wu(w), (4.45) 
with 

u(w) = - 2po I' v(k) [y+(k) + y_(k)] (4.46) 
V k [2E(k) - M]I - WI 

In view of (4.33) and (4.39), we know that the one­
particle excitation energy of the condensate fluctuation 
should show up as a pole Wo of g(w), or, equivalently, 
of g(co) in the lower half w plane: 

d(wo) = 0, 1m Wo < O. (4.47) 

Recalling (4.40) and (4.45) we can write w~ as 

where 

and 

w~ =1~ - h~, 

/0 = D-l[S(WO) - it5], 

ho = D-l(f2(WO)' 

(4.48) 

(4.49) 

(4.50) 

The signs of /0 and ho are determined in such a way 
that /0 approaches its unperturbed value /(0) as 
v(k) -+ O. One should notice that the notations in 
(4.49) are justified because the present results are 
essentially identical with those obtained from our 
perturbation method [see (4.23)-(4.25)]. These equa­
tions differ only by the imaginary term it5, which 
serves to fix the sign of Wo . 

We now locate the solution Wo of (4.47) in the 
complex w plane under the assumption that (p~)l « 
1. In this case (4.28) is satisfied so that the imaginary 
parts of s, U, and (f2 are O(~). Furthermore, because 
these imaginary parts would all vanish if v(k) -+ 0, 
they are therefore all smaller than the term i~ 
explicitly written in (4.49). Therefore, 

(4.51) 

In the following, all expressions are understood to be 
evaluated at ~ = O. Now supposing that 

(4.52) 

then, according to the criterion 1m COo < 0, we know 
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from (4.51) that 

Wo = (f! - h!)f sgn lo, (4.53) 

with the square root being taken to be positive. 
Under the assumption of (4.52) we know that the 
sign of /0 is the same as the common sign of /0 ± ho, 
and, therefore, that the result (4.53) is in complete 
agreement with the perturbation result, namely with 
the eigenfrequency of the effective Hamiltonian 
(4.27). 

Since the self-energy functions, (4.42) and (4.43), 
are asymptotically exact as V -+ 00, so is the result 
(4.53) for the one-particle excitation energy. More­
over, we can easily see that apart from the b function 
for the over-all energy conservation, the many­
particle Green function 

g(wu' .. , w,.) = .'Ftl . - -t .. (QI T[e(tl)'" et(t,,)] IQ) 

decomposes into a sum of products of one-particle 
Green functions in the volume limit. This means that 
the many-particle excitation energies of the condensate 
fluctuation are integer multiples of the one-particle 
excitation energy. Since we know already of the 
agreement between the values of the one-particle 
excitation energies as obtained from the Green 
function method and the modified Born-Oppenheimer 
method, we can now conclude that our second­
order result (4.27) gives the correct energy spectrum 
in the volume limit. Corresponding results for the 
matrix elements of e(t) and their products (i.e., 
agreement of ground state expectation values) can 
be easily established once one Fourier-transforms the 
Green functions back into t space. This completes 
the comparison between the results of the Green 
function theory and our perturbation theory. From 
this we conclude that our second-order perturbation 
approximation (4.27) for the effective condensate 
Hamiltonian is already exact in the volume limit. 

V. IMPLICATIONS OF THE STABILITY 
CONDmONS 

Having obtained a set of stability conditions for 
the pair Hamiltonian model, we now determine the 
restrictions which these conditions place on the 
particle density p and the characteristics of the inter­
particle potential v. For the reason given at the close 
of the previous section we restrict our attention to 
those cases where (4.29) is satisfied39 : 

D > t. (5.1) 

• t The discussions in this and in the next section are not affected 
if we take D > 0 in place of (4.29) as long as [2E(0)]' - w: > o. 

We further assume that 

2E(P) - Wo > 0 (all P F 0). (5.2) 

In order that the k = 0 stability conditions (4.26) be 
satisfied, we must then require that the numerators of 
(4.23) and (4.24) are positive. Thus in terms of the 
self-energy functions, 

and 

s - (/2 = 1. I' v(P) _1_ h(P) 
V p E(p) 

_ Po~, V(Pt 4E(p) > O. (5.4) 
V ~ 4E(P)2 - w: 

The k F 0 stability conditions are given by (3.20) 
and (3.21). The functions /(k) and h(k) appearing in 
these equations are the solutions of a system of 
coupled integral equations, (3.30) and (3.31). Because 
/(k) has a rapidly increasing term kll, the k:F 0 
stability conditions will be satisfied if 

1(0) + h(O) = 2pov(0) > 0, (5.5) 

1(0) - h(O) = V-l If v(k) _1 h(k) > O. (5.6) 
k E(k) 

At this juncture we note that the inequalities (5.5) 
and (5.6) follow from the preceding four. From now 
on, therefore, we call the set of inequalities (S.1)-{5.4) 
the stability conditions for the many-boson system. 
These constitute a set of sufficient conditions for a 
many-boson system to have a bona fide ground state 
with a B.E. condensation. Based on the above, the 
subset (5.1) and (5.2) can be called the k F 0 
stability conditions, as opposed to the old ones (5.5) 
and (5.6), or (3.20) and (3.21). 

It should be kept in mind, in view of the dis­
cussions in Appendix B, that if any of /0 ± ho > 0 
and /(0) ± h(O) > 0 are violated, either there is no 
B.E. condensation in the system or the operator 
replacement (1.1) loses its usefulness. 

In the following we show that one of the stability 
conditions, (5.4), can be rewritten in a simple and 
suggestive way. As for the other ones, in particular 
(5.3), we have to be content with an analysis of a 
weak coupling model, this analysis being the subject 
of the next section . 

In order to analyze (5.4), we rewrite its first term 
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with the aid of the integral equation (3.31) as 

_1_ ~ v(p)h(P) 

poV p e(p) 

= 22v(P)_1_2v(p) - 2 2v(P)_1-
l[p] 2Ve(p) l[p].l[g] 2Ve(p) 

1 
x (v(p - g) + v(p + g)-- 2v(g) + "', 

2Ve(g) 
(5.7) 

where, as in Sec. III, Up] under the summation sign 
means that the sum includes only those vectors p 
which belong to a half-space. This expression can be 
written in a compact way by considering a fictitious 
problem of a pair of b excitations (see Sec. III) 
interacting via the two-body potential v. A state 
vector Ip) describing a pair of b excitations with 
momenta p, -p are normalized so that 

(p 1 g) = Vbp,g. 

These state vectors can thus be written as 

Ip) = Vlb~b~p 10}, (p ¢ 0), 

10) = Vlb~bJ 10}, 

(5.8) 

(5.9) 

with the understanding that p (¢ 0) belongs to the 
half-space indicated by the summation signs in (5.7).40 
The Hamiltonian describing a single pair is b + 'D, 
where the matrix elements of the operators band 'D 
in the momentum representation are 

(pi big) = 2Ve(p)bp,g, (5.10) 

(pi 'D Ig) = v(p - g) + v(p + g). (5.11) 

In terms of band 'D the left-hand side of (5.7) is 

_1_ 2 v(P) h(p) = (01 'D(b -f 'D)-I'D 10), (5.12) 
PoV p e(p) 

as is easily verified using the expansion 

(b + 'D)-I = b-l - b-I't)b-I + .. " (5.13) 

inserting as intermediate states the complete set of 
pair states,4I and by comparing the result with the 
right side of (5.7). Likewise, the second term of (5.4) 
can be written as 

_ 1.. ~ 4e(p )V(p)2 
V p 4E(p)2 - w~ 

= -(01 'D ~( 1 + 1 )'D 10). (5.14) 
2 b - We) b + Wo 

co The state vector 10} is the no-particle state ofth~bk operators 
her: defined for all k. including k = O. Compare with (3.26). • 

Note that'\T connects the state 10) to pair states Ip) only, 

Hence the inequality (5.4) can be put in the simple 
form 

0/ Po)(S - 0'2) = (01 'D(b + 'D)-I'D 10) 

-!(Ol 'D[(b - WO)-I + (b + Wo)-I]'D 10) > O. 

(5.15) 
Now suppose that the eigenvalue problem 

(b + 'D) IIX) = E,.IIX) (5.16) 

for a pair of b excitations with zero center-of-mass 
momentum has been solved. Utilizing the complete 
set of pair states Ip), the second term in (5.15) itself 
satisfies the inequality 

(01 'D[(b - worI + (b + worI]'D 10) 

> 21<P1 'D 10)1
2 

• 

(p) e(p) 

Thus (5.15) can be replaced by the following: 

21(1X1 'D 10)12/E,. > ~ I(pl 'D 10)12/(2e(p), (5.17) 
I[,.] ![p] 

where the symbol UIX] on the summation sign warns 
against double counting the eigenstates of (5.16). 
Because of the identity 

(01 'D2 10) = 21(1X1 CO' 10)12 = ~ I(pl 'D 10)12, (5.18) 
1[,.] I[p] 

the two sums in (5.17) can be interpreted in terms 
of averages with weight factors I(IXI 'D 10)12 and 
I (pI 'D 10)12, respectively. The inequality (5.17) suggests 
that the interparticle potential v must be such that 
it lowers the energy levels of the fictitious two­
particle system (5.16) from their values when v = 0 
and/or shifts the dominant weight factors to the 
low-energy side. Crudely speaking, this suggests that 
v must be partially attractive. On the other hand, we 
recall that (5.5) requires that v(O) = J vex) dx > O. 
The following lemma allows a more precise statement 
to be made. 

Lemma: For a low-density system of particles 
interacting via a potential that is sufficiently weak 
and everywhere positive in coordinate space, the 
quantity S - O's is negative, in violation of the 
stability condition (5.4). 

Keeping only the first two terms of the expansion 
(5.13) we obtain 

S - 0'2 < - Po II<p = 01 'Dbi Ix)12 vex) dx < 0, 

(5,.19) 
which was to be proved. Here Ix) is an eigenvector of 
the relative position operator x; for the sake of 
clarity the momentum eigenstate is written as 
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Ip = 0). Note that when e(p) is chosen to have the 
well-known form, e(p) = p(P2 + 167Tapo)!, the main 
contributions to the sums in (5.4) come from momenta 
,.;(apo)!.4 Then the above expansion of the propagator 

(1) + 'D)-I is allowed, and hence the lemma is true 
when the density parameter is sufficiently small, 
(pa3)! « 1. 

If the above lemma suggests that the pair-Hamil­
tonian model with a purely positive potential may 
not have a RE. condensation, we have to recall that 
for such a system the assumption of no condensation 
is untenable.15 •42 For the proof, we multiply the 
integral equation (3.31) for h(k) by V-1h(k)je(k) and 
sum over momenta to obtain 

V-I!, e(k)-lh(k)2 + t !' g(k)v(k - p)g(p) = 0, 
k k.i> (5.20) 

where g(k) = h(k)je(k), and we have put Po = 0, i.e., 
we assume that the system has no macroscopic 
occupation of the k = ° state. The first term is 
nonnegative. By the convolution theorem for Fourier 
transforms and the assumption that vex) > 0, the 
second term is also nonnegative: 

(5.21) 

where g(x) is the Fourier transform of g(k). Thus the 
only solution to the integral equation (3.31) is 
h(k) = ° (all k), which means fJ: = ° according to 
(3.24), and therefore 

(nl ! a!ak In) = 0, (5.22) 
k 

in contradiction to the fundamental requirement (1.4). 
Thus the assumption of no condensation is untenable. 
These results appear to be contradictory. Further, it 
is ill-advised to try to avoid this contradiction by 

•• C. J. Pethick and D. ter Haar, University of Oxford, Clarendon 
Laboratory Report, (1965); Phys. Letters 19, 20 (1965). These 
authors conclude that V'(x) > 0 is a sufficient condition for the 
pair-Hamiltonian model to undergo a B.E. condensation at 
sufficiently low temperat'Jres. This conclusion was obtained with 
reference to a portion IlT of Jep , the former being quadratic in 
a~t) operators. Pethick and ter Haar then presented an argument 
based on a type of thermodynamic perturbation theory that HT 
and Jep are thermodynamically equivalent in the volume limit. 
Their derivation closely parallels but corrects an error of an 
attempted proof of thermodynamic equivalence given earlier by one 
of us (see Appendix A of Ref. 15). Independently we sketched 
essentially the same formal proof as that of Pethick and ter Haar. 
We do not, however, believe the proof to be very convincing for 
the following reason. Employing the same thermodynamic per­
turbation theory as we use in the "proof" of thermodynamic 
equivalence, we find the formal result (O(c, ct»" = 0(1), where 
( ... )" is the ensemble average taken with respect to Je" and 0 is 
any polynomial in cIt). This result, however, cannot in general be 
true, for we have shown in Secs. IV and V that if certain stability 
conditions are not satisfied, cIt) = 0(1) is an untenable assumption .. 
We believe that these various formal "proofs" break down because 
the perturbation series are divergent. 

supposing that D < 0, for, according to (4.25), in the 
low density limit D R:i 1. Thus, in conclusion, it 
appears that the operator replacement (1.1) loses its 
usefulness for a purely repulsive potential, for 
example, of the Yukawa type. 

VI. A WEAK COUPLING MODEL 

In this section we express the stability conditions 
(5.1)--(5.4) in terms of the parameters of a simple 
potential of the form 

v(k) = A(k2 + K2)-1 + B(k2 + A,2)-1, (6.1) 

corresponding to the configuration space potential 
vCr) = (47Tr)-I. (Ae-Kr + Be-J.r). We find that there 
exists a range of parameters for which the stability 
conditions can in fact be satisfied. In accordance with 
the lemma of the previous section, that a purely 
repulsive potential cannot satisfy (5.4) and (5.5) 
simultaneously, we can expect that one of the con­
stants A and B must be negative. Although the 
precise requirements on A and B are determined later 
in this section, we can at present require that 

where43 

x + y > 0, 

Ixl R:i Iyl ,.; 1, 

(6.2a) 

(6.2b) 

x = A,mAj(47TK2), y = mBj(47TA,). (6.3) 

Equation (6.2a) ensures that v(o) > 0; Ixl R:i Iyl is 
suggested by the above lemma; and the requirement 
lxi, Iyl ,.; 1 ensures that the attractive component of 
vCr) is not sufficiently strong to allow any two-body 
bound states. Further, to simplify the later analysis 
we assume that 

A, » K. (6.4) 

Finally the assumption of "weak coupling" is 
characterized by the requirement 

z = mpoBjK2A,2 « 1. (6.5) 

We begin the analysis by obtaining approximate 
solutions of the integral equations (3.30) and (3.31) 
for l(k) and h(k), respectively. The former equation 
may be written as 

I(k) = k2j(2m) + Po[v(k) - v(o)] + 1(0) + <'l/(k), 

(6.6) 
where 

f(O) = Pov(O) + !(27T)-Sf dpv(p)h(p)je(p), (6.7) 

<'If(k) = l(27Tr3fdP[v(P - k) - v(p)][f(P) - IJ. 
e(p) 

(6.8) 

48 Although throughout this paper we have chosen the particle 
mass as m = !, in this section we write the mass as m. 
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We show very shortly that, as long as (6.2)-(6.5) are 
satisfied, it is a good approximation to write 

f(k) = k l /(2m) + f(O) + Po[v(k) - v(O»), (6.9) 

E(k) = E(O) + kll/(2m). (6.10) 

Specifically, our procedure in the following is to 
utilize (6.10) in order to solve (3.31) for h(k), and 
then using this result, we show that (6.9) and (6.10) 
are valid. 

In Appendix C we show, using (6.10), that when 
(6.2)-{6.5) are satisfied, the following is a good 
approximate solution of (3.31): 

h(k) = h(OI(k) + hUI(k), (6.11) 
where 

h(OI(k) = p v(k) hl1l(k) = - Y PoB 
0' 1 + (Y/T) k' + (TA)' ' 

(6.12) 
and T = 1.62. One can then easily verify that 

«217)-3 f dpv(P)h(OI(p)/E(p) 

= (2m)-lK lIzy[1 + O(K/A)], (6.13) 

l(217)-8 f dpV(P)hl1l(p)/E(P) 

= -2(2m)-lK1zyZ(T + 1rl(T + y)-1[1 + O(K/A)]. 

(6.14) 

In the following we avoid writing the error terms 
since A» K. Combining (6.7) and (6.11)-{6.14) we 
have 

1(0) + h(O) = 2pov(0) + (2K~) zy 0'~~6~ ~.~4Y , 
(6.15) 

1(0) - h(O) = (.!!.-) zy 2.85 + 0.24y . (6.16) 
2m 1.62 + y 

The second term on the right-hand side of (6.15) is 
the error due to the approximations (6.9) and (6.10) 
[see (5.5)]. Thus to ensure the validity of the present 
method we require that 

B .(0.19 + 0.12Y) «2v(0). (6.17) 
All y 1.62 + y 

Finally, according to (3.25), E(O) is given by [/(0)2 -
h(0)2]1. 

The validity of (6.10) is now easily established. 
Using (6.9) and (6.11), for values of k « K one finds 

f(k) ± h(k) = f(O) ± h(O) + (k2/2m)[1 + O(z)] 

so that in this range (6.10) is a good approximation. 
Further, for values of k ;0. K, the term k2/2m in 

(6.9) dominates all other terms, and thus (6.10) is 
valid in this range as well. 

Concerning the validity of (6.9) as an approximation 
to the exact expression (6.6), we find that the term 
<5f(k) is ignorable as compared to f(O) and k2/(2m) 
when k ~ K/5 and k ;0. K, respectively. In particular, 
for k ~ K/5, direct evaluation of the integral in (6.8) 
using (6.9) and (6.10) shows that 

I <5f(k) I :::;; f(0)(k2/ K2)O(K/ A). 

We now proceed to study the stability conditions 
(5.1)-{5.4). In the following it suffices to approximate 
y+(k) ± y_(k) [see (4.10) and (4.11)] by 

y+(k) - y_(k) = v(k) ~ v(O), (6.18) 

y+(k) + y_(k) ~ v(O)[1 + d/E(k»), (6.19) 
where 

d = f(O) - E(O) - 2h(0). (6.20) 

These approximations are valid because of the 
presence of the factor [4E(k)2 - W~]-l in (4.25), (5.3), 
and (5.4) which is a very rapidly decreasing function 
of k as compared to v(k) or h(k). Thus (4.25) may be 
written as 

D = 1 + mpov(0)2 r('dk( 1 + 1 ) 
2172 Jo 2E(k) - £00 2E(k) + £00 

x (1 + ~). (6.21) 
E(k) 

The integral is readily evaluated using (6.10) [assume 
for the moment that (5.2) is satisfied so that the 
integrand is well behaved over the entire range of 
integration], and the result is 

D = 1 + O[~Zly!(V(O)~J. (6.22) 
A BA-2 } 

Recalling (6.2), (6.4), (6.5), and the fact that 
v(O) < IBI A-2, it suffices to take D = 1, and thus the 
stability condition (5.1) is satisfied. 

We now tum to the stability condition (5.3). An 
analysis similar to the above shows that the leading 
contribution to the integral in (5.3) can be obtained 
by substituting y+(k) + y_(k) = v(k) and £00 = O. 
Combining (4.24), (5.3), and our previous result (6.22) 
we have 

J; h 2 () Po l' V(k)2 + ~ pvO -- --o 0 0 V k E(k)' 

Recalling (6.13) we obtain 

fo + ho = 2pov(0) - (K2/m)zy. 

(6.23) 

(6.24) 

At the same time we note that with the aid of (6.11) 
and (6.12) we can write (5.4) as 

4" _ h ~!.~, v(k)h(ll(k) _ 1£02 !~, V(k)2. 
JO 0 V f E(k) I" oPo V f E(k)8 
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Recalling the identity w~ = (fo - ho)(fo + ho) and 
(6.14), it follows that 

K2 zy2 
= -2- , 

m (T + l)(T + y) 

where a = [2mE(0)]t. Now using (6.15)-(6.17) one 
easily finds that a/).« a/K «1. This result, in 
conjunction with the inequality v(O) < IBI ).-2, leads to 

10 - ho = -2(K2/m)[zy2/(T + 1)(T + y)]. (6.25) 

The k = 0 stability conditions require that both 
(6.24) and (6.25) are positive. Since the parameters y 
and z have the same sign, it follows from (6.25) that 

-T <y < O. 

Equation (6.24) rewritten as 

!o + ho = 2(K2/m)zy-l[x + y(1 - ly)] 

provides the added restrictions 

x>O, 

1 - (1 + 2x)t < y < O. 

(6.26) 

(6.27) 

(6.28) 

The requirements x > 0, y < 0 imply that the 
short-range component of the potential vex) must be 
attractive and the long-range part repulsive. Note 
further that because of (6.2b) the lower bound on y 
is actually provided by (6.28) rather than by (6.26). 

Finally, we tum to the last of the stability conditions 
(5.2). This condition, however, is automatically 
satisfied when (6.28) is satisfied, as is readily seen 
using (6.5), (6.16), (6.24), and (6.25). 

Summarizing, in the case of the pair Hamiltonian 
model when the potential is of the form (6.1) and the 
restrictions (6.2)-(6.5) and (6.27)-(6.28) are satisfied, 
then the stability conditions (5.1)-(5.4) are satisfied. 
We have thus explicitly demonstrated that the 
stability conditions can in certain cases be satisfied. 

VII. THE FULL HAMILTONIAN 

We now tum to the question of the existence of a 
B.E. condensation in a system of N pairwise inter­
acting bosons described by the complete Hamiltonian 

.le = 2 (pS - /J)a~ap + (2V)-1 2 v(k)a~ka!-ka.ap. 
p k_ ~n 

Only a small subclass of the interaction terms of 
(7.1) are included in the pair Hamiltonian (3.1) which 
we have been studying in the previous sections. Again 
we ask: Does the system described by (7.1) undergo 

a B.E. condensation? In addition, what is the order 
of magnitude of the operators cit) defined by (1.1)? 
By tentatively assuming the existence of a conden­
sation, we use the operator replacement (1.1) to 
follow the program outlined in Sec. II. First, the 
Hamiltonian .leB of the particles outside the conden­
sate is diagonalized by truncating it in the manner 
introduced by Bogoliubov.3 The effective condensate 
Hamiltonian Ao is constructed using the perturbation 
method of Appendix A. Then we use an invariance 
argument as supplemented by a result from Green 
function theory to indicate that this approximate 
result already has the characteristic features one 
would expect of the exact condensate Hamiltonian. 
We then find that in the low-density limit the Hamil­
tonian Ao is diagonal in the occupation number 
representation of a~ao but not of c t c. Some discussion 
is also given regarding systems of moderate density. 

A. Perturbation Calculation of Ao 
Following the program of Sec. II, we split the 

Hamiltonian (7.1) into three parts .leB , .leo, and .leI 
which describe the system of particles outside the 
condensate, the condensate, and their mutual inter­
action, respectively. The Hamiltonian .leB is written 
as 

.leB =.le~ + .leB, 
where the first term is identical with (3.8), i.e., 

o - ~ { t .leB = W + k' [x + f(k)]akak 
k 

and the second term is 

.leB = NtV-1 2' v(k)(a~+kapak + H.c.) 
p,k 

(p+k,oO) 

(7.2) 

+ (2Vrl 22' v(k) :a~ka~_kapa.:. (7.4) 
k P,' 

(.-k, P+k,oO) 

Here the symbol:···: means the normal product in the 
b representation as defined by a Bogoliubov trans­
formation (3.22), whose coefficients are determined 
below. For instance, 

: apa.: = ~a..bpb. + a.iJ.b~.bp 
+ flpa..b~pb. + fl~,b~pb~, 

= apa. - ~flp~p.-.. (7.5) 

Further, in Eqs. (3.11) and (3.12), which define the 
c number coefficients in (7.3), we have to put 

~k = fl:, 11k = a.kflk· (7.6) 

The condensate part .leo of the Hamiltonian (7.1) 
need not be written down here because it has exactly 
the same form as its pair Hamiltonian counterpart 
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(3.13). Finally, the interaction part of Je is given by 

JeI = [(J1 + J s + Js)Ntc + H.c.] 

+ (J1 - AJo)ctc + [!(J2 - Aho)CC + H.c.], (7.7) 

where 
J 1 = V-I It [v(O) + v(k)] :ata,,:, (7.8) 

k 

Js = V-I I' v(k) : aia!,,:, (7.9) 

" 
J N-tV-l '\:', v(k) t t (7 10) 

3 = 0 k ap+"a_"ap . • 
",p 

(1I+1<*0) 

Comparison with the pair interaction (3.3) shows that 
the term carrying J 8 is the new addition in JeI . 

The first step of our program is to diagonalize JeB • 

Restricting our attention to the low-density limit, 

K = [pOV(0)3]t « I, (7.11) 

and assuming that the potential v(k) is slowly varying 
for k ,.; [Pov(O)]t, we follow Bogoliubov's procedure3 

of taking as a crude substitute for JeB : 

HB = 2' [!(k)a~a" + !h(k)(a"a_" + a!"a~)l, (7.12) 

" where 
/(k) = k 2 + Pov(k), h(k) = Pov(k). (7.13) 

The chemical potential has been chosen so as to 
eliminate the terms linear in cIt) in Jea [see (3.14)]. 
That is, we choose X = 0, or 

p = (Po + V-I 2' ~,,)v(O) + V-I 2' (E" + ?]Jv(k). 

limit (7.11) we can ignore the term in JeI involving J3 • 

This follows because the inclusion of J3 in the 
perturbation calculation leads to three-particle inter­
mediate states Ip + k, -k, -p) and thus to twofold 
momentum summations whose values are small, 
since when (7.11) applies, most of the particles' have 
low momentum. We can therefore borrow the results 
of Sec. IV and in particular, the effective condensate 
Hamiltonian Ao is given by (4.19)--(4.25). When we 
use (7.13) for /(k) and h(k), Eqs. (4.23) and (4.25) 
become 

l' _ h - -oi Po_l_ fdk V(k)2 
)0 0 - 0 D (217)3 E(k)[4E(k)2 - £O~] , 

(7.17) 

D - 1 2 _1_ fdk V(k)2 (k
2 

- Pov(O» 
- + Po (217)3 E(k) [4E(k)2 _ £O~]' (7.18) 

Notice that if £00 = 0, the integrals in (7.17) and (7.18) 
have an infrared divergence, because according to 
(7.16) 

E(k) -:;:!" ck, 
where 

C = [2pov(0)]t (7.19) 

is the sound velocity in the present approximation. 
Nevertheless, the product of D-l and the integral in 
(7.17) is finite. Furthermore, according to (4.14), 
£O~ = (fo - ho)(fo + ho) so that a consistent solution 
of (7.17) is 

" " (7.14) and thus 
/0 - ho = 0, (7.20) 

(7.21) 
Note that two approximations have been made to 
obtain (7.12): First; we have neglected all terms in 
/(k) and h(k) of (3.11) and (3.12), respectively, that 
involve momentum summations; Second, we have 
ignored Je:U. All the effects of these terms are known 
to be vanishingly small in the low-density limit. <\ 

Assuming that the k ¥: 0 stability condition, 

v(k) > 0 (aU k), (7.15) 

is satisfied, the diagonalization of (7.12) is achieved 
by the Bogoliubov transformation (3.22)-(3.25) in 
conjunction with (7.13). The ground state lOB) of 
HB is the no-particle state of b" [see (3.26)J. and the 
excitation energy is given by 

E(k) = k[k2 + 2Pov(k)]t. (7.16) 

We now proceed to apply the perturbation theory 
of Appendix A to construct the effective condensate 
Hamiltonian Ao associated with the ground state 
lOB) for the particles outside the condensate. The 
~alculation is identical to that of Sec: IV for the 
pair-Hamiltonian model, since in the low-density 

£00=0. 

A similar analysis of!o + ho [see (4.24)] using (7.21) 
shows that 

!o + ho = c2 = 2pov(0). (7.22) 

This calculation shows the importance of the denomi­
nator D, a quantity which has emerged from our 
perturbation scheme in a very natural manner, A 
corresponding treatment of the infrared divergence 
was given by Gavoret and Nozieres;23 An interesting 
feature here is that despite the special treatment 
required for the k = 0 mode, /0 + ho is smoothly 
connected44 to/(k) + h(k) = k 2 + 2pov(0), [see (7.12)], 
for k-O. 

Substitution of the coefficients (7.20) and (7.22) 
into (4.20) yields as the effective condensate Hamil­
tonian 

(7.23) 

'" If we use a better approximation for E"(k) such as E(k) = 
k(kl + el )! with the exact value of the sound velocity e, then the 
formula (7.21) gives 10 + ho = e· accordingly. This fact was also 
observed by Gavoret and Nozi~res. See Ref. 23. 
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where 
A~ = (4M)-1(C + Ct )2 + Wo - (4Mr\ (7.24) 

(7.25) 

and the lowest-order approximation for A~ is given 
by (4.21). 

A remark is in order about the consistency of the 
above treatment. Since we have employed crude 
approximate expressions for J(k) and h(k) in the 
diagonalization of ;reB, one could fear that (7.23)­
(7.25), our second-order result for Ao, is marred by 
errors in the zeroth- and the first-order calculations. 
However, our perturbation method of constructing 
Ao ensures that the second-order result is the same 
as the zeroth-order condensate Hamiltonian ;rec of 
(3.13). Thus the second-order calculation is meaning­
ful. 

B. General Considerations 

The effective condensate Hamiltonian Ao which 
obtains in the low-density limit (7.11) is given by 
(7.23). Among those steps taken to obtain this result 
we set X = 0 so as to eliminate the term XNt(c + ct ) 

of (3.14). If this additional term were present in Ao 
the ground state expectation value of c(t> would be 
O(Nt) in violation of the assumption underlying the 
use of the operator replacement (1.1). In this sub­
section we show that results similar to the above 
obtain when we remove the restriction to low-density 
systems. In particular, we show that Ao is given by 

Ao = A~ + A~, 
where the most general form of Ag is 

A~ = tM(po, p,)-1p2 + 2!X(Po, p,)Ngp 

(7.26) 

+ U(g)+wo(Po,/t)No, (7.27) 

and where p and g are the canonical variables defined 
by (1.10), and A~ is such that the coefficients of its 
operator part vanish in the volume limit (No, N, 
V -+ 00; No/V, N/V finite). The quantities M, X, and 
Wo are c number functions of 0(1) dependent upon Po 
and p" while U(g) is an arbitrary function of g. The 
"physical" values of Po and p, are determined by the 
requirements (1.4) and 

X(Po, p,) = 0, (7.28) 

thereby ensuring that (1.3) is satisfied and that 
em = o(Ng). 

In order to prove the above proposition, let the 
result of the exact calculation for Ag obtained by 
using the replacement (1.1) be 

A~ = F(p, g; Po,p,). (7.29) 

Now suppose that we use Nt - ~ and c + ~ in place 
of Nt and c in (1.1), that is, 

! ! I: I: No -+No - 5", c-+c + 5", (7.30) 

where ~ is a c number of 0(1). Construction of the 
effective condensate Hamiltonian must go through in 
exactly the same way as previously for ~ = 0, so that 
the result will be 

(Agy = F(p + 2!~, g, Po - UNjV-l, p,). (7.31) 

But once we determine Po and p, by (1.3) and (1.4), the 
two results, (7.29) and (7.31), must coincide since the 
transformation (7.30) does not change the operator 
c nor the c number Nt with regard to their relation 
to ao. That is to say, the condensate Hamiltonian 
must be invariant under the transformation (7.30): 

F(p, g; Po,p,) = F(p + 2!~, g; Po - 2~NgV-\p,) 
(7.32) 

when Po and p, take on their physical values, and when 
No-+ 00. 

It can easily be seen that in the limit No -+ 00 the 
invariance condition (7.31) is satisfied by (7.27) if 
and only if 

M(po, p,)-1 = 2piJx(Po, p,)/oPo 

= 2p002[pOWO)/op~, (7.33) 

o[Powo(Po, p,»)/opo = 0, (7.34) 

where the functions are to be evaluated for the values 
of p, and Po which satisfy (7.28). The last condition 
(7.34) simply means that the condensate density Po 
should be determined so as to minimize Wo = WoPo V, 
the ground state energy of Ag. Reference to (3.10), 
(3.14), and the expression for X following (3.15) shows 
that in the low-density limit Wo = !Pov(O) - p, and 
X = -p, + Pov(O). In this case (7.33) and (7.34) are 
obviously satisfied. 

The above discussion shows that a condensate 
Hamiltonian of the form (7.27) can satisfy the 
invariance requirement (7.32). The point is that the 
change in the Hamiltonian induced by the transfor­
mation c -+ C + ~ is a linear form of c which can be 
counterbalanced by the changes in X and woNo 
induced by Nt -+ Nt - ~. In general, a Hamiltonian 
Ag = F(p, g; Po, p,) can satisfy (7.32) only when it is 
invariant modulo a linear form L of p under the 
transformation p -+ p + 2!~. The coefficients of the 
linear form L must be independent of q. Hence 
o2F/op2 must be invariant under p -+ p + 2!~. Thus 
F must be of the form 

F = a(g; Po, p,)p2 + beg; Po, p,)p + c(g; Po, p,). 



                                                                                                                                    

1304 H. EZAWA AND M. LUBAN 

Finally, the linear form L is independent of g and so 
the same must be true of the coefficients a and h. This 
completes the proof that (7.27) is the most general 
form for the condensate Hamiltonian in the volume 
limit. Incidentally, (7.33) shows that a(po, 1') = tM-I 
is to be identified with the self-energy part ~2(k, co) 
at k = co = 0; cf. Eqs. (107) and (131) of Ref. 22. 

Concerning the potential term U(g) of (7.27), some 
information is provided by Green function theory, to 
the effect that in a many-boson system described by 
the full Hamiltonian, the one- and two-particle 
excitation energies vanish in the low-momentum 
limit.6•23 If the interparticle potential v(k) is not 
singular at k = 0, it can be shown that the excitation 
spectrum of the full Hamiltonian is continuous down 
to zero momentum46 so that the one- and two­
particle condensate excitation energy should be zero. 
In other words, no energy gap separates the ground 
state from excited states. On this basis, one could 
expect that the Hamiltonian Ag has no normalizable 
ground state. The result (7.24) obtained with the aid 
of our perturbation method is in accordance with 
this expectation. 

It may happen, however, that the "infinitesimal" 
part A~ of the condensate Hamiltonian supplies some 
terms which are in the nature of a restoring-force 
potential and which will make the ground state 
normalizable and the excitation spectrum discrete. In 
view of the volume dependence of A~ we can expect 
that the energy gap between the ground state and the 
states of one- or two-particle excitations will vanish 
asymptotically as V ~ 00. In the next subsection we 
illustrate this possibility by employing the lowest­
order approximation for A~. 

C. Ground State of the Condensate 

In order to obtain some idea about the nature of the 
ground state of the condensate we restrict our 
attention to the low-density limit so that Ag and A~ 
are given by (7.24) and (7.25), and (3.15), respectively. 
Thus we study 

Ao = (4M)-I(C + Ct)2 

+ Pov(O)[No!(ctcc + ctctc) + tNolCtctcC], (7.35) 

where we have ignored the c number term Wo - (4M)-1 
of (7.24). Using (7.25) we can rewrite (7.35) in terms 
of the original operators a~t> for the k = 0 particles as 

Ao = tNolpov(O)[(a~ao - No - t)2 - H (7.36) 

(ii) that when this condition is satisfied the ground 
state of Ao is given by the eigenstate of a~ao with the 
eigenvalue No or No + 1. In general we can write 

In.) = elllNo + 1) + elo INo); (7.37) 

the notation here is self-explanatory. 
With this form for In.) it becomes impossible to 

satisfy (1.3) since 

(n.1 ao - Nt In.) 
= rx!ell(No + 1)! - (ICloI2 + IOtI12)Nt, (7.38) 

and the right side cannot be made to vanish. In 
general the role of the requirement (1.3) is to determine 
the value of the chemical potential 1'. However, in the 
present case I' and Po have already been chosen in 
accordance with (7.28) so as to remove the term 
N!X(c + e t ) linear in e(tl which would otherwise 
a;pear in (7.35). Note also that the term in question 
can be written as Ntx(ao + aJ - 2Nt) and thus in the 
present case setting X = 0 eliminates the term in Ao 
linear in a~t>. Further discussion on this point is 
given in Sec. VIII in connection with problems of the 
representation of field operators. 

It is important to note that the ground state (7.37) 
is infinitely degenerate. A normalization condition 
such as <n.1 n.) = 1 merely imposes the restriction 
ell = cos cp, elo = sin cp, but where cp is an arbitrary 
angle. Further, a condition such as <n.1 a!ao In.) = No 
is identically satisfied and does not provide any 
restriction on cpo This degeneracy is related to the 
convergence difficulty discussed in Sec. I. 

If Ao were calculated beyond the second-order of 
our perturbation method the result (7.25) may be 
expected to change. Also the form (7.35) of the 
condensate Hamiltonian will very likely change. 
However, in view of a lack of further information, 
it might be worthwhile just to examine what will 
happen if we assume (7.35) but not (7.25). For this 
purpose it is more convenient to use the variables p 
and g defined by (1.10). Then (7.35) becomes 

Ao = (2M)-lp2 

+ Pov(0)[2-!N;!(pg2 + g2p + 2p3 - 4p) 

+ !N01(p2 + g2 _ 1)(p2 + g2 - 3)]. (7.39) 

The volume dependence of the terms in (7.39) suggests 
that a scale transformation is needed to obtain 
canonical variables of 0(1) for the ground state. Let 

(7.40) 
The form of(7.36) shows (i) that the stability condition where 
for the condensate is v(O), just as for states k ¥: 0, and (7.41) 

.. See the remark following (7.22). 'j! is a real number, and it is assumed that 1] and ~ are 
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0(1). Substitution of (7.40) into (7.39) shows that the 
only useful choice for 'JI is 'JI = 1-, in which case 
(7.39) becomes 

(7.42) 
where 

Ao = (2Mr1r/ + Pov(O) 
X [r~('T},2 + ,2'T}) + 1,4], (7.43) 

and the residual term R is negligible as compared 
with NO-lAo. Note that the scale transformation with 
'JI = 1- could not have been used if there had been a 
potential term U(g) of the form U(g) '"" gP, fJ > -2. 

The form of (7.43) can be simplified by introducing 
a new momentum variable, 

7T = 'YJ + 2-tpov(0)M,2, 

which, because of (7.41), is conjugate to , 

[?T, '] = -i. 
We then obtain 

Ao = (2M)-17T2 + 1.'4, 
where 

(7.44) 

(7.45) 

(7.46) 

(7.47) 

It is now clear that the Hamiltonian Ao has a normal­
izable ground state if 

M> 0, A> O. (7.48) 

Note that if we use the second-order result (7.25) 
for M, then we obtain 

1.=0, (7.49) 

so that Ao, which has been obtained from (7.35) 
using (7.40), fails to have a normalizable ground 
state. Note further that according to (7.33), M> 0 
means ;)2Wojap~ > O. 

Now, let us assume the stability conditions (7.48) 
and check the requirement (1.3). Since the Hamil­
tonian (7.46) is a symmetric function of " its ground 
state is such that 

(7.50) 

Hence the ground state expectation values of the 
operators c and c t are equal. On the other hand, we 
know from (7.44) that 

(Oel 'YJ IOe) = -2-tpov(0)M (Oel ,210e)' (7.51) 

Recalling (7.40) and the definition (LlO) of p and q, 
we obtain 

which vanishes in the volume limit. In view of the 
steep potential well ,4 in the Hamiltonian (7.46), the 

ground-state expectation values of any products of 
, and ?T are finite. Recalling the scale transformation 
(7.40) we see, therefore, that the operators c(f) 
behave in general like quantities of O(Nl), and thus are 
much smaller than Nt. Hence, it can be concluded 
that the Bogoliubov replacement a~tl ---+ Nt is justified 
if (7.39) is a legitimate version of the actual effective 
condensate Hamiltonian and if the condition (7.48) 
is satisfied. 

We now briefly discuss the case where the stability 
conditions (7.48) are violated in such a way that 
MA < O. Applying the WKB method to (7.46) the 
eigenfunctions 'P(') of Ao are found to behave like 

'Pm'"" ! A±,-l exp [±it(2jMA)t,3], 
± 

('---+00), 
(7.53) 

so that this function is normalizable. Unfortunately, 
if one uses (7.53) the expectation value (1.3) involves 
divergent integrals, thereby making the qualification 
of (7.56) as a ground state wavefunction dubious. 
Further, if the stability conditions (7.48) are violated 
in such a way that M < 0, A < 0 then the energy 
levels of (7.46) have no lower bound. 

VIII. REPRESENTATION OF COMMUTATION 

RELATIONS 

In this section we discuss the relevance of our 
results to the problem of the canonical commutation 
relations for dynamical systems having infinitely many 
degrees of freedom. One purpose in studying non­
relativistic many-body problems in the volume limit 
N, V ---+ 00 (NjV = p:fixed) is that we may get some 
insight into the possible mathematical structure of 
relativistic quantum field theories46 where the infinity 
of degrees of freedom is one of the essential features 
apparently demanded by experimental facts (e.g., 
multiple production of particles at extremely high 
energy). 

We start with a remark concerning the Bogoliubov 
replacement ao ---+ Nt which is often used on the 
presupposition that a Bose system undergoes a 
Bose-Einstein (B.E.) condensation at sufficiently low 
temperatures. This remark serves at the same time to 
fix our notation. One might feel uneasy about this 
replacement because it leads to a violation of the 
commutation relation [ao, a~] = 1. But, as we now 
show, this is in general not a problem when one is 
interested in the volume limit. 

•• An operator replacement essentially the same as our (1.1) was 
once used in quantum field theory by S. Kamefuchi and H. 
Umezawa. Nuovo Cimento 31, 429 (1964). There are numerous 
field theory papers devoted to the discussion of inequivalent 
representations. 
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The commutation relations of a Bose field operator 
cp(x) , e.g., [cp(x) , cpt(y)] = t5(x - y), have to be 
interpreted in the sense of distributions. Thus we take 
a set of test functions /(x) to define smeared-out 
operators, 

cp(f) = J /(x)cp(x) dx, 

for which the commutation relations are 

(8.1) 

[cp(f), cp\g)] = J !(x)g*(x) dx, (8.2) 

[cp(j), cp(g)] = O. (8.3) 

For particles confined to a box of volume V we 
require that!v(x) vanish outside V. Further, these test 
functions must be square integrable, so that (8.2) 
will be sensible, and also integrable, 

J !v(x) dx :::;; M(:::;; (0), all V, (8.4) 

in order that they be of use in the case of B.E. 
condensation. If in the volume V one were to take a 
set of normalized plane waves satisfying periodic 
boundary conditions, then the smeared-out operators 
(8.1) are the usual destruction operators ak.47 In 
general we may write 

cp(fv) = V-l ~JV(k)ak' (8.5) 
k 

where fv(k) is the Fourier transform of !v(x). Now if 
one takes a~t) = Nl, the operator (8.5) is replaced by 

CPB(fV) = p:fv(O) + V-l~' fv(k)ak , (8.6) 
k 

where as usual the prime on the summation symbol 
indicates that the term k = 0 should be excluded from 
the sum. Note that the assumption of (8.4) is needed 
to make the first term of (8.6) well defined. With the 
aid of (8.4) we immediately see that, when V ---+ 00, 
CPB(/") satisfies the same commutation relations 
satisfied by cp(fv). Thus the Bogoliubov replacement 
does not violate the commutation relations in the 
volume limit. 

One of the characteristic features of an infinite 
system is that there are a variety of inequivalent 
representations of the commutation relations (8.2), 
(8.3), and not all of them are appropriate for the 
quantum mechanical description of a dynamical 
system with a given Hamiltonian.12 The Hamiltonian 
chooses a representation, so to speak. It can be proved, 
for instance, that operators cp(x) and pk + cp(x) 
cannot be related by any unitary transformation if 

" This set of single-particle wavefunctions fails to satisfy (8.4), 
and thus r/>B(fy) does nQt satisfy (8.2) and (8.3) if the volume limit 
of the field operator is taken. 

Po ¥= 0, (V ---+ 00). The Bogoliubov replacement implies 
the use of a field operator of the form, 

cp(x) = p! + cp'(x), (01 cfo'(x) 10) = 0, (8.7) 

whatever the representation for cp'(x) may be. Here 
10) is the ground state of the dynamical system in 
question. Such a field operator may be said to be of 
the Bogoliubov type. But does the existence of a 
B.E. condensation always demand a field operator 
of this form? If, furthermore, we ask whether a given 
Hamiltonian of a many-boson system requires a 
representation of the form (8.7), there are actually 
two questions involved. The first is the one asked just 
above. The second question is whether or not the 
system described by the given Hamiltonian undergoes 
a B.E. condensation. 

A method for finding a suitable representation has 
been suggested by Araki and Woods. 7 They proposed 
that one first calculate a system of Wightman 
functionals 

Wv(f~,··· ,!'ir,"', gv) 

= (O(V)I CP(f~)· .. cp(fv)cpt(g~)' .. cpt(gv) 10(V» 

(r, s = 0, 1,2, ... ), (8.8) 

for a finite dynamical system of volume V by 
employing its ground state IO(V», and then analyze 
their volume limits (V ---+ 00) to see what representa­
tion is implied. Underlying this procedure is a 
theorem,9,48 that once a set of Wightman functionals 
satisfying certain conditions are given, we can re­
construct a Hilbert space and field operators which 
reproduce the given set of functionals, and this 
construction is unique up to unitary transformations 
(Gel'fand construction). Araki and Woods used this 
method to find a representation suitable for an 
infinite free Bose gas. They took IO(V» to be the 
eigenstate of the number operators a~ak' where all 
the N = p V particles are occupying the lowest 
single-particle states k = 0 (B.E. condensation). 
Then the limiting representation turns out to be 
fully reducible: It becomes a direct sum of repre­
sentation l}~(O :::;; IX :::;; 217). The field operator in {}~ is 
of the Bogoliubov type cp(x) = ptei~ + CPF(X), where 
CPF(X) is a Fock operator. 

In the previous sections we have been studying the 
operator replacement (1.1), that is, 

(8.9) 

with a particular interest in the order of magnitude 

•• A. S. Wightman, Phys. Rev. 101, 860 (1956); M. A. Naimark, 
Normed Rings, translated by L. F. Baron (P. Nordhoff Ltd., 
Groningen, The Netherlands, 1959). 
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of the operator part c as No -+ 00. In the case of the 
pair Hamiltonian model we have found that under 
certain conditions (stability conditions), restricting 
the particle density and the interparticle potential, 
the Hamiltonian has a normalizable ground state 
10(V) such that 

(O(V)I c(t) 10(V» = 0 (8.10) 
and 

(0(v)1 (Ct)i(C)i 10(V» = 0(1) (i + j ~ 2). (8.11) 

This result implies, first of all, that the model system 
undergoes a B.E. condensation. Because of (8.10) and 
(8.1I), all the terms in the Wightman functionals 
involving the operators, 

fvCO)c/V*, g;(O)c t IV*, (8.12) 

vanish in the volume limit, so that the system (8.8) 
implies a representation of the field operator of the 
Bogoliubov type (8.7). Moreover, explicit calculation, 
in the limit V -+ 00, of (8.8) shows that the limiting 
functionals are identical with what we obtain by 
taking a linear combination of a Fock operator CPF' 

cp(x) = pt + J oc(x - Y)CPF(Y) dy 

+ J (3(x - y)cp~y) dy, (8.13) 

stable pair Hamiltonian, it is the occupation-number 
space of ao, but not of c, that contains the ground 
state of Ao. The ground state of the present system 
has a B.E. condensation whenever v(O) > 0, yet it 
fails to admit the Bogoliubov-type representation. In 
fact (7.38), in conjunction with the normalization 
condition (O(V) I O(V» = 1, tells us that 

I(O(V)I N;;!ao - 110(V»1 ~ ! + O(K), (8.15) 

where K is the density parameter [pOV(O)3]!. This 
result presents no difficulties as long as V < 00. But, 
as explained in Sec. I, we meet with a convergence 
difficulty if we consider the volume limit; the ground 
state (7.37) keeps rotating in the occupation number 
space as No increases and there is no convergence. 
This implies that the occupation number repre­
sentation is inadequate for the infinite system. Since 
the ground state of the condensate is given by (7.37) 
the calculation of the Wightman functional (8.8) 
proceeds in much the same way as in the case of the 
free Bose gas.7 The volume limit of (8.8) using the 
occupation number representation of a~ao turns out 
to be fully reducible. The irreducible representations 
for the field operator are of the Bogoliubov type 
pgeia + cp'(x) (0 ~ 0( < 21T). But as we have seen in 
the above, the Hamiltonian cannot be diagonalized 
in such a representation. In connection with (8.15) 
we note here that if we wish to satisfy 

(0'1 ao - Nt 10') = 0 (8.16) 

for the field operator, and the vacuum state of Fock 
space for the ground state. The quantities O(x) and 
(3(x) are the Fourier transforms of the coefficients of 

10') = I 0(,. INo + n), ,. (8.17) 

where In) is an eigenstate of a~ao with eigenvalue n, 
then we must have 

the Bogoliubov transformation (3.22). Therefore, the by 
pair-Hamiltonian model in the volume limit can be 
described by the representation (8.l3) as long as the 
stability conditions are satisfied. The representation 
(8.13) is obviously irreducible. It is interesting to 
recall here that we met with a dilemma in the case 
where vex) is weak and everywhere repulsive in 
coordinate space. In this case, when the operator 
replacement (8.9) is made, one cannot obtain a 
normalizable ground state for the condensate, yet 

(8.18) 

equality extending in both right and left directions 
indefinitely. From this result we see again that the 
Hamiltonian (8.14) cannot be diagonalized in a 
Bogoliubov-type representation. 

we can prove that the assumption of no condensation 
is untenable. Perhaps one has to generalize the 
concept of B.E. condensation for such cases. The 
other possibility is that another operator replacement 
in place of (8.9) will be successful. 

In our study of the full Hamiltonian in the low­
density limit, we met the interesting situation where 
the effective condensate Hamiltonian Ao has the form 
(7.36), that is 

Ao = !Nolpov(O)[(a~ao - No - t)2 - t], (8.14) 

which is diagonal only in a representation in which 
a~ao is itself diagonal. In contrast to the case of the 

When the density parameter K is not very small, our 
discussion in Sec. VIle concerning the ground state 
of the full Hamiltonian is based on conjecture. It 
appears likely that under certain conditions the 
operator replacement (8.9) gives a normalizable 
ground state in which 

(0(v)1 (Ct)i(CY 10(V» = O(Ni(i+il) (i + j ~ 2). 

(8.19) 

In the volume limit the representation is then of the 
Bogoliubov type (8.7). 

Returning now to the question of the existence of 
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the B.E. condensation we note here a problem that 
is left for future investigation. Throughout the above 
discussions we have taken the point of view that an 
infinite system should be studied as the limit of a 
finite system. One might try, however, to consider an 
infinite system from the outset by taking a field 
operator of the form of (S.7), whose commutation 
relations are exactly accounted for by the corre­
sponding relation for 4>'(x), e.g., 

[4>(x),4>t(y)] = W(x),4>'t(y)] = c5(x - y). (S.20) 

Let Je~ denote the Hamiltonian which we obtain by 
substituting (S.7) into the given Hamiltonian of a 
system. Then the existence criterion for the B.E. 
condensation is stated as the existence of a finite 
condensate density Po that makes the lowest eigen­
value W~ of Je~ extremum6 : 

(S.21) 

where I-' is a chemical potential. This ad hoc require­
ment added to the eigenvalue problem of Je~ is 
motivated by a rather reasonable physical consider­
ation. One would further require, for instance, that the 
extremum given by (S.21) should actually be a 
minimum and that the sound velocity be real. It is 
then interesting to ask how these ad hoc requirements 
compare with the stability conditions of our scheme. 
We know at least that (S.21) is a necessary consequence 
of the stability of the condensate. This conclusion was 
obtained by an invariance argument in Sec. VII. 
Moreover, the condition as to the reality of the sound 
velocity is needed also in our scheme because we too 
have to diagonalize the part JeB of the Hamiltonian 
pertaining to particles outside the condensate. But, 
it is not yet clear whether this is the whole story or not. 
Judging from the case of the pair Hamiltonian it 
may well be that the set of stability conditions for 
the effective condensate Hamiltonian is more strin­
gent than the set of conditions mentioned above. If 
this is so, then we have to check the existence of the 
B.E. condensation, case by case, before we can use 
the Bogoliubov replacement. If, on the contrary, we 
can show the equivalence of these two sets of con­
ditions it will mean a real justification of the 
Bogoliubov replacement and furthermore of the 
method of Hugenholtz-Pines6 and Beliaev.6 We hope 
that some results will be obtained by widening the 
invariance argument of Sec. VII. 

In conclusion, we have obtained certain conditions 
which when satisfied prove the existence of a Bose­
Einstein condensation and justify the Bogoliubov 
replacement ao = Nt for the case of the pair Hamil­
tonian model. In the case of purely repulsive 

potentials the operator replacement ao = Nt + c 
does not lead to a stable condensate, yet the assumption 
of no condensation is untenable. This case presents a 
challenging problem to the representation theory of 
canonical commutation relations. As for the full 
Hamiltonian, we have discovered that in the low­
density limit it cannot be diagonalized in any 
irreducible representation of the canonical com­
mutation relations. No clear criterion has been 
obtained for the existence of a B.E. condensation for 
the full N-body Hamiltonian, except the one, v(O) > 0, 
in the low-density limit. 
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APPENDIX A. PERTURBATION FORMULAS 

In this appendix we present a perturbation method 
to solve the eigenvalue problem formulated in Sec. II: 

(JeB + Jeo + Jej)"Pn = "PnAn, (AI) 

"P~"Pn = 1, (A2) 
where 1 is the identity operator in .£)0' We refer the 
reader to that section for the notation to be employed 
here. In particular the meaning of the product in 
(A2) is given by (2.5). We assume that the complete 
set of orthonormal eigenvectors In) and eigenvalues 
En of JeB are known. Further, we suppose that Jej has 
the form 

(A3) 

where A. is a small real parameter. 
Consider an eigenvector In) of JeB which we assume 

to be non degenerate, Em =;C En (m =;C n). We suppose 
that the perturbed "eigenvector" "Pn and "eigenvalue" 
An can be expanded as 

"Pn = (1 + A.'U,~1) + A.2'U,~2) + ... ) In), 
(A4) 

An = A~O) + A.A~l) + A.2A~2) + ... , 
where the 'U,~) are operators in .£)B ® .£)0 and the A~) 
are operators in .£)0' In the following we suppress the 
index n wherever no confusion can arise. 
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As is the case for ordinary Schrodinger perturbation 
theory, 1p .. and An are not uniquely determined by 
(AI) and (A2). In fact, if 1p .. and A .. satisfy these 
equations, so do V'~ and A~ defined by 

Returning to the eigenvalue problem, (AI) is 
equivalent to the set of equations 

(JeB + Jeo) 1'1'(0) = 11p(O) A(O), (Al3) 

1p~ = 1pn 'lJ, A~ = 'lJtAn'lJ, (AS) (JeB + Jeo) 1'1'(1) + HI 1'1'(0) = 11p(l) A/O) + 11p(0) A/1I, 

where 'lJ is a unitary transformation in ~o. Thus, (A 14) 
without loss of generality, one can require that (JeB + Jed 11p(2) + HI 1'1'(1) + H2 11p(0) 

(nl 'U,(1) In) = 0, (A6) = 1'1'(2) A/O) + 11p(1) A(1) + 1'1'(0) A(2), etc., (AIS) 

and that the operator (nl 'U,(2) In) defined in ~o is where 1'1'(0) = In) and 11p(i) = 'U,CiI In), i = I, 2, .... 
Hermitian, i.e., From (Al3) we find 

(nl 'U,(2) In) = (nl 'U,(2)t In). (A7) 

To prove these assertions we begin by noting that the 
isometry condition (A2) implies that 

(nl 'U,(1) + 'U,(1)t In) = 0, (AS) 

(nl 'U,(l)t'U,(l) + 'U,(2)t + 'U,(2) In) = 0, etc. (A9) 

Now if we suppose that (nl 'U,(1) In) ~ 0, then the 
first-order term of 

V'~ = 1pn exp [-A (nl 'U,(l) In)] 

is 

= [1 + .1.'U,(1) + .. ·][1 - .1.(nl 'U,!lI In) + ... ] In) 

(AIO) 

'U,(l)' In) = ['U,!lI - (nl 'U, (1) In)] In), 

so that (nl 'U,(1)1 In) = 0 in accord with (A6). More­
over, (AlO) is a unitary transformation because 

{exp [-A (nl 'U,(l) In)nt = exp [-A (nl 'U,(1)t In)] 

= exp [A,(nl 'U,(1) In)], 

the second equality following from (AS). Thus we see 
that it is always possible to fulfill the requirement 
of (A6). 

Turning to (A7), suppose that (nl 'U,(2) In) is not 
Hermitian. Then consider another unitary trans­
formation: 

(All) 
where 

A = U(nl 'U,(2) In) - (nl 'U,(2)t In)] 

is the anti-Hermitian part of (nl 'U,(2) In). The second­
order term of 1p: is given by 

'U,(2)lI ln) = 'U,(2)ln) - In) A, 

so that (nl 'U,(2)" In) is easily seen to be Hermitian. 
This completes the proof of (A6) and (A 7). Hereafter 
we assume that (A6) and (A 7) are satisfied for the 1p .. 
in (A4). Finally, note that the isometry condition 
(A9) now becomes 

(nl 'U,(2)t In) = (nl 'U,(2) In) 

= -t(nl 'U,(l)t 'U,U) In). (A 12) 

A(O) = E .. + Jeo . (AI6) 

Furthermore, multiplying (AI4) from the left by 
(nl and using (A6) yields 

A(l) = (nl HI In). (AI7) 

The similarity between (AI 7) and the standard 
formula for the first-order energy corrections is only 
formal since, instead of being a c number, A(1) is an 
operator in ~o. 

To obtain A/2) we multiply (AIS) from the left by 
(nl and we find 

A (2) = [Jeo , (n I '1'(2)] + (nl HI 11p(1) + (nl H2In). 

But, according to (A 7), the operator (n 11p(2) is Her­
mitian in ~o so that the commutator term in A/2) is 
anti-Hermitian. Since A must be Hermitian [see (2.6)] 
we can conclude that 

A/2) = H.P. (nl HI 11p(l) + (nl H2In), (AIS) 

where H.P. stands for Hermitian part. 
In order to find 11p(l) we multiply (AI4) from the 

left by (ml with the result, 

(En - Em)(m 11p(1) 

= (ml HI In) + [Jeo , (m I '1'(11)], (m:F n). (AI9) 

In the case of ordinary perturbation theory, (m 11p(1) 
is a c number so that the commutator term is absent. 
The method of solving (AI9) for (m 11p(1) can be 
found in the text. 

APPENDIX B. VIOLATION OF 
STABILITY CONDmONS 

We briefly discuss what happens in the pair­
Hamiltonian model if the k = 0 stability conditions 
are violated. The k ~ 0 stability conditions are 
assumed to be satisfied; in particular we assume 
v(O) > O. Thus we study 

AD = Joctc + lho(cc + ctct) 

+ Pov(O)[Not(ctcc + H.c.) + INolctctcc] (BI) 

for several choices of 10 ± ho• 
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Case 1: /0 + ho > 0 and /0 - ho = O. In this case 
the situation is the same as the one we discussed in 
Sec. VII. If, (a), /0 > Pov(O), then the condensate is 
stable and e = O(N!). If on the contrary, (b), 
/0 < Pov(O), then the condensate Hamiltonian for­
mally constructed has a normalizable ground state, 
but the ground-state expectation values of e(f) involve 
divergent integrals in contradiction to the fundamental 
requirement (1.3). If, (c), /0 = Pov(O), then Ao has 
the form of (7.39). 

Case 2: /0 + ho < 0 and /0 - ho = O. In this case 
the spectrum of the condensate Hamiltonian Ao is 
not bounded below. 

Case 3: /0 + ho = 0 and/o - ho :F O. The method 
of scale transformation as applied to the variables 
p, q of (1.10) leads to 

Ao = Not[2fo~2 + 2-tpOV(0)1']3], (B2) 

where we have put q = N"Of.~ and p = Nt°'f}. The 
Hamiltonian (B2) has no normalizable ground state 
irrespective of the sign of /0 . 

Case 4: /0 + ho and 10 - ho have opposite signs or 
are both negative. In this case the finite part of the 
Hamiltonian (BI), 

has no normalizable ground state. The "infinitesimal" 
part Ao - A~ may act as a restoring force, but it can 
compete with A~ only when p, q = O(Nt). Whenever 
cases (2)--(4) apply, either there is no B.B. conden­
sation in the system or there is a condensation but 
the operator replacement (1.1) loses its usefulness. 

APPENDIX C. THE FUNCTION h(p) 

Before discussing the solution of the integral 
equation (3.31) for the case of a superposition of 
Yukawa potentials [see (6.1)], we briefly describe how 
to solve that equation when v(k) describes a single 
Yukawa potential, 

v(k) = BI(k2 + ).2). (C1) 

In accordance with (6.10) we assume that 

E(k) = E(O) + k2/(2m). (C2) 

Thus the integral equation (3.31) becomes 

1i(P) = v(P) - f dkG(p, k)Ii(k), (C3) 

where Ii = p"Ol h and the kernel is given by 

G(p, k) = (27T)-3mB[(p - k)2 + A2]-1(k2 + 0'2)-1, 

(C4) 
and 0'2 = 2mE(0). 

The kernel has the remarkable property that in a 
good approximation it reproduces functions of 
Yukawa type; that is, 

f G(p, k)(k2 + ~2rl dk r-J f3(~)(p2 + M 2)-l, (C5) 

where 
M2 = (A + O')(). + ~), 

f3(~) = (47T)-1(~ + a)-1mB. 

(C6) 

(C7) 

For the proof, we evaluate the integral of (C5) by 
invoking the convolution theorem for Fourier 
transforms; the integral is transformed to a sum of 
two integrals, each containing the product of two 
Yukawa potentials in coordinate space. We obtain 

f dkG(p, k)(k2 + ~2)-1 
= mB[47Tp(~2 - 0'2):rl tan-l (~ _ 0')pl(p2 + M2)]. 

(C8) 

But the inequality pM ~ t(P2 + M2) shows that the 
argument of tan-l never exceeds 

!(~ - O')(). + ~)(A + O')t, 

which, in turn, is less than t in the following calcu 
lations. Thus in the following (C5) is in fact a good 
approximation to (C8). 

In view of this reproducing property of the kernel, 
we try to obtain the solution of (C3) in the form 

oo 
Ii(p) = L an(p2 + A!)-l, (C9) 

71=0 
where 0 < 1.0 < Al < . .. as well as the an are 
parameters to be determined. In particular, the first 
term of this sum is taken to be v(P), so that ao = B, 
1.0 =).. Substituting (C9) into (C3) we obtain the 
recurrence relations 

an+1 = - f3().n)an , 

A~+1 = (A + 1.71)(1. + 0'). 

(C10) 

(Cll) 

In terms of Yn = 1.71/(1. + 0'), the latter relation becomes 

Y~+1 = Yn + Yo, Yo = AI(A + a), (C12) 

and the the sequence Y 71 converges to 

Yoo = l[1 + (1 + 4Yo)t]. (C13) 

Every Yn lies in the interval [Yo, Yoo), and the length 
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of the interval decreases as (] decreases. A good feature 
of the sequence Yn is that it converges very rapidly. 
For instance, when (] = 0, Yo = 1, the sequence is as 
follows: 1, 2!, 1.55, 1.60, "', and eventually 
Y 00 = 1.62. The rapid convergence of Y n suggests that 
it would be a good approximation even if we set 
Yl = Y2 = ... = Yoo' Then, 

n(p) = v(p) - /JB' (p2 + A!'>-l, (CI4) 

Now we turn to obtaining the solution of (3.31) 
when v(k) has the form (6.1); that is, 

v(k) = B/(k2 + ,1.2) + A/(k2 + K2). (C17) 

In this case a good approximate solution is 

n(p) = Bj(P2 + ;,,2) + Aj(p2 + K2) - /JBj(p2 + A!,). 

(CI8) 

where 

and 

This result follows from the fact that if (3.31) is 
(CIS) solved by iteration with (C18) as the lowest order 

form for n(p), the correction terms are very small in 
(C16) view of (6.2b) and (6.4). 
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It is shown how, starting from the (experimental) knowledge of scattering phase shift, energies of 
bound states and renormalized coupling constants, one is able to determine completely the parameters of 
a quantum field theoretic model previously considered by the authors, the so-called Dyson model. The 
very same conclusion holds for the case of potential scattering, which is also briefly considered. 

1. INTRODUCTION 

THE problem of determining the parameters of 
some field theoretic models from the (experimental) 

knowledge of the scattering phase shift and the 
energies of the bound states has been previously 
considered by the authors. l In I it was found that the 
problem did not have, in general, a unique solution. 
In this paper we again consider this matter by also 
assuming the (experimental) knowledge of the renor­
malized coupling constants. 

It is shown in Sec. 2 how this knowledge, together 
with that of the phase shift over the full energy range 
and that of the bound state energies, is able to deter­
mine completely the parameters of the models. 

In Sec. 3 the concept of renormalized coupling 
constant is introduced in potential scattering2.3 and 
it is briefly shown how also in this case the potential 
is uniquely determined. 

2. FIELD THEORETIC MODEL 

We start by recalling the main results of I. It has 
been shown there that if we assign the phase shift 
b( w) in such a way that it has one of the behaviors A, 
B', or B" shown in Fig. 3 of that paper, and the 
number n and the energies of the bound states, we can 
reproduce this situation by means of the Dyson 
model, whose Hamiltonian isl 

H=Ho+HI' 
No 

Ho = mNtp1tpN + .! (mN + w!O})tpJtpj 
.=1 

+ f w(k)a t(k)a(k) d3k, (2.1) 

HI = (211)-!ff(w)t [2 gi'PJ'PNa(k) + h.C.] ~k, 
(2w) .=1 

1 L. Fonda and G. C. Ghirardi, J. Math. Phys. 7, 906 (1966). We 
refer to this paper as I in what follows. 

I For the treatment of the inversion problem in potential scattering, 
seethe review article by R. G. Newton, J. Math. Phys. 1,319 (1960). 
and V. de Alfaro and T. Regge. Potential Scattering (North-Holland 
Publishing Company, Amsterdam, 1965). 

a For the definition of the renormalized coupling constants in 
potential scattering, see: L. Bertocchi, M. McMillan, E. Predazzi, 
and M. Tonin, Nuovo Cimento 31, 1352 (1964); L. Bertocchi, S. 
Fubini, and G. Furlan. ibid. 32,745 (1964). 

by choosing in a proper way the parameters 
appearing in it. 

The a priori unknown quantities of the problem 
are: 

(a) the number No of excited states of the scatterer; 
(b) the No energies w~o) of these excited states; 
(c) the No unrenormaIized coupling constants g i; 
(d) the form factor f(w), which is subject to the 

conditionf(.u) = 1. 
The quantities which are known are, the number n 

and the energies of the bound states of the system 
and the scattering phase shift b( w ) over the full 
energy range, i.e., from w = p to w = + co. 

As shown in I, the number No is immediately 
obtained; it is equal to; 

No = n + Po (2.2a) 

if the phase shift starts decreasing (cases A and B"), 
and equal to 

No = n + Po + 1 (2.2b) 

if the phase shift starts increasing (case B') being Po 
the number of times that sin c5(w) vanishes in the 
interval p < w < + co, i.e., the number of times 
b(w) goes through a multiple of 7T excluding the points 
w = p and w = + co. We outline again here that the 
phase shift cannot in any case go through the same 
value multiple of -11 more than once, otherwise the 
assigned situation cannot be reproduced by this 
model. The fact that No is connected to n and Po 
through (2.2a) and (2.2b) is an immediate consequence 
of the fact that for this model the Levinson theorem 
holds. 

Instead of using the 2No parameters w:O) and gi we 
can use the w!O)'s, ~~'J11 g; and the No - 1 CDD poles 
z~O) of the model. The relation between these two sets 
of parameters is obtained through the identity 

(2.3) 

1312 
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The form factor is then obtained in terms of the free 
parameters by 

Pew) = _ 47TR(w) 
(w2 _ p,2)! 

x exp [- ~ f ~(y) dY] sin ~(w), (2.4) 
7T Y - W 

where R( w) is given in terms of the bound states 
energies w. and the free parameters 

by 

[Ii (z - WJ](Z - p)No-n 
~I ( ) R(z) = No No-I 2.5 
!g~ II (z - z~O) 
.=1 1=1 

In order to determine the 2No parameters 

and z:o) we have made use in I of the following 
relations: 

(1) The conditionp(p,) = 1. 
(2) The n eigenvalue equations for the bound states 

of the model. 
(3) The equations for the resonances. 

As extensively discussed in I, there are only No - n 
independent relations of this kind if the number 
of resonances is greater than this. More precisely when 
the phase goes from -m7T to -em - 1)7T, also if it 
crosses the value - m7T + i7T more than once, we get 
only one independent equation for these resonances. 

(4) As discussed in I, the positions of the Po CDD 
poles falling above n are fixed by the zeroes of sin ~(w) 
as it is necessary in order to have a positiverCw). 

Summarizing, we have No + 1 + Po independent 
relations among the 2No free parameters. There 
follows that, in general, the assignment of the phase 
shift and of the bound state energies is not sufficient 
to determine completely the model. 

We come now to the discussion of the use of the 
renorma1ized coupling constants. Let us consider the 
Low equation 

(th" Hr'Y~;» = (4),,,, Hrth/) +f (4)t,, Hr'Y~+»('Y~+l, H z4>t) d'k 
E. - E + il; 

+ 
~ (4)t,, Hz'Y1JX'Y" , Hzthi ) 
k (2.6) 
/)-1 Ei - Eb 

t/>t being the state describing free motion, and 'Yi+l 

the scattering state. They are normalized as follows: 

(t/>t. t/>t,) = ('Y", 'Y.) = ~3(k - k'). 

'Yb is the normalized bound state eigenvector. 
For our model the first term at the right-hand side 

of (2.6) vanishes. We recall now the expression for the 
Tmatrix 

( .I. H :'1,.(+» = f(wi)f(w f ) [D(w + iO)]-l (2.7) 
'f'''I' I k, 16 3( )i i , 1T wiWf 

where 
No II (z - w~o}) 

D(z) = .=1 • +.! ('1) q(y) dy 
No No-l 1T J~ y z 
!g~ II (z - z~o» Jl-

'1=1 1=1 
and 

'P(W) = [(w2 - p,2)!/41T1p(w). 

Moreover one immediately gets 

1 f(wf ) ~ (0) 

(4)tf • Hr'Yb) = (21T)! (2Wf)tf='/i('Yi ,'Yb), (2.8) 

where 

I'Y:O» = 1ft 10) 

is the jth bare excited state, and 10) the vacuum state. 
Substitution of (2.7) and (2.8) into (2.6) yields 

1 1 fro kdw pew) 
D(w + iO) = 41T2 Jl Wi - W + il; . ID(w + iO)12 

nl2 gi'Y!O), 'Yb) 12 
+! i=1 • (2.9) 

b=1 Wi - w/) 

The residues ofthe function [D(Z)]-l at the position of 
the bound states are the squares of the renormalized 
coupling constants g;; of the model 

1
2 gi'Y;O), 'Yo) 12 == lim (z - lOb) _1_ 
'1=1 Z-+"'& D(z) 

= (g;;)2. (2.10) 

We recall that D(z), in our case, is known in terms of 
the parameters of the model, the bound state energies 
and the phase shift: 

[ir (z - Wt)]<z - p,)No-n 
D(z) = =-'-~1_=--:-= ___ _ 

No No-l 

! g~ II (Z - z~O» 
i=1 /=1 

X exp [- ! f ~(y) dyJ. (2.11) 
1T Y - z 

The quantities g;; are measurable quantities since they 
give the strength of the coupling of a f} particle with 
the hth bound state of the system. 
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Substitution of (2.11) into (2.10), therefore, yields 
n new relations for the parameters of the model. These 
relations are all independent since the Low equation, 
which seems to connect the g{! among themselves, is 
identically satisfied for any choice of the free param­
eters. If we consider, together with the previously 
obtained relations among the parameters of the model, 
the n so obtained relations, we have a total of 
No + I + Po + n relations among the 2No parameters 
of the model. Let us compare these two numbers. 

In case B' we have from Eq. (2.2b) No = n + Po + 1. 
Therefore we have in this case exactly 2No independent 
relations among the 2No parameters of the model. 

In cases A and B", No = n + Po and we get a total 
of 2No + 1 relations among the 2No parameters. This 
means that, in general, the knowledge of only n - I 
of the renormalized coupling constants allows the 
complete determination ofthe model. The value of the 
last renormalized coupling constant is then fixed 
automatically by the model, and only if it meets the 
experimentally observed value, the physical situation 
can be described in the framework of this model. This 
is, for example, the situation which arises in the Lee 
model when there is a normalizable state. As shown 
in I, the parameters of the Lee model are in any 
case completely determined by the assignment of the 
phase shift and of the energy of the eventual bound 
state. Much the same holds also for the multichannel 
separable model considered in Sec. 5 of I. 

3. POTENTIAL SCATTERING 

In potential scattering it is known that, 2 for 
potentials whose first and second absolute moments 
are convergent, from the knowledge of the phase shift 
c5 1 over the full energy range and of the energies Eb of 
the n bound states, one obtains an n-parameter family 
of potentials all of which lead to the same <51 and Eb . 
In particular, this freedom is due to the fact that the 
normalization constants of the bound states 

Nb = IPI(-ikb, r)/"Plbl(r), (kb > 0) (3.1) 

are not determined from the knowledge of <5 1 and Eb • 

Here "Plbl(r) is the normalized wavefunction [i.e., 
S::' dr("P~bl(r»2 = I] of the considered I-wave bound 
state, and IPI( - ikb , r) is the regular solution of the 
I-wave radial Schrodinger equation at the energy of 

the bound state, determined by the boundary condi­
tion: 

lim (21 + I)!! r-I-l IPz( - ikb' r) = 1. (3.2) 

Also in this case, however, the knowledge of the 
renormalized coupling constants yields uniquely all 
the normalization constants N b • We see this for the case 
in which the Jost function, Fz(k), which is determined 
uniquely by <5 z and Eb ,is analytic in the whole complex 
plane, but the interval (i lal, ioo) and a pole in the 
origin. This is, for example, the case of superposition 
of Yukawa potentials with range 2 Ia\. 

Defining the renormalized coupling constants 
through the Low equation (2.6), we write 

t: R p,(27T)t. m 
Yzm(K)gb = - --2- hm(<pk' HrTb)' (3.3) 

Ii k-+ikb 

It is straightforward to see that the so-defined gf 
appears as coefficient of the asymptotic bound state 
wavefunction: 

(3.4) 

On the other hand, the asymptotic form of IPz( -ikb, r) 
can immediately be derived from the equation of 
definition of the Jost function 

We analytically continue this equation up to the point 
k = -ikb' Since FI( -ikb) = 0 and tl( -ikb' r) '" )l r_co 
i1e-kbr , we get 

( 'k ),...., F ('k )'1 -kbr 
IPI -I b' r r-+ r:JJ I I b Ie, (3.6) 

and therefore, 
(3.7) 

We note that ikb may even lie on the interval (i lal, ioo) 
since, for FI( -ikb) = 0, FI(k) is not discontinuous 
on crossing the imaginary axis at the point ikb . 

Equation (3.7) expresses Nb as a function of <5 1 , Eb 
and the renormalized coupling constant g{!. There 
follows that the potential H rCr) is uniquely determined 
from the knowledge of phase shift, binding energies, 
and renormalized coupling constants. 
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The modific~tion~ introdu~ed by the, specific forms of relativistic dynamics of many-particle systems 
~re show~ to give n,se to a dlffer~nt (with re,s~e~t to t~e !10nrelativis~ic case) manner to set the problems 
mvolve? ~n, a tentatJ~e construction of ~el,atlVlStI~ statistical mechamcs. Although the difficult problems 
o~ re~atI~lstIc dyn~mlcs a~e not solved, It IS pOSSible to define relativistic generalizations of phase space, 
dlstnb~tlOn funct,lOns, Gibbs ensembles, and average values. In particular, phase space is chosen for 
convemence and IS no longer related (as is usually the case) to the "initial data," whose nature is yet 
unkno~n. ~s a cons~quence, only those observables which depend on the variables characterizing phase 
space give nse to eaSily computed average values. However, it is possible to enlarge at will the basic phase 
space a~d to define subsequent densities from which average values may be calculated. [Example: The 
calculatIOn of average v~lues ~f observabl~s A(' . : x~, ur· .. ) needs only densities of the form .N'(' .. xf, 
u~ •.. ) and observables mvolvmg acceleration vanables need the enlarging of phase space so as to include 
the latter. On this enlarged phase space, densities of the form .N'(' .. xf, u~, y~ .. ,) may be defined and 
are used to compute average values, etc.) The notion of equilibrium is discussed and suggestions for 
reaching the solution of this unsolved problem are made. 

1. INTRODUC'FION 

I N the past few years, a large number of papers on 
relativistic statistical mechanics and connected 

topics have been published. There are many reasons 
for such proliferation. One of the principal reasons 
may be found in the probable appearance (and this 
in the near future) of very high-temperature plasmas 
(T f"oooJ 0.5 x 109 deg) needed for thermonuclear fusion. 
Furthermore, relativistic plasmas do exist in stars 
(at least the electron component is relativistic as 
indicated by synchrotron radiation) and thus a 
relativistic statistical mechanics is necessary to treat 
them in a suitable way. However, even a nonrela­
tivistic plasma needs a relativistic treatment when 
radiation phenomena are considered. Indeed, Schwin­
ger1.2 has shown that, in problems involving radiation 
phenomena, the relativistic corrections are much more 
important than the quantal ones, and this in a large 
domain of frequencies (from radio wavelength to the 
far infrared). Another important case where relativ­
istic effects should be taken into account is that of the 
degenerate electron gas3 whose Fermi energy is of the 
order of mc2• Such a case, encountered in astrophysics 
when dealing with white dwarfs, occurs even at zero 
temperature. However, it also requires a quantal 
treatment, while throughout this paper we limit 
ourselves to a classical theory. 

However, the above "practical" reasons should, in 
general, not be considered too seriously. Indeed, the 

1 J. Schwinger, Phys. Rev. 75, 1912 (1949). 
2 J. L. Delcroix, in La tMorie des gaz neutres et ionises (Dunod Cie, 

Paris, 1960). 
8 B. Jancovici, Nuovo Cimento 25,428 (1962). 

domain of validity of nonquantal relativistic statistical 
mechanics is not extremely large: from f"oooJ 1 09 deg to 
2 X 109 deg (the latter number referring' to the 
apparition of electron pairs which demand a quantum 
theory). So, we believe that problems of classical 
plasmas and radiation phenomena could be perfectly 
treated only with relativistic corrective terms taking 
"large velocities" into account. In this way, it is 
possible to make use of the Darwin Hamiltonian4 and 
this possibility has been exploited by Krizan and 
Havas.5 

Fortunately, besides the pragmatical reasons given 
above, there exist theoretical possibilities which are, 
in our opinion, sufficient to justify relativistic statistical 
mechanics. More particularly, if we consider that the 
special theory of relativity is a part of the laws of 
Nature, then it appears to be necessary to generalize 
in a suitable way the totality of Newtonian physics and 
hence statistical mechanics. However, besides these 
philosophical demands, it should be remarked that the 
theory of relativity implies a number of qualitative 
features which do not exist in Newtonian physics. 
From these particular features one may expect new 
phenomena in the statistical domain. For instance, the 
equivalence between mass and energy or the non­
instantaneous character of relativistic actions could 
perfectly well be at the origin of new phenomena. 
We see that this is actually the case (see Papers II and 
III). 

The various papers devoted to relativistic statistical 

4 C. G. Darwin, Phil. Mag. 39, 357 (1920). 
5 J. E. Krizan and P. Havas, Phys. Rev. 128, 2916 (1962); E. J. 

Krizan, ibid. 140A, 1155 (1965). 
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mechanics can begrosso modo divided into two classes. 
In the first class we find the theories which are not 
manifestly covariant, either because they do not 
actually satisfy the principle of relativity (and they 
are generally approximations) or because they need 
a special proof of their effective covariance. In the 
second class fall the theories whose covariance is 
obvious at each step of the derivation. 

In the former class we can include the classical 
works by Jiittner6 dealing with the equilibrium of a 
relativistic gas (classical, Bose or Fermi gas). In 1939 
a first attempt to build relativistic statistical mechanics 
was made by Van Dantzig.7 However, this attempt was 
inconclusive, presumably because at that time rela­
tivistic dynamics of many-particle systems was not 
sufficiently developed. The first results in relativistic 
kinetic theoryS are due to Lichnerowicz and Marrot9 

(relativistic Boltzmann equation). However, it is only 
very recently (and especially because of the develop­
ments of plasma physics) that attempts to build 
relativistic statistical mechanics have been undertaken. 
These theories start with the relativistic expression of 
the energy, i.e., 

H, = {[p, - e,A(x" t)]2 + m~}! + V(x, , t), 

i = 1"'N 
from which is derived the Hamiltonian 

H = ! Hi + ~ f(t;2 + Je2) dax, 
i 81T 

where the second term on the right-hand side of the 
preceding equation refers to the field energy. Using 
this generalized Hamiltonian, it is possible to derive 
a relativistic Liouville equation for a pseudodensity 
involving both fields and particles. Next, the theory 
follows the classical developments and in particular 
diagrammatic methods are used. These theories have 
been studied extensively by Balescu, de Gottal, Henin, 
Mangeney, and Prigogine.lO However, besides a 
number of conceptual difficulties (both mathematical 
and physical) the transformation properties of these 
theories are not yet completely clear and we no 
longer consider them in this paper. 

We now limit ourselves to the second class, those 

• F. Jiittner, Ann. Physik. 34, 856 (191Ia); 35, 145 (1911 b); Z. 
Physik 47, 542 (1928). 

7 O. Van Oantzig, Nederl. Akad. Weetnsh. Proc. 42, 601 (1993b). 
8 By "kinetic theory" we mean a theory based on a one-particle 

distribution function and a kinetic equation. 
8 A. Lichnerowicz and R. Marrot, Compt. Rend. 210, 759 (1940). 
10 R. Balescu, in 1964 Cargese Summer School (Gordon & 

Breach, New York, to be published); Ph. de Gottal, thesis and 
Physica 32, 126 (1966) (See Ref. p. 72); F. Henin, Physica 29,1233 
(1963); A. Mangeney, thesis, Paris, (1964) and Ann. Phys. (Paris) 
10, 191 (1965); J. Prigogine, in Statistical Mechanics of Equilibrium 
and Non-Equilibrium, J. Meixner, Ed. (North-Holland Publishing 
Company, Amsterdam, 1965). 

papers written in an explicit covariant manner. 
Indeed, only the latter works contain mainly the 
substantifique moelle of the methods which are used 
throughout this series of papers. In this second class, 
there are only a few papers devoted to relativistic 
statistical mechanics.s In fact, they rather deal with 
relativistic kinetic theorys or with equilibrium. The 
methods which lead to such theories have essentially 
been set up by Bergmann, Chernikov, Tilei~a, Synge, 

Tauber, and Weinberg.H They have been constructed 
so as to suit the relativistic hydrodynamics first 
established by Eisenhart, Synge, Lichnerowicz, Eckart, 
and Taub.l2 In such a way, various relativistic kinetic 
equations have been obtained: Vlasov equation,13 
Boltzmann equation,14 Landau equation,l5 and Fok­
ker-Planck equation.l6 Unfortunately, the greater 
part of these kinetic equations can hardly be justifiedl7 

on the basis of relativistic statistical mechanics and 
they are only ad hoc semi phenomenological equations. 

Let us now briefly glance through the various 
problems which arise in a relativistic generalization of 
statistical mechanics. A first problem deals with the 
covariance of the theory. We like to obtain a theory 
which would be explicitly covariant at each step of the 
derivation and of the calculations. In our opinion 
such a procedure does not merely arise from esthetic 
considerations. Indeed, in so doing we avoid an 
explicit proof (and even several proofs: one by 
manipulation) that the theory actually satisfies the 

11 (a) P. G. Bergmann, Phys. Rev. 84, 1026 (1951); (b) Handbuch 
der PhYSik, S. FlUgge, Ed. (Springer-Verlag. Berlin, 1960), Vol. IV; 
(c) N. A. Chernikov. Ookl. Akad. Nauk SSSR 1, 103 (1956); (d) 
S. 1itei9a, Studii ~i Cercetari de Fizic~ 7, 7 (1956); (e) J. L. Synge, 

The Relativistic Gas (North-Holland Publishing Company, Amster­
dam, 1957); (f) G. E. Tauber and J. W. Weinberg, Phys. Rev. 122, 
1342 (I96\). 

12 L. P. Eisenhart, Trans. Am. Math. Soc. 26, 205 (1924); J. L. 
Synge, Trans. Roy. Soc. Canada 28, 127 (1934); Proc. London 
Math. Soc. 43, 376 (1937); A. Lichnerowicz. Compt. Rend. 211, 
117 (1940); 219, 270 (1944); Ann. Sci. Ecole Normale Sup. 58, 285 
(1941); C. Eckart, Phys. Rev. 58, 919 (1940); A. H. Taub, ibid. 74, 
328 (1948). 

13 P. C. Clemmow and A. J. Wilson, Proc. Cambridge Phil. Soc. 
53,222 (1957); B. Kur~unoglu, NucI. Fusion 1,213 (1961); Yu. L. 
Klimontovich, Zh. Eksperim. i Teor. Fiz. 37, 535 (1959) [English 
transl.: Soviet Phys.-JETP. to, 524 (1960»); K. Goto, Progr. 
Theoret. Phys. (Kyoto) 20, I (1958); G. E. Tauber and J. W. 
Weinberg. Ref. 1I(f); R. Hakim, Compt. Rend. 260, 3861 (1965). 

14 N. A. Chernikov, Soviet Phys. Ookl. 2, 248 (1957); 5, 764, 
786 (1960); 7, 397,414,428 (1962); Acta Phys. Pol. 23,629 (1963); 
26, 1069 (1964); 27, 465 (1964); Phys. Letters 5,115 (1963); W. Israel, 
J. Math. Phys. 4,1163 (1963); R. W. Lindquist, Ann. Phys. 37,487 

(1966); G. E. Tauber and J. W. Weinberg, Ref. 11(f). 
15 S. T. Beliaev and G. J. Budker, Soviet Phys.-Ookl. 1, 218 

(1956); Yu. L. Klimontovich, Zh. Eksperim. i Teor. Fiz. 38, 1212, 
(1960) [English transI.: Soviet Phys.-JETP 11, 876 (1960»). 

18 Yu. L. Klimontovich, Ref. 15; R. Hakim, Orsay report Th/68 
(1964). 

17 This is not entirely true. Indeed, Klimontovich13 •16 justifies 
his equations with the help ofa very interesting method which will be 
used extensively in Paper II. However, his definitions and methods 
are neither completely correct nor well established. We shall give the 
correct proofs of these equations in Paper II. 
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relativity principle. Furthermore, it is in the essence 
of the special theory of relativity to work in the frame 
of Minkowski geometry without any need to introduce 
objects extraneous to this geometry and to the one of 
the system under study. For instance, no objects such 
as spacelike 3-planes, t = const, need be considered. 
All is contained in the geometries of space-time and 
of the system. A second problem deals with the 
evolution of the system. In statistical mechanics, 
time indeed plays a very particular role as, for 
instance, in problems involving time scales, stochastic 
processes, perturbations, etc. However, we see that 
there is no canonical notion of evolution of a relativistic 
system of particles so that we must find a scheme to treat 
such problems as the ones referred to above. The third 
kind of questions concerns relativistic dynamics from 
which arise the main problems. These problems have 
been discussed at length by Havas,18 whose paper 
contains also a quasi-exhaustive list of references on 
relativistic statistical mechanics and connected topics 
[R. Hakim, Ann. Inst. H. Poincare 6, 225 (1967)]. 
It is commonly admitted that relativistic statistical 
mechanics should treat both fields and particles in the 
same way. However, this point of view neglects other 
possibilities, such as the action-at-a-distance formal­
ism, and we see that it leads (as expected) to infinities 
very difficult to drop into a statistical framework. At 
this point, we want to emphasize strongly that we 
have not solved (nor tried to solve) the dynamical 
problems. We have only explicitly assumed a number 
of plausible hypotheses concerning them. We want to 
point out that these basic assumptions also exist 
(although implicitly) in previous works.lO 

This paper is devoted to a discussion of the basis 
of possible ways out and difficulties of the problems 
involved. We first start with a discussion of relativistic 
kinetic theory, of which we give a helpful alternative 
formalism (Sec. 2). Next, a brief (and necessary) sum­
mary of relativistic dynamics is given (Sec. 3). Section 
4 deals with the statement of the main statistical notions 
to be put (in our opinion) at the beginning of relativistic 
statistical mechanics. In Sec. 5, densities on the phase 
space previously considered are defined, while Sec. 
6 is devoted to average values. Finally, in order that the 
reader not be mystified, in Sec. 7 we discuss the un­
solved but important problem of equilibrium. 

Paper II will contain several hierarchies of equations 
for the densities defined in Sec. 5 of this paper 
(exactly, for more general densities). In particular, a 
possible treatment of nonquantal radiation problems 

18 P. Havas, in Statistical Mechanics of Equilibrium and Non 
Equilibrium, 1. Meixner, Ed. (North-Holland Publishing Company, 
Amsterdam, 1965). 

is given and applications to simple kinetic equations 
are included. Paper III will be devoted to more 
detailed applications and, in particular, to relativistic 
hydrodynamics of plasmas. 

We now list some of the notations and conventions 
used in this paper. Throughout this paper we take 
c = I (c is the speed of light). The Einstein summation 
convention is used for the Greek indices. The latter 
run from 0 to 3 while the Latin indices (when corre­
sponding to tensorial indices) run from I to 3; 
otherwise they can number particles (from I to N). 
Capital Latin letters are used in order to number the 
components of eight-vectors or of 8N vectors or 
tensors. The Minkowski space-time is endowed with 
the metric + - - - . Furthermore, in addition to the 
usual mathematical symbols V' 3, 0, c, etc ... , we 
use the following notations: 

Q9, tensorial product; 
EB, direct sum; 
/\ , exterior product; 
-<, order; 
«, tensor whose components are at ••• ; 

c5, Dirac measure: 

pI', 

c5 = c5(xo) Q9 c5(x1) Q9 c5(x2) Q9 c5(xa); 
positive real numbers; 
superficial uniform measure + I on the 
surface ~; 
projector on the 3-space orthogonal to the 
timelike 4-vector n)., 

( 
A,''"(n;.) = gPv _ n"nv, 

n).n). = 1; 

designate indifferently mou" or (when exist­
ing) the canonically conjugated momentum 
of x". There should not be ambiguities either 
because of the context or of further specifi-
cation; 

(I(x) , heaviside step function. 

As usual, we denote by boldface letters the spatial 
components of 4-vectors. There should not be ambi­
guities with the notation used for tensors per se. 

2. PRELIMINARY REMARKS 

Before considering relativistic statistical mechanics, 
it seems worthwhile to discuss briefly relativistic 
kinetic theory. 

Outline of Relativistic Kinetic Theory 

The relativistic one-particle phase-spacel9 (the 
so-called I-' space) is an eight-dimensional space; its 

11 We should say "state space" rather than "phase space." This 
point is explained in the remarks below. 
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points have four space-time coordinates and four 
momentum coordinates. 20 The distribution function 
.N'(xll,p) is defined in such a way that the expression 

r(xll) = f d4P.N'(xv, Pv) . ull2m . O(pO) . ~(pllpll - m2
) 

(2.1) 

is the particle four-current. [In Eq. (2.1) we have 
pll = mull and, of course, 2mO(p°)' ~(Pllpll - m2) d,p = 
m(daP/p°fp».] From Eq. (2.1) it is easily seen that 
.N'(xv ,Pv) is normalized by 

L r(xv) d~Il' = N, V~, (2.2) 

where ~ is an arbitrary spacelike three-surface and 
N is the number of particles constituting the gas. 
[In Eq. (2.2) d~1l is the differential form with vectorial 
values 

where 

d~1l = l "IlVP" dxv 
A dxP A dx\ 

3! 

+ 1 when (fl/vP),) is an even permutation of 
(0123), 

"IlVP" = -1 when (jI/vp),) is an odd permutation of 
(0123), 

o otherwise. 

We denote by d~: d~ = n~ ~Il' where n~ is the 
normal unit to ~.] Condition (2.2) implies the 
conservation relation 0lljll(X) = O. The expression 

2mO(pO) . ~(pllpll - m2
) • .N'(xv, Pv)ull d~1l d,p 

occurring implicitly in the normalization condition 
(2.2) can be interpreted as the number of world lines 
which will cut d~ centered at point Xv with the energy­
momentum four-vector Pv (modulo d4P). The reasons 
for defining .N'(xv, Pv) through a current have been 
explained by Bergmannll (see also below). 

The relativistic one-particle Liouville equation can 
be obtained as follows. Let us denote by 'I) the eight­
vector whose components are (ull, FIl/m), where FIl is 
the external four-force acting upon the gas. The 
eight-vector 'I) (whose components are denoted by 
rr\ A = 1 ... 8) has a velocity character in flo space; 
hence an eight-current in flo space can be defined by2l.22 

JA(XB) = .N'(XB) . 'fJA(XB)' (2.3) 

'0 In fact, the It space is a seven-dimensional space because of the 
constraint pllPIl = m" (or any other one). However, it is preferable 
to work in a fiat eight-dimensional space rather than in a curved 
seven-dimensional one. In the former case, the constraint pllPIl = m' 
is taken into account by simply adding a .5 factor as, e.g., in Eq. 
(2.1) below. 

21 XB (B = 1 ... 8) designates the coordinates of a point in II­
space. When the coordinates chosen are (xv, Pv)' then XB = Xv for 
B = 1 .•. 4 and XB = Pv for B = 5 ... 8. 

IZ TJ.d depends on XB through its definition. 

which satisfies the conservation relation23 (see Berg­
mann, Ref. Ila) 

V AJA(XB) = V A{.N'(XB) . 'fJA(XB)} = 0 (2.4) 

(where V A is the covariant derivative in an arbitary co­
ordinate system in Wspace); when condition 

(2.5) 

holds, the relativistic one-particle Liouville equation 
follows and it reads 

'fJA(XB) . 0 A.N'(XB) == (d/d'T).N'(xB) = 0, (2.6) 

where T is the proper time. Using now the conventional 
coordinates (XIl, pll), Eq. (2.6) becomes 

ulloll.N'(xv' Pv) + £!l(xv, uv)(%jJll).N'(xv, Pv) = O. 
(2.7) 

Condition (2.5) is valid when (for instance) the 
equations of motion of the particle can be cast into a 
Hamiltonian form; this is the case when the external 
force is due to an electromagnetic field or a "mesic" 
(i.e., scalar) force field. In all that follows we always 
bear in mind these two important cases. 

The most general form of a kinetic equation that 
.N'(xv, Pv) should satisfy is obtained by adding an 
ad hoc phenomenological term to the right-hand side 
of Eq. (2.7) 

ulloll.N' + FIl . (O/Opll).N' = C(.N'), (2.8) 

where FIl is an external four-force. The right-hand 
side of Eq. (2.8) is a collision term, which is nothing 
but the variation of .N' per unit proper time which is 
due to collisions. This term must be such that pll and 
m are collisional invariants. 2' The left-hand side of 
Eq. (2.8) is the variation of.N' per unit proper time 
which is due to the streaming. In order that Eq. (2.8) 
actually be a kinetic equation, the collision term must 
verify a number of requirements.25 In particular, the 
relativistic form of the Maxwell-Boltzmann equilib­
rium distribution function, i.e., the Jiittner6-Synge 
distribution 

.N'(xv' Pv) = N :(xv) exp [ - ~Il . Pll] (2.9) 
41Tm K2(m~) 

should be a solution of C(.N') = 0, when £Il = O. 
[In Eq. (2.9) the notations are those used by Syngell ; 

~Il is the reciprocal (emperature four-vector, IG,. is a 
Kelvin function of order 2. Instead of Synge's notation 

.1 With O.d == %x.d 
It S. Chapman and T. G. Cowling, The Mathematical Theory of 

Non-Uniform Gases (Cambridge University Press, Cambridge, 
England, 1960). 

•• See, e.g., D. C. Montgomery and D. A. Tidman, Plasma Kinetic 
Theory (McGraw-Hill Book Company, New York, 1964), p. 85. 
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No (which could be confusing) we have used Np(xv) 
for the invariant world density of the fluid.] 

In the same way C(X) must be such that there 
exists an H theorem. These requirements are satisfied 
by the various kinetic equations indicated above 
(except of course the relativistic Vlasov equation). 
The connection of the covariant notations used in 
Eq. (2.8) and the three-dimensional ones is straight­
forward and can be found in the literature.26 

From the distribution functions obtained, for 
instance, from a kinetic equation of the form (2.8), 
one can compute the energy-momentum tensor of the 
relativistic fluid under study as 

T"V(xp) = f d4J12mO(pO). b(p"p,,- m2)mu"uVX(xv' Pv). 

(2.10) 
In the absence of an external force field this tensor 
satisfies the conservation relation27 

o T"V(x) = 0 
" p , 

(2.11) 

which expresses the conservation of the momentum 
four-vector for the fluid. In the case of an external 
electromagnetic field F"v(x), this relation should be 
replaced by 

o"T"V(xp) = jixp)FIIV(xp). (2.12) 

When the external force field is "mesic," Eqs. (2.11) or 
(2.12) should be replaced by 

o"T"II(Xp) = Ap(Xp) . ollcfo(xp), (2.13) 

where A is the coupling constant of the scalar field cfo 
and p(x p) the invariant world density of the fluid 
(more generally p is the source term of the scalar field). 
The explicit knowledge of pv implies the equations of 
relativistic hydrodynamics. Moreover, the various 
relativistic fluids can be classified according to the 
form of T"v.28 The generalization to the case of an 
external gravitational field is straightforward and has 
already been given by Tauber and Weinbergllf and 
by Chernikov.l4 

An Alternative Approach to Relativistic Kinetic Theory 

Here we want to give an equivalent treatment of 
relativistic kinetic theory so as to illustrate some 

26 See, e.g., P. C. Clemmow and A. J. Wilson, B. Kur~ungolu, 
Yu. L. Klimontovich,l3 or Y. Aboniy, Cahiers de Phys. 18,460 (1964). 

27 In a recent paper, De Gottal and Prigogine [Physica 31, 677 
(1965)] have suggested that Eq. (11) would no longer be valid as a 
consequence of the occurrence of the interaction between particles 
and should be replaced by G"T"v = sv, where SV is the contribution 
of the field. In fact, this equation seems to be clear as a consequence 
of the conservation of the energy-momentum tensor of the system 
particles + fields: 

a,,{T~:rt + Tg~ld8} = O. 

28 A. Lichnerowicz, in Les Theories refativistes de l' efectromag­
netisme et de fa gravitation (Masson et Cie., Paris, 1955). 

methods used in a forthcoming section. This section 
is principally intended for pedagogical reasons, and 
outlines in a simple case what is done in N-particle 
problems. 

A particle of proper mass m is described by its 
eC1uations of motion assumed to be of the form29 

m(du"/dT) = F"(xp, up), 

dx"/dT = u". 
(2.14) 

Let us now consider an "observer" and assume that 
he locates the position of the particle in p, space as 
being (x~, uC). If the Cauchy problem corresponding 
to Eq. (2.14) is well set, then there exists a unique 
trajectory in p, space 

{
X"(T) = X"(T; x~, u~), 

xB
( T) == T ~ 0 or T < 0 

U"(T) = U"(T; x~, u~), 
(2.15) 

such that x"(O) = xC and u"(O) = uC. In p, space this 
trajectory is determined by the sequence of points 
XB(T) (T varying), and can be represented by the 
density 

R(xv, UV; T) = b[xv - xV< T; xC, uC)] 
® b[uv - Uv(T; xC, uC)] (2.16) 

normalized through the obvious condition 

(2.17) 

" 
Let us now assume that the measures of the "observer" 
are not very accurate and hence that the initial data 
of the particles are random, their repartitions in 
p, space having the density Do(xC, uC) normalized30 by 

iDo(XC, uC) d4xO d4uO = 1. (2.18) 

[Equivalently, let us consider an ensemble (in the Gibbs 
sense) of similar systems, i.e., with the same equations 
of motion as Eq. (14), and ensure that the initial 
measures are distributed according to Do(xC, uC) .... ] 
It follows that, at a given proper time T, the density in 
p, space is no longer R(xv' uv ; T) (i.e., we have a 
cloud of points rather than one point) but is rather 
defined as its average value. 

is now a random function becaust:: of the random 
character of (xvo, uvo). Thus the density in p, space is 

29 See the remarks below. In particular this form excludes radi­
ating particles. We return to this question in Paper II. 

3. Of course, we implicitly assume that the constraint u~ua = 1 
is included in D •. 
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defined by 

D(xy, Uy; 7) = (R(x y , Uy; 7» 

= L R(x y , Uy; XyO' UyO ; 7) 

x Do(xyo, UyO) d4Xo d4Uo. (2.19) 

As a consequence, D(xy , Uy ; 7) is normalized on the 
whole ft space and not, as X(xy , uy), on a submani­
folds1 

(2.20) 

The cloud of points represented by D(xy , Uy ; 7) is 
nothing but the cloud obtained by transforming the 
initial cloud by the laws of motion. In other words, 

D(x1l> U!'; 7) = TTD(x!" u!'; 0), (2.21) 

where {TT} is a representation in the space of densities 
on ft space of the transformation group (or semigroup 
if we limit ourselves to 7 ~ 0) equivalent to the laws 
of motion. 

Deriving directly R(xy , Uy ; 7) and taking the 
average value of the result obtained, it is easy to find 
a one-particle relativistic equation satisfied by 
D(xy , Uy ; 7) 

o 
- D(x., U.; 7) + u!'o!,D(x., U.; 7) 
07 

PI' 0 + - (x., u.) - D(x., U.; 7) 
m Ou!' 

d == - D(x., U.; r) = O. (2.22) 
d7 

Of course, R(x., U.; r) also satisfies Eq. (2.22), in the 
derivation of which we have implicitly assumed that32 

(ojou!')PI'(x., u.) = O. 
This assumption is verified in the case of electro­
magnetic forces. 

From the formal solution of Eq. (2.22), one easily 
sees that 

TT = exp {-7[U!'O!, +: (x., u.) o~!'J}. (2.23) 

By adding to the right-hand side of Eq. (2.22) an 
ad hoc collision term. several kinetic equations (for 
instance, Boltzmann, Landau, Fokker-Planck equa­
tions, etc.) may be obtained. 

Connection Between the Two Formalisms 

Now, we prove two lemmas which establish this 
connection. 

81 oN' or D could indifferently be normalized to 1 or N. 
II This is nothing but Eq. (5). 

Tim. 

__ -=ot-_____________ space 

FiG. 1. Visualization of lim D(T) = O. 

Lemma 1: The distribution function D(x!" u!'; 7) 
verifies 

lim D(x!" u!'; r) = 0 (2.24) 
T-+±OO 

in the sense of Lebesgue measure. 

Proof Let us consider the local "instantaneous" 
density 

p(x., r) = f d4uD(x., u.; r). 

From this density, we can calculate the number of 
particles33 within a finite Lebesgue-measurable four­
volume w c ,A(,4, and whose proper time is r: 

nclr) = Ld4xP(x., r). 

Then, because of causality which implies that, having 
crossed w, a particle cannot return within (see Fig. 1), 
we have 

lim n.,(r) = 0, Vw c jU, 

from which Eq. (2.4) follows. Q.E.D. 

It is of course not the value of D which tends towards 
zero. The convergence of D towards zero is intended 
to be a convergence in the sense of measures. 

Lemma 2: The distribution functions X(x!" u!') and 
D(x!, ' u!'; r) are connected through the. relation 

X(x!" u!') = L:oo D(x!" u!'; r) d7. (2.25) 

Proof Let us first remark that from the random 
density 

R(x!, , u!'; r) == R(xn; r) 

we can define a random current similar to the one used 

aa It is preferable to speak about the "number of particles within 
ro" rather than about the "percentage of particles within w." 
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in relativistic classical electrodynamics (i.e., the 
Feynman current) by 

JaioCh(XB) = r dXA . d[XB - XB(7", XBD)] J along the traj. 

= J:","'d7"d[XB - XB(7",XBO)l,/A(7"). (2.26) 

Using now the fact that (a) 1]A(7") depends on 7" only 
through the intermediary of XB(7") and (b) (j functions 
occur in Eq. (2.26), we get 

JaioCh(XB) = 1]A '1+",'" d7"{j[XB - XB(7", XBD)] 

= 1]A ·L+.,,'" R(XB' 7") d7". (2.27) 

Taking the average value of both sides of this last 
equality, we obtain 

JA(XB) = 1]A '1+.,,'" D(XB' 7") d7" 

== 1]A . .N'(XB)' (2.28) 

from which Eq. (2.25) follows. Q.E.D. 

It is now easy to show that the two given forms of 
the one-particle relativistic Liouville equations are 
consistent. Indeed, it is sufficient to integrate Eq. 
(2.22) over 7" and to take Lemma 1 into account. Then 
we get Eq. (2.7). 

Discussion and Remarks 1 

Here we discuss the conventional approach to 
relativistic kinetic theory and indicat~ its main 
characteristic features. The latter is found again later 
when dealing with relativistic statistical mechanics. 

(1) .N'(x., p.) is actually not a density of probability. 
Indeed, one can easily see that the zeroth-order 
moment (in momentum space) has no direct physical 
meaning and does not correspond to a normalization 
of .N'; it is only through the first moment (i.e., the 
current) that the one-particle distribution function is 
normalized. In connection with this point it should be 
emphasized [contrary to what is asserted by Goto, 
Ref. 13, Eq. (3-9)] that the expression 

J .N'(x., p.)d(P·p. - m2)2m()(pD) d.p (2.29) 

is never the invariant world density of the fluid under 
consideration. This can be verified in the case of the 
distribution function of the simple gas at local 
equilibrium; we have 

J 
N~p(x.) 2m()(p'1 exp (-~"p,,). (j(p"p" - m2

) d.p 
41Tm K2(m~) 

= N P(Xy) Kl(m~) '" N p(xy). (2.30) 
Ka(m~) 

Of course, at the Newtonian limit, the right-hand side 
and the left-hand side of the '" in Eq. (2.30) are equal 
since Kl "" Ka when ~ -+ 00 (which is equivalent to 
c -+ 00: see Syngelle). Had we normalized .N' to 
p(x.), the current would no longer have had the usual 
form of 

j"(x.) = N p(x.)(e/;) = N p(x.)uP(x.). 

The fundamental reason for these features is that 
relativistic kinetic theory is a statistics of curves rather 
than a statistics of points. This has already been 
remarked by Bergmannlla,b in his "generalized statisti­
cal mechanics." To specify this question more 
precisely we have to discuss the question of phase 
space. To this end let us consider the normalization 
condition satisfied by .N'(x., P.), 

J J 2m()(pD) . (j(p"p" - m2
) 

1: 

. .N'(x., P.)uP dl:.p d.p = N. (2.31) 

Equation (2.31) shows clearly that the distribution 
function is normalized on a six-dimensional manifold, 
which in fact is the effective phase space. This mani­
fold has not an invariant meaning because of the 
arbitrariness of l:.. This effective phase space corre­
sponds to a possible set of initial data as in Newtonian 
physics. In nonrelativistic statistical mechanics phase 
space is indeed defined as the set of initial data, and 
it has an invariant meaning with respect to the 
Galilei group so that the possible trajectories of the 
system lie therein. From a relativistic point of view 
the possible trajectories lie in the state space, which is 
just the "minimum" invariant space containing all 
possible effective phase space. In the sequel this state 
space is referred to as the phase space. It is now clear 
that a relativistic ensemble (in the Gibbs sense) is 
nothing but (a) the set of all possible trajectories of 
the system (this manifold has actually six dimensions 
as it should have), and (b) an invariant measure on this 
set.S4 

To sum up, the distribution function is not a density 
of probability but it allows one to obtain a density of 
probability over each possible effective phase space. 

Though .N'(x., P.) is not a density, a consistent 
probability theory can be given in order to develop 
this statistics of curves. Indeed, consider an open 
subset A of an arbitrary spacelike three-surface l:. and 
call C A the set of trajectories intersecting A. C A 

generates a O'-field in the space of trajectories and we 
can define a measure on this O'-field according to 

Mes (CA) =1 r(x.) dl:.p , 
AC1: 

1& Invariant with respect to Lorentz group. 
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and this measure is independent of I: provided the 
current j'l(XV) be conservative. The same argument can 
also be applied in f.l space. 

(2) Another remark deals with average values. 
Following Bergmannlla.b the average value of a given 
function with tehsorial values, namely ~(xv ,Pv) == 
~(XA)' is defined as 

(~(XA) = fS:7 CJl~(xA)JV'(xA)17B(XA) d8B (2.32) 

or with the more usual system of coordinates (xv, Pv) : 

(~(xv' Pv» = II ~(xv, pv)u"JV'(xv, p.) 
I: 

X 2mO(pO)b(pllpll - m2
) dI:

1l 
d4P (2.33) 

and hence (~) is biased by the choice of I:. Conse­
quently, average values have, in general, not a well­
determined variance.11.35.36 

It should be emphasized that Eq. (2.32) or (2.33) 
represents the fluX of the current of "property ~" 
through 8 7 or I:, this flux being constant and 
independent of 8 7 or I: only when this current is 
conservative, which is a very particular case. 

Now if we look at Eq. (2.33) more closely we 
remark that, although (~) depends on I:, the current 
of property ~ does not. This would suggest that 
local average of ~ could be defined in an invariant 
way. Unfortunately, this is not the case and local 
averages are again biased by I:. Indeed, according to 
Synge [Ref. 11, Eq. (241)] they are defined by 

~(xa) = JIl( {~}. xa) . n;(xa)!r(xa) . n;(xa), (2.34) 

where Jil is the current of property ~ and nt(xa) is the 
normal unit to an arbitrary spacelike three-surface 
I:. Equation (34) shows that even local averages 
are biased by I:. This is of course in contrast with the 
definition by Goto13 [Eq. (3-8)], itself due to the incor­
rect normalization of JV'. 

However, as noted by Syngelle a local average could 
be defined 

~(xa) = JIl({ ~}, xa) . jixa)j{jll(xa)jixa)}. (2.35) 

In fact, it could be argued that we do not need a 
general theory of relativistic average values. Indeed, 
what are needed are rather the currents of the various 
properties~, e.g.,j" or T"v. In other words, we mainly 
need hydro dynamical quantities, but this only shifts 
the problem. In particular, there remain ambiguities 
in the definition of the average four-velocity of a 
relativistic fluid. 

86 F. Halbwachs, TMorie relativiste des fluMes a spin (Gauthier-
Villars, Paris, 1960). • 

81 R. Hakim, J. Math. Phys. 6, 1482 (1965). 

It would certainly be interesting to have a rela­
tivistic statistical mechanics where densities are 
actually densities of probability and where mean values 
have a well-determined variance. Unfortunately this 
seems to be hardly possible. 

(3) In the relativistic framework there is no canoni­
cal notion of evolution of a physical system. This is in 
fact a counterpart of the arbitrariness of the choice of 
"physical space," i.e., of a spacelike hypersurface. 
The point of view adopted is a global one in which a 
sub specie aeternitatis description of the system is 
given. The history of the system is written in Minkow­
ski space-time once and for all, while "physical 
observations" are related to spacelike three-cuts. As 
we have already noted, this point of view leads to 
building a statistics of trajectories (which constitute the 
fundamental element representing the system) rather 
than a statistics of points (which would be as arbitrary 
as the chosen cut of the system). Of course, in order 
to avoid difficulties occurring because of the am­
biguous37 nature of the relativistic notion of simul­
taneity, we could choose a well-determined family 
of spacelike hypersurfaces indexed by a parameter 
(as, for instance, the family of three-planes t = const). 
Doing so, a conventional notion of evolution (and 
hence a conventional form for relativistic statistical 
mechanics) would be preserved. However, the theory 
would include an element extraneous to the geometry 
of space-time and of the system and could no longer 
be fully covariant. 

This absence of a natural and invariant notion of 
evolution gives rise to conceptual difficulties38 when 
one wants to consider relativistic stochastic processes.39 

We show in another paper40 how it is possible to 
obtain such a relativistic theory. 

This unfortunate circumstance also renders difficult 
a tentative description of disintegrating gases occur­
ring, for instance, in high-energy astrophysics. A 
quite different reason may be found in the derivation 
of kinetic equations. Indeed, the derivation of kinetic 
equations generally implies a change of scale of 

37 The set of all spacelike hypersurfaces of vl(, 4 is not totally 
ordered (for a "natural" order, of course). The word "ambiguous" 
could be replaced by "relative." 

38 In particular, the use of the time coordinate as a parameter 
describing the evolution of the process, seems to be doubtful. 
Indeed, such a notion would only define a stochastic process in a 
given system ,of coordinates, while !he definition would no longer 
be the same In another system. ThIs can be shown easily by the 
mathematical definition of a stochastic process. 

39 Such a study is necessary if we want to "give a probabilistic 
meaning to the various Fokker-Planck equations studied in the 
literature. It is alsQ needed if we want to establish a relativistic 
theory of irreversible processes and in particular if we want to 
obtain a covariant generalization of Onsager relations. 

40 R. Hakim (to be published). See also Sec. 7 of the report 
Orsay Th/l07 (1965). 
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time41 (i.e., long time assumptions) and it would be 
most surprising that such a change depends on the 
method used to locate the temporal evolution of the 
system. Therefore, we need a temporal notion of 
evolution which would be intrinsically attached to the 
system. We shall come back to these points in the 
following and in Papers II and III. 

Remarks and Discussion 2 

(I) In the conventional approach to relativistic 
kinetic theories, we essentially start with a congruence 
of curves in ft space, whereas in the proper time 
approach we deal with points. The second approach, 
which is completely equivalent to the conventional 
one, is much closer to the classical considerations 
and allows the application of standard methods. 

It is clear, however, that the physically interesting 
results such as the hydrodynamic quantities, will be 
obtained from .N'(X..1) and not from D(x..1' T). SO, the 
distribution D(XA' T) is nothing but a helpful inter­
mediary in the calculations. Nevertheless, the fact 
that D(x.A , T) is actually a density of probability allows 
the obtaining of results concerning .N'(x..1) which 
could hardly be found by reasoning directly on this 
last distribution. 

(2) In deriving D(x..1' T) from R(x..1, T) we have 
assumed the existence of a distribution of the initial 
values Do(x~, u~). In fact, it is sufficient to assume the 
existence of an averaging operation (> such that 

(2.36) 

which need not be specified further. In the sequel 
we see that, in the absence of a complete solution of 
the problems raised by many-particle systems, more 
general densities can be defined without an explicit 
knowledge of the nature of the Cauchy data; for 
instance, it will be sufficient to assume the existence 
of such brackets ( >. 

(3) Note that the initial data (x~, p~) can be con­
sidered as distributed either in the whole ft space or 
only on an arbitrary hypersurface. Mathematically the 
former distribution would correspond to a discon­
tinuous cut of the congruence of trajectories, while 
the latter would correspond to a continuous cut. 
Physically both cases are possible because initial 
measures on the ensemble could perfectly be per­
formed nonsimultaneously. 

(4) Let us emphasize that in R or D, (T, x/l' u,J are 
independent variables. Indeed, to see this property 

41 See, e.g., R. Zwanzig, in 1960 Boulder Summer School (Inter­
science Publishers, Inc., New York, 1961), Vol. 3. 

we should bear in mind the definition of R: 

R(x/l' U/l; T) = t5[X/l - X,.(T, X/lO' U/lo)] 

® t5[U/l - U,.(T, X/lO, u/lo)]' 

However, in the same way as in conventional statisti­
cal mechanics, we could say in a fictitious sense that 
u/l = dx/l/dT [instead of dx/l(z)/dz = u/l(z)]. 

(5) Let us note that it is always possible to set 

D(x., Uv ; T) = D(xv , Uv ; T) . t5(u/lu/l - 1) 

while D also verifies the Liouville equation (2.22). 
This is easily shown by introducing relation (2.36) in 
Eq. (2.22) and taking into account u/lF/l = O. This is, 
of course, due to the fact that the constraint u/lu/l = 1 
is also a constant of motion. 

(6) In the case where we are only interested in the 
future42 behavior of the system (i.e., T > 0), we have 
no longer a conservation relation of the form 
a /lj/l(x.) = O. Let us assume indeed. that the particles 
of the system are for instance created at some points 
in space-time which are considered as initial data. 
Then the conservation of the number of particles read 

{

:T I D(x/l' U/l; T) d4u + all I D(x/l' U/l; T)U/l d4u = 0, 

T ~ 0, (2.37) 
which, integrated over T from zero to infinity, leads to 

(2.38) 

where we have taken Lemmas 1 and 2 into account. 
More generally, this point of view leads to source 
terms in the various equations considered. Note that 
it is only in such a case that we actually have a 
serp.igroup {TT} and not a group. This point of view 
is very helpful when we deal with a disintegrating gas 
consisting of excited subsystems (e.g., atoms). 

Let us now examine the case where the initial data 
are distributed on a given spacelike hypersurface ~. 
We have the "nonconservation" relation 

(2.39) 

which at first sight could be most surprising. However, 
it is easy to see that relation (2.39) does not violate 
the conservation of the number of particles. Indeed 
let us consider (see Fig. 2) a spaceIike hypersurface S 
situated in the future of ~ and thus such that S () ~ = 
0. As a result we have 

a/lr(xv) IXvEsCrutureo!I: = 0 (2.40) 

since t5l; = 0 for all points x 1= ~. As a consequence the 
number of particles crossing any set A c S is, as 

42 "Future" with respect to the initial data. 
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FIG. 2. Apparent lack of conservation of particles. 

expected, equal to the number of particles crossing 
the similar set on ~. Of course, this is no longer the 
case when S fl ~ '# 0 (see Fig. 2). 

(7) In writing Eq. (2.14) we have neglected the 
radiation reaction (in the case of a charged particle). 
If we take this last effect into account, instead of Eq. 
(2.14) we would write the Abraham-Lorentz-Dirac 
equations 

du" Fl" + i 2{d
2
u (dU.) (dU') "} m-=e tU e-- - -u 

o dT ex. dT2 dT dT 

while the f-t space would be a 12-dimensional space: 
f-t = ({xp}, {up}, {Yp})· In this generalized f-t space the 
one-particle random density is of the form 

R1(x" , u.' Y.; T) = c5[y" - Y,.{T, xouo)] ® R(x., u.; T), 

where we have not indicated a y~ dependence for 
reasons which is given in a precise manner in Paper 
II. Hence the generalized Rl is also averaged by means 
of the same Do(x~, u~) and yields a generalized one­
particle distribution function DO(x', u', y'; T) which 
verifies an equation similar to Eq. (2.22). However, 
DO no longer satisfies a Liouville theorem because of 
the form of the equations of motion. From this DO 
we can obtain, after an integration over the proper 
time, a ,N'G. The normalization of this ,N'0 is given in 
Paper II where this formalism is studied in detail; 
in particular, it allows (for instance) the construction 
of an acceleration mechanism for the charged com­
ponent of cosmic rays by random force fields which 
takes into account the energy loss due to radiation. 

3. SUMMARY OF RELATIVISTIC DYNAMICS 

In this section we briefly recall the starting points 
and the main formulas· of dynamics of relativistic 
particles. 

Before performing this program, we should bear in 
mind that, within the framework of relativistic 
nonquantal physics, only three kinds of fields of force 
are actually known. Only scalar (or pseudoscalar), 

vector, and tensor fields are known, which can be more 
or less considered as describing respectively classical 
nuclear forces, electromagnetic forces, and gravitation. 
As usual, relativistic forces may be divided into ex­
ternal forces and interaction ones. Among the former, 
there is no example of an external scalar field of force, 
though we could perhaps consider some collective 
effects of nuclear forces in the so-called neutron 
stars.43 We cannot consider the gravitational forces 
as interactions because they are generally very weak 
(although this assertion be trivially false in the 
hypothetical case of collapsing stars" or even for 
superdense stars). However, they may have some 
important collective effects and hence generally act 
as "external forces." For the sake of simplicity we 
discard gravitational collective forces: they introduce 
only minor modifications of the given formalism. 
For instance, A" has to be replaced by V" which 
involves derivatives of the metric tensor g'" itself 
depending functionally on the one-particle reduced 
density (this last statement is equivalent to considering 
only collective effects of the gravitational field). 

One-Particle Dynamics 

The equations of motion of a particle imbedded 
both in an external electromagnetic field and an 
external "mesic" field are 

or 

and they can be cast into a Hamiltonian form (see the 
review article by Schay(5). 

A possible Hamiltonian is46 

H = [(pI' - eA")2/2(mo + Ac/»] - lAc/> (3.3) 

and hence the canonical equations read 

dx" oH pI' - eAI' - = - = "-----
dT oPI' mo + Ac/> ' 

dpl' = _ oH = +AOI'c/> + eupopAI'. (3.4) 
dT oXI' 

'3 G. Szamosi, in Varenna Summer School: High Energy Astro­
physiCS, 1965 (to be published). See the reference quoted therein. 

U K. Thorn, in Varenna Summer School: High Energy Astro­
physiCS, 1965 (to be published). 

,. G. Schay, Jr., Nuovo Cimento Suppl. 26, 291 (1962). See also 
A. Peres and N. Rosen (quoted by G. Schay, Jr.). 

•• This Hamiltonian, which is merely formal and thus has no 
definite physical sense, is, of course, not unique. 
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In the above equations (3.1)-(3.4), cf> is the "mesic" 
field (coupling constant A) and pY is the electro­
magnetic field (F/l> = all A> - ay A/l, coupling constant 
e). We have recalled these well-known properties only 
to introduce canonically conjugated variables (x/l' P/l). 
In fact we rather use the variables (x/l' u/l). Let us 
also mention that the expression 

i=N 

H=2Hi (3.5) 
i=1 

constitutes a formal Hamiltonian for a system of 
noninteracting particles [Hi is given by Eq. (3.3), 
where all symbols are indexed by i]. 

Many-Particle Dynamics 

Dynamics of relativistic interacting particles are 
exposed in detail in three complementary books by 
Barut,47 Rohrlich,48 and Rzewuski49 (see also Berg­
mannll). 

Essentially two different points of view can equally 
be adopted. They are the action-at-a-distance and the 
field point of view (for a comparison and a discussion, 
see Havas50). 

In the field point of view, we start with the equations 
of motion derived for instance from the Hamiltonian 
(3.5), to which equations for the fields are added; i.e., 

i=N J+oo 
DA/l(xp) = i~ 41Tei -00 <5[xp - Xpi(Ti)] dxf, (3.6) 

a/lA /l(xp) = 0, (3.7) 

for the electromagnetic field and (for instance) 

Dcf>(xp) + M~cf>(xp) =:~AiL+oooo<5[Xp - Xp;(Ti)] dTi 

(3.8) 

for the "mesic" field. 51 Now, Eqs. (3.6), (3.7), and 
(3.8) contain both field and particle variables. How­
ever, these equations also involve the self-fields and 
therefore include divergences which have to be 
eliminated with the help of the so-called "renormal­
ization of mass." As we see in Paper II, in a statistical 
treatment it is not easy to separate the effects due to 
mass renormalization from other terms. 52 It seems 

'1 A. O. Barut, Electrodynamics and Classical Theory of Fields and 
Particles (The Macmillan Company, New York, 1964). 

U F. Rohrlich, Classical Charged Particles (Addison-Wesley 
Publishing Company, Inc., Reading, Massachusetts, 1965). 

"J. Rzewuski, Field Theory (P. W. N. Pub!', Warsaw, 1964), 
Part I. 

50 P. Havas, Phys. Rev. 74, 939 (1948). 
51 The equations of motion for fields and particles can also be 

obtained from a variational principle. 
51 E.g., A. Mangeney (Ref. 10) found a supplementary term in the 

study of bremsstrahlung. However, it has been shown that this term 
is not observable because it corresponds, in fact, to a finite term 
which should be included in the experimental mass. IA. Mangeney, 
(private communication).] 

also hardly possible to split the fields into self-fields, 
radiation fields, interaction fields, etc.; we have only 
one entity, the total field. Note also that in the field 
point of view the mass mo appearing in the equations 
of motion for the particles is the bare mass. 

In the action-at-a-distance formalism there is no 
field to support interactions and the equations of 
motion are given a priori. For4nstance, in the electro­
magnetic case one may start from the Fokker varia­
tional principle53 

<5S = <5{m<~ J(Ufu!)l dT 

+ t t e2 J J u!ujG(xf - xj) dTi dT i} = 0, (3.9) 

where G(xp) is a kernel specifying the interaction54 

under consideration. As a result the equations of 
motion are very complicated integrodifferential ones 
and hence most difficult to solve. For the sake of 
comparison with the field point of view we adopt the 
ideas developed by Bergmannll according to which 
in Eq. (3.9) mo is again the bare mass. 55 

Both approaches lead to the Lorentz-Dirac 
equations and their generalizations to interacting 
particles: 

/l /l w/lY m(duddTi) = r i + eFintuYi' i = 1 ... N, (3.10) 

where rf is the radiation reaction term 

r /l { d
2
uf duf du~ /l} 

i = mTO-2-+-·-Ui, 
dTi dTi dTi 

(3.11) 

m being the finite renormalized mass and TO the so­
called "noncausality" time48 

TO = ie2Jm. 
Note that Eq. (3.11) can also be rewritten as 

rr = mToA/lY(upi) du!/dTi · 
(i) 

(3.12) 

(3.13) 

In Eq. (3.10) F;~t is the field due to all other particles 
but the ith; it satisfies56 : 

a>Fr~: = 0, 

{

Ii) 

W +00 

a/lFr~t = 2eJ <5[x~ - Xj(Ti)] dx~. (3.14) 
i'¢i -00 

58 A. D. Fokker, Z. Physik 58, 386 (1929). 
U In all the following and in both points of view we consider only 

retarded interactions. The questions of symmetry past-future, which 
are discussed in classical papers (see Ref. 50 and quoted papers 
therein) is irrelevant from statistical considerations. Furthermore, 
they could perfectly be included in this paper. Therefore they are 
dropped only for the sake of simplicity. Consequently we have 
G(xfJ) = O(xo)!5(X/lx/l) or G(x/l) = O(xo)F(x/lx/l) if we consider "ex­
tended" particles. 

55 We could avoid the procedure of renormalization. 
iii 

&8 In the action-at-a-distance point of view Fl:.~ is such that the 
arbitrary homogeneous solution of Eq. (14) is chosen as being zero. 
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Equation (3.10) is obtained by splitting the self-field 
due to the ith particle into 

(F~;lf)ret = t{(F~;lf)ret + (F~;lf)adV} 
+ t{(F~;lf)ret - (F~;lftdV}, (3.15) 

the first term of the right-hand side of Eq. (3.15) 
leading to the renormalization of mass while the 
second term yields rigorously rf. 

Had we used symmetrical actions, then Eq. (3.10) 
would have appeared as the result of the action of an 
"absorber" 67 (complete or incomplete48). 

At this stage we want to emphasize that the Lorentz­
Dirac equations are not approximate equations, valid 
to a given order in e2, as is sometimes stated. We must 
also note that Eq. (3.10) are not the correct equations 
of motion since they lead to the well-known non­
physical "runaway solutions." To eliminate the latter 
we can impose an asymptotic condition (or several 
ones): 

lim (dUf ) = 0, i = 1 ... N. (3.16) 
Tj .... ±OO dT; 

In Paper II we exploit Eq. (3.10), to which conditions 
(3.16) will be added. 

At this step it is absolutely necessary to note that 
very important problems in either approach are not 
solved.18 For instance, the existence and uniqueness 
of solutions of the equations of motion are not known, 
the exact nature of Cauchy data is not known, etc. 

4. STATEMENT OF THE MAIN STATISTICAL 
PROBLEMS 

Basic problems in relativistic statistical mechanics 
are of several sorts. Firstly, they are of dynamical 
order: What are initial data (and hence phase space)? 
To what extent does the non-Hamiltonian character of 
relativistic dynamics permit the transposition of New­
tonian statistical mechanics? Secondly, they are of sta­
tistical order: What may be called a "relativistic Gibbs 
ensemble"? How does one treat in a covariant way 
the random character of the possibly existing fields? 
Thirdly they are also relevant to measure theory (in 
the so-called "operational" sense): given initial data, 
how is it possible to obtain them experimentally (i.e., 
with a gedanken experiment)? In this section we set 
these problems and try to give some insight into their 
possible (and future?) solution. 

Initial Data-ObservatioDS and Measures 

In Newtonian statistical mechanics probabilities are 
introduced with initial data of the subjacent dynamical 

n J. W. Wheeler and R. P. Feynman, Rev. Mod. Phys. 17, 157 
(1945); 21, 425 (1949). 

problem. These probabilities are introduced so as to 
take into account the "nonaccuracy of the measure­
ments" of an observer at an instant considered as 
being the origin of times. In the preceding sentence are 
two key expressions which we should investigate in 
order to see whether they could also be used with the 
same meaning in the relativistic framework: "meas­
urement at a given time" and "observer." In New­
tonian physics an "observer" is, at least in principle, 
able to perform instantaneous measurements and 
hence to have a global knowledge of the whole system 
at a given time. Is this situation prevailing in special 
relativity? It is one of the aims of this section to 
answer this question. 

Let us now consider an observer68 (i.e., a "punctual 
physicist" moving along a timelike curve in space-time 
and hence using "punctual physical apparatus"!) 
and a many-particle system on which this observer 
wants to undertake miscellaneous experiments. Natu­
rally this observer knows the nature of the particles 
of the system, the laws of motion of these particles and 
possibly of the fields. Before answering the question 
of knowing how he proceeds, let us first remark that 
the observer is not necessarily a Galilean observer 
(i.e., his trajectory in Minkowski space-time is not 
necessarily a timelike straight line). Moreover, let us 
assume, as is conventionally done, that this observer 
receives information only through electromagnetic 
signals (or more generally through signals propagating 
in space-time with the velocity oflight). Of course, this 
is not an essential hypothesis and we see below what 
kind of modifications would be implied by signals 
with a velocity less than that of light. 

At a given instant of his clock taken as the origin of 
times, this observer receives the signal emitted-or 
reflected-(see Fig. 3) by the different particles of the 
system and locates them in space-time. It is indeed 
possible to locate space-time events only with time 
measurements and using signals traveling with the 
speed of light.69•6o The observer may receive in­
formation on the state of the fields61 on the backward 
null cone r-(O). Such a process is referred to as an 
"observation." Although it seems hardly possible to 
imagine a thought experiment which gives an obser­
vation of the fields, we assume, however, that this is 

68 The notion of "observer" is not so clear as one generally 
believes. For some people an observer is simply a Lorentzian system 
of coordinates. For others, it reduces to a family of spacelike 3. 
planes, etc . 

... J. L. Synge, Relativity: The Special Theory (North-Holland 
Publishing Company, Amsterdam, 1958), Chap. 1. 

eo Figure 5 shows that the observation of the event M has a 
finite duration: in 0' the observer emits signals which are reflected by 
M towards o. See Ref. 59 for a detailed analysis. 

f1 See the remark below. 
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FiG. 3. Location of particles in space-time. 

a.ctual!y possible. I~ we di~ not make such an assump­
tIon, It would be ImpossIble to describe completely 
relativistic statistical systems. The process of observa­
tion is by essence nonlocal. On the contrary, the 
measures affected by the observer are local processes 
relative to the event of space-time where the observer 
experiments. For instance, the field at point a (see 
Fig. 5) can be measured (e.g., with a test particle, 
~hose interactions with the field are sufficiently weak 
10 order that they have practically no influence on the 
system under consideration). 

At this point, we may note that neither observations 
nor measures can be performed instantaneously.6o.62 
In fact, .the processes of observations and measures 
start slightly before the event a taken as the origin, 
say 0' (see Fig. 5). The point 0' can even be rejected 
towards the far past when the system is infinite. At 
any rate, the final results of observations or measures 
g~ve initial data lying on a null cone. This shows that, 
glVen an observer, there exists a canonical slicing of 
space-time by a family of backward cones whose 
origins last on the trajectory of this observer (see Fig. 
4). Therefore, the physical space at a given instant 
(proper time) of a definite observer is never a spacelike 
three-plane or even a spacelike three-surface but 
rather a backward null cone. As a consequence, an 
event M may be located by (see Fig. 5): 

(a) the direction of the 4-vector OM; 
(b) the proper-time interval between a and 0'. 

Unfortunately, these intrinsic notions (intrinsic mod­
ulo the observer who constitutes the only data extra­
neous to the geometry of the system and of Minkowski 
space-time-however, in an operational point of view, 
it is necessary to introduce an observer) are of poor 

62 E.g., a measure of the field intensity involves a test particle and 
the observation of its motion during a finite (although possibly 
small) interval of time. 

r-(I) 

r-Ca) 

FiG. 4. A canonical "slicing" of space-time. 

interest in the important case of electromagnetic 
interactions. Indeed, in that case the null cone is a 
characteristic surface of the Maxwell equations. 
Consequently, the data of the electromagnetic field on 
this surface are not sufficient to determine the future 
field completely (and uniquely). This is a well-known 
mathematical property: the Cauchy problem is not 
well set when the initial data lie on a characteristic 
surface. Physically, this could mean that such observa­
tions are incomplete by nature. We are thus led to 
give up such an intrinsic slicing of space-time and 
should use an arbitrary hypersurface to locate the 
initial data of the statistical system under considera­
tion. 

Let us also note that in the preceding discussion we 
have implicitly assumed that the observer and the 
physical system are not imbedded in a refractive 
medium. If it were not the case, the situation would 
be worse. Indeed, instead of obtaining initial data on 
a null cone the observer would only get initial data 
on a timelike conoid since light would propagate 
with a lesser velocity (see Fig. 6). As a consequence, 
the observer never has a complete knowledge of the 
system (see Fig. 6). Furthermore, it is not sure at all 
that the Cauchy problem on a timelike hypersurface 
for the fields has a solution or even a meaning. 

M 

FIG. S. Location of an event. 
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Tbb particle cannot 
be obu'J'veci. 

rio) 

FIG. 6. Example of a nonobservable particle when using 
electromagnetic signals (in a dispersive medium). 

At the beginning of this section we limited ourselves 
to the use of signals traveling with the speed of light. 
Had we used signals with a lesser velocity, the con­
ventional notion of a physical three-space (see Fig. 7) 
would no longer have been preserved: initial data 
would have been found in (and also on) the null cone 
r-(O) and hence would last in a four-dimensional 
space. 

Among the consequences of the preceding (brief) 
discussion, we see that in the most important case of 
electromagnetic interactions, it is necessary to intro­
duce an arbitrary initial spacelike three-surface on 
which initial data are given. However, this scheme 
leads to the notion introduced by Cattaneo,63 of an 
extended observer, i.e., an infinite family of local 
observers (as the one previously considered) whose 
trajectories are orthogonal64 to the initial spacelike 
hypersurface. In other words, we could use a fluid of 

I 

, , 

FIG. 7. Use of signals propagating with velocity less 
than that of light. 

18 c. Cattaneo, Nuovo Cimento 10, 318 (1958). 
U This condition is not absolutely necessary. It implies the 

regularity of the initial hypcrsurface l:o, i.e., o,ul:o:P O. 

FIG. 8. Two Lorentzian observers. 

reference.65 Let us note that this notion of an extended 
observer renders irrelevant the distinction between 
observation and measure. Furthermore, from an 
operational point of view, it seems difficult to relate 
measures or observations of an extended observer to 
usual notions using clocks, rods, and signals. 

In the cases where the null cones are not character­
istic surfaces of the field equations, let us try to relate 
the observations or measures of two Galilean observ­
ers. We assume, without loss of generality, that they 
pass through the same event S (see Fig. 8) where they 
have synchronized their clocks. Let us assume now 
that M and M' are the origins of the proper times for 
the two observers 0 and 0', respectively. First, we 
remark that M and M' are related by a proper ortho­
chronous Lorentz transformation. Therefore the 
measure of a local quantity F ... (M) by observer 0 
is related to the measure of the same local quantity 
F· .. (M') by a Lorentz transformation.66 On the 
contrary, the results of observations are global 
quantities which cannot easily be interrelated since 
they refer to different cuts of the subjacent physical 
system. Let us note that when Lorentz transforma­
tions are considered, it is intended that the point S is 
the fixed point. 

Let us now draw some conclusions from this brief 
analysis. 

(a) At any rate the Cauchy data measured by an 
observer are of the same nature as -in Newtonian 
physics (i.e., lying on a spacelike 3-plane t = const 
or even on a spacelike 3-surface; in a following para­
graph we see that the mathematical Cauchy data 
could even be much more complicated). 

(b) The initial data measured by an observer are 
not always sufficient to fully determine the ulterior 
behavior of the physical system. 

•• With some conditions on the congruence of "observers." 
•• Only when F··· (SM) is invariant in the strict sense, i.e., 

F··· = F·· . (SM)2. 
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(c) It is not at all clear whether the mathematical 
Cauchy dataS7 can actually be measured. 

(d) Points (a), (b), and (c) above suggest a choice, 
as fundamental random data to be introduced in 
relativistic statistical mechanics, of the trajectories of 
the particles and possibly the fields rather than "initial 
data." Indeed, a fully invariant viewpoint should be 
independent of "observers," systems of coordinates, 
etc. As a consequence, only the complete trajectories of 
the particles of the system are at our disposal to be 
chosen at random. Furthermore, such a point of view 
is in agreement with the one considered in the rela­
tivistic kinetic theory. However, one runs into the 
trouble that it cannot be directly related to con­
ventional ideas according to which probabilities have 
to be introduced ab initio. 68 We come back to these 
questions in the following. 

Statement of the Fundamental Statistical Problem 

The preceding discussion has suggested that from 
an operational viewpoint "initial data" of the system 
are not always complete. If the basic statistical 
problem is to be well set, then what should be 
"randomized" is the "mathematical69 Cauchy data." 
Henceforth we limit ourselves to these "mathematical 
Cauchy data," always bearing in mind that the prob­
lem of knowing how they could actually be measured 
remains open. In this section we mainly deal with 
the field point of view although we do not completely 
forget action-at-a-distance. 

For the sake of discussion we consider only the 
example of a system of identical particles interacting 
through a scalar potential 4> satisfying Eq. (3-8). 
Naturally the main results of the discussion remain 
valid for electromagnetic interactions. Setting now 
(see Sec. 5) 

i=N 

R1(xll , up;") = 2 !5[xl' - xl'lr)] ® !5[ul' - ull;(,.)], 
i=1 

(4.1) 
Equation (3.8) can be rewritten as 

__ 0_4> + M:4> = A f:: d,. f d,uR1(xl" up; ,.), (4.2) 

S7 In this paragraph we have made some hypotheses on the nature 
of Cauchy data (i.e., data of the fields and of the particle variables 
on a spacelike 3-surface, for instance). They are discussed below. 

68 We must note that in Newtonian physics trajectories are also 
random although their statistical character is related to the random 
initial data. 

It So far, nobody has been able to specify the nature of these data 
so that what follows consists of merely plausible assumptions. 
However, we see in the following that for the sake of statistics, 
the specific form of the Cauchy data is not absolutely necessary. 
What is needed is an averaging operation or more precisely the 
assumption of its existence. This assumption is in fact a very weak 
one, existing more or less implicitly in all statistical mechanics, and 
is independent of the precise nature of initial data. Of course, in 
Newtonian statistical mechanics, the explicit knowledge of the form 
of initial data renders explicit the averaging operation. 

while the equations for the particles are again 

m(dufld7'i) = Ur(U,..)'Ov4>(X"i)' i = 1 ... N. (4.3) 
Now let us come back to the initial-value problem and 
try to set it in a form similar to the Newtonian one. 
To this end we assume that initial data are given on 
a spacelike three-surface. 70 If 4> were an external field 
then the solutions of Eq. (4.3) would depend on 6N 
initial data (xro' Ufo), In the same way, if the motion of 
the particles were completely known [i.e., if the right­
hand side of Eq. (4.2) were known], it seems a priori 
that we should have to solve a relatively simple 
Cauchy problem for Eq. (2). In fact it is not so. In­
deed the source term ofEq. (4.2) does not vanish in the 
past of ~o and therefore the Cauchy problem has no 
meaning!71 A way out of this difficulty is the follow­
ing. Since the physicist is interested only in the future of 
~o, one may assume that interactions are switched on 
on ~o. Therefore the source term actually vanishes in 
the past of ~o and hence the Cauchy problem has a 
meaning. Such an assumption is therefore necessary 
if we want to preserve a form similar to the Newtonian 
one for the initial-value problem. Such a drastic 
assumption is implicitly contained in the work quoted 
in Ref. 10, where electromagnetic interactions are 
dealt with. 

For the sake of a further discussion we assume the 
validity of the two following hypotheses which are 
themselves studied later. 

Assumption 1: Interactions are switched on on ~o, 
the source of interactions vanishing "before" ~o. 

Assumption 2: The initial data of the system con­
sists (on ~o) of the 6 N particular data (xio' Ufo) and 
of the usual field data (CPo, oCPo) (where ocpo == 
n~o a I'CPo is the normal derivative of the field on ,po)· 
Note that this last hypothesis is only a plausible one. 

Under these assumptions the Cauchy problem for 
Eq. (4.2) is easily solved and we get 

<I>(xp) = r {~(xp - x;)o<l>o(x~) Jr.o 
- a~(xp - x~)<Po(x~)} d~o 

+00 

+ A ff~(Xp - X~)Rl(X~, u~; 7") d,x' d,u' d,.', 

o (4.4) 
'0 For a sufficiently regular spacelike hypersurface, there always 

exists a system of coordinates such that its equation is XO = O. 
Because of the fact that physics is independent of the chosen 
coordinate system (provided it preserves the normal hyperbolic 
character of the metric of spac~time), the most general "initial 
physical space" is an arbitrary spacelike hypersurface and thus there 
is no reason why we should limit ourselves to spacelike 3-planes. 

71 This is a mere mathematical property. Mrs. Y. Bruhat-Choquet 
(private communication). 
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where Ll(xp) is an appropriate Green function of Eq. 
(4.2). 

At this stage we can adopt several viewpoints and 
they are, of course, somewhat related. 

(a) The initial field on ~o and its normal derivative 
are given and not at random. In such a case we have 
only to deal with the particle aspect of relativistic 
statistical mechanics since the field variables can be 
completely eliminated. This point of view leads to a 
relativistic Klimontovich hierarchy15 (for the scalar 
interaction, of course) which is studied in Paper II. 
Equation (4.4) shows that the field c/>(xp) is a random 
field because it functionally depends on the random72 

density R1 • This field, although initially not correlated 
with the initial particular data, does not remain 
uncorrelated with the particle variables. It can also be 
remarked that the first term of the right-hand of Eq. 
(4.4) (which involves the dependence on c/>o and oc/>o) 
is a solution of the homogeneous Klein-Gordon Eq. 
(4.2) and hence will play the role of an external force 
field in the equations of motion of the particles. 

(b) The initial field on ~o and its normal derivative 
are chosen at random. In such a case the field c/> is 
random, both due to the random distribution Rl and 
to the initial field data. This point of view has been 
adopted by a large number of authors. It can be 
summarized by saying that it deals with a random 
Cauchy problem. Here also, there are several possi­
bilities: either the initial data of the field and of the 
particles are correlated or they are uncorrelated. In 
the latter case everything occurs as if we were con­
sidering the preceding point of view except that the 
system is embedded in a random external force field. 
More precisely, let us assume that our ultimate aim is to 
obtain a kinetic equation; then we first derive (with 
the help of various approximations and hypotheses) 
a kinetic equation in a given external force field and 
next remember that this force field is random. Thus 
we have random kinetic equations which can be solved 
(at least formally) with different techniques. 73 

If, in order to be more "realistic," we want to get 
rid of assumption 1 and to know the behavior 
(statistical or not) of the system in the future of ~ 0' 

we must give up the conventional form (i.e., similar 
to the Newtonian one) of the initial-value problem. 
We may, as above, assume that the initial data of the 
particles are distributed on ~o while the field (and its 

72 "Random" because of the random character of the "initial 
data" of the particles. 

73 R. Kubo, J. Math. Phys. 4, 174 (1963); G. Adomian, Rev. 
Mod. Phys. 35,185 (1963); See also the simple example treated in 
Sec. 7 of the preliminary report, Orsay Th/I07. 

normal derivative) can be written as 

c/>(xp) = c/>+(xp) + c/>-(xp) + c/>lnCXp), 
where c/>+ is the contribution to c/> of Rl for T ~ 0, c/>­
is the contribution due to the past (T < 0), and where 
c/>in is an arbitrary solution of the homogeneous 
equation (4.2) and represents more or less an 
initial radiation field. 74 More precisely, 

c/>+(xp) = Ll* 1+00 J dT d4uR1(xp, Up; T), 

c/>-(Xp) = Ll* fooJ dT d4uR1(xP ' Up; T). 

In this scheme what is random? First of all the initial 
data of the particles are again chosen at random on 
~o. Secondly, the past of the system can be chosen at 
random. For instance, if we assume that there is no 
~nitial fie!d, then this "random past" is entirely 
mcluded m the random function R1(xP ' up; T) (with 
T < 0). In order to be compatible with the initial 
particular data, this random function should satisfy 
some consistency conditions; e.g., Rl should be such 
that 

r<O 

be verified. 75 Note that this function is random not 
only because of the random character of the initial 
particular data but also because of the random 
character of the past of the system. c/>in may also be 
chosen at random with or without correlations with 
the Cauchy data of the particles. Whether this kind of 
initial-value problem is consistent with the one 
developed above or not is questionable, as remarked 
by ~avas and Rohrlich. In our opinion, this last point 
of view corresponds more deeply to the principal 
features of relativistic interactions, and in particular to 
nonlocality. Furthermore, it appears to be more 
physical. 

Finally the preceding discussion suggests the 
~bandonin~ o~ the idea to set the initial-value problem 
10 a form slmdar to the Newtonian one. For instance, 
if we want to remove assumption 1, then the Cauchy 
problem for the field can be set only at infinityY·48 
In that case, we get 

+00 

c/>(xp) = AJ JJ Ll(xp - X~)Rl(X;, u~; T') 

-00 

X dT' d4x' d,u' + c/>ln(Xp) (4.5) 

7. It ~ould be a radiation field only when dealing with electro­
magnetIc phenomena. 

75 For the moment there is no need to specify more precisely 
Dl , < > .etc;, ~see. ~ecs. 5 and 2). Furthermore the meaning of these 
quantitIes IS IDtwtIvely clear. 
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which clearly shows that only two elements are at our 
disposal to be chosen at random: (a) the incident 
field 4>in and (b) R1 , or more precisely the entire 
trajectories of the particles of the system. Of course, 
these elements can be correlated or not. It seems, 
however, that it is more "physical" to consider 4>in 
and Rl as being uncorrelated. 76 It may be remarked 
that this last point of view also includes action-at-a­
distance (with 4>in = 0). In our opinion only this last 
point of view has a fully invariant meaning and there­
fore we adopt it henceforth. 77 It has also the great 
advantage to avoid the explicit knowledge of the 
solution of the initial-value problem. 

Remarks on the Statistical Treatment of Fields 

The preceding paragraph indicates that in general, 
random fields are dealt with (or random variables in 
functional spaces when dealing with Rl)' For instance, 
4>0 and 04>0 may be considered as random variables in 
the Hilbert space [2(.A(}), e.g., when the field energy­
momentum is finite. [Indeed, in that case we have 

p/l(~o) = r T/lV( 4>0' 04>0) d~v < 00, Jro 
where TI'V, the momentum-energy tensor, is a positive 
definite quadratic form in 4>0 and 04>0, which property 
implies that (4)0' 04>0) E {[2(.A(})}X2.] In the same way 
R1(x" , u/l; 7') is a random process78 in the latticed 
Banach space of positive measures79 in .A(,4. 

Unfortunately only very little is known on measures 
in functional spaces. For instance nobody has yet 
been able to obtain a nontrivial80 Gaussian measure 
in Hilbert space.81 A usual treatment consists in doing 
a statistics of field oscillators, at least in the electro­
magnetic case. 82 However, this procedure is mathe­
matically not well defined. [For instance, this point 
of view leads naturally to a Gaussian measure in 
Hilbert space, which measure is known to be such 
that ,u([2) = 0.81 However, it would be most interest­
ing to find the reasons why such a point of view (which 
is obviously incorrect in the case of a Gaussian 
measure) leads to physical results. The problem is 
open. An element of answer would perhaps be the 

76 The discussion on this question given above in points (a) and 
(b) can equally be repeated. 

" Unless there is an explicit statement of the contrary. 
78 Note that it is not R1 which is physically interesting but rather 

J R1 dT and that this last quantity does not constitute a random 
process in the above Banach space but a random variable. 

7. See, e.g., P. Courrege, Theorie de la mesure (Centre de Documen­
tation U niversitaire, Paris, 1964). 

80 I.e., such that .u(C') ~ o. 
81 See, e.g., M. Zerner, in 1965 Cargese Summer School (W. A. 

Benjamin, New York, to be published). (See also the references 
quoted there.) 

8' As, e.g., in the first work on these questions: W. E. Brittin, 
Phys. Rev. 106, 843 (1957). See also the papers quoted in Ref. 10. 

following: practically "reduced measures" involving 
one or two or a few oscillators variables are actually 
used to obtain physical results and never the complete 
"measure" (which has no mathematical meaning).] 
Another treatment, which is used in what follows, is 
inspired from turbulence theory. It consists in 
assuming that the complete statistical properties of a 
random variable in a functional space Je are known 
when all the "moments" are given. In other words, the 
statistical properties of the random variable f E Je are 
assumed to be known when the infinite sequence 

<f> E Je, <f ® f) E Je ®2, ••• , <f ® ... ® f) E Je ®k, ••• 

is given. This treatment rests on the analogy with 
random variables83 in RN. This method has been used 
to a large extent in turbulence theory84 and by Klimon­
tovich in dealing with electromagnetic fields. 85 

However, it is not sure at all that the above sequence 
determines a random element in Je. This is also an 
open problem. 

So, we assume that the knowledge of the sequence 

<Rrp ® 4>~rn; p, q = 1,2' .. 

in the field point of view (or of the sequence 

<R~a); q=I,2'" 

when dealing with action-at-a-distance) is sufficient 
for the complete characterization of the statistics 
occurring in the problem. 

Phase Space-Gibbs Ensemble 

In this paragraph we mainly discuss the action-at-a­
distance point of view. As a consequence, the results 
obtained remain valid in the field case but only for 
each realization of the incident field. 

(1) Let us first examine the question of phase space. 
The same remarks as the one effected in Sec. 2 on 
,u space are valid mutatis mutandis. In particular, 
phase space will be a state space rather than the space 
of initial data as usual. It is a space which renders easy 
the description of the system; it is suggested by (a) 
the ,u space used in relativi~ic kinetic theory and 
(b) the form of the equations of motion. Denoting by r 

83 It is well known that the moments of a random variable in RN 
determine (modulo weak conditions almost always verified in 
practice) its density of probability (with respect to a given measure). 
However, a random variable in RN does not necessarily possess 
moments of all order. Consequently if we limit ourselves to random 
variables possessing moments of all order, we would eliminate an 
important class of random variables. Hence, it is probable that the 
"moment method" in the case of random elements in functional 
spaces, is not completely general. 

.< G. K. Batchelor, The Theory of Homogeneous Turbulence 
(Cambridge University Press, Cambridge, England, 1953). 

85 Yu. L. Klimontovich, Zh. Eksperim. i Teor. Fiz. 34, 173 
(1958) [English transl.: Soviet Phys.-JETP 7, 119 (1958)]. 
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this phase space, we thus have 

r = pN, 
where 

or 

with 

p = .A(,' X U' 

= .A(,4 X Y+, 

Y+ = { . uJluJl = +1} 
uJl' 0 

U > 0 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

according to whether the constraints (4.9) are included 
in the densities or not. Definition (7) is preferable86 

because it implies a flat p space and hence a flat 
r space. [In the case where gravitation is also taken 
into account, it has been recognized by Chernikov 
that the general relativistic p space is a fibre bundle 

p = U P(x), 
"'EY' 

where 1'4 is the Riemannian space-time manifold and 
P(x) is the fibre above x, i.e., the particle momentum 
space. Note also that the structure group of the P(x)'s 
is nothing but the orthochronous proper Lorentz 
group. Even in the case of special relativity, p space 
(and also r space) may be considered as a fibre 
bundle. However, this structure plays no important 
role. In Newtonian physics, phase space is also a 
fibre bundle: the tangent bundle to the manifold 
"configuration space."] 

(2) As for the Gibbs ensembles, they are defined 
exactly as in Sec. 3. They consist of (a) the manifold of 
solutions of the equations of motion and (b) a positive 
measure of total mass one over this manifold (or more 
precisely over a a-field defined on this manifold). 

At first sight this definition of a Gibbs ensemble 
seems to imply an a priori knowledge of the solutions 
of the equations of motion. Actually, it is not so. 
For instance, if we deal with the random density87 
Rl(xJl , uJl; T; w), we should bear in mind that the 
physically interesting quantity is (see Sec. 5): 

(Rl(xJl , uJl; T; w» == f R 1(xJl , uJl; T; w) dp(w), (4.10) 

where p(w) is the measure over the manifold of 
solutions. Consequently we try to obtain equations 
verified for each realization of the process Rl [or 
equivalently x~h, w), i = 1 ... N] and next take the 
average value so as to get, equations satisfied by the 

8. We could use the 4-momentum pJl = muJl instead of the 4-
velocity. 

8' Let xit(Ti, w) be a solution of the equation of motion of the 
ith particle. w denotes an element of the so-called "sample space" 
of the theory of probabilities. For instance, w may represent the 
Cauchy data. There is no need to specify w further. In Rl we have 
made the w dependence explicit. 

moments of R l • It is therefore not necessary to 
specify precisely the averaging operation () or, 
equivalently, the measure p(w). It is sufficient to assert 
their existence. This is the very essence of the Klimon­
tovich method,88 which we use in Paper II. 

Here again the comparison with Newtonian statis­
tical mechanics is similar to that performed in the 
discussion of Sec. 2. The point of view developed here 
is not so far from the Newtonian one as one could 
believe. In both cases a Gibbs ensemble is defined as 
above. However, in the classical case p(w) (and w) can 
be explicitly given. 

(3) In the r space of the system the entire history of 
the collection of the N-interacting particles is con­
stituted by a N-dimensional manifold. This manifold 
consists of the intersection of the N cylinders generated 
by the N trajectories of the particles. Let M N be this 
manifold. It can be represented in a parametric way 
with the help of N parameters, namely: Sl'" sN. 
This situation is by no means similar to the classical 
case where the system under consideration is repre­
sented in the nonrelativistic r space by a one­
dimensional manifold. In the relativistic framework 
this circumstance is due to the absence of a universal 
time. Let us specify this point more precisely. The N 
trajectories of the particles are described, as we have 
already noted, by N parameters. Therefore we can 
write 

x~ = t l , ... , x~ = tN' 

Xl = Xl(tl ), ... , XN = XN(tN), 

where we have chosen the N times of the N particles 
as parameters. However, within the framework of 
Newtonian physics, there exists a universal canonical 
parameter, which is the same for all the particles. 
This parameter is the usual time. This is equivalent to 
imposing the (N - 1) relations: 

(11) 

and hence the representative manifold is simply a 
curve. 

As a consequence, this shows clearly that within the 
relativistic framework there is no canonical notion of 
the evolution of a system. [Imposing relations (4.11) 
as is done in Ref. 10 or any other ones amounts to 
choosing a curve on the manifold M N describing the 
system. However, this choice is as arbitrary as the 
curve chosen.] Note also that relativistic statistical 
mechanics may be considered as a statistics of mani­
folds exactly as relativistic kinetic theory is a statistics 
of curves. 

88 Yu. L. Klimontovich, Zh. Eksperim. i Teor. Fiz. 33, 982 
(1957) [English transl.: Soviet Phys.-JETP 6, 753 (1958)]. 
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(4) Let us now briefly discuss the field point of 
view. For each realization of ~in the preceding dis­
cussion remains valid. Here again a Gibbs ensemble 
will be (a) the manifold of solutions of equations of 
motion (including those for the fields) and (b) a positive 
measure of total mass unity over this manifold. As to 
phase space, since (in our approach) it is chosen for 
reasons of practical order, we may either adopt again 
definition (6) or enlarge it so as to include the fields: 

phase space = r x {space of the fields}. (4.12) 

This is just a matter of convenience. Now w appearing 
in Eq. (4.10) also involves the random character of the 
incident field. 

(5) Finally we must point out that in either approach 
our phase space has been chosen for reasons of 
convenience which are discussed in the following 
sections. It is not imposed by initial data. In particular, 
phase space could perfectly be enlarged89 and this 
possibility is exploited in Paper II. 

On the Non-Hamiltonian Character of 
Relativistic Dynamics 

In our opinion,90 it is absolutely unnecessary to have 
a Hamiltonian formalism in order to build statistical 
mechanics (Newtonian or relativistic). A Hamiltonian 
formalism only introduces simplifications and a 
Liouville theorem from which a Liouville equation is 
derived. To establish statistical mechanics, it is 
sufficient to start with (a) the equations of motion, 
(b) the conservation of the number of particles in an 
ad hoc phase space. These ideas are iliustrated in 
Paper II. It seems that the main problem in the 
absence of a Hamiltonian formalism91 concerns the 
definition of statistical equilibrium. However, it 
seems to us that this problem is not typically a 
relativistic one and also exists in classical statistical 

81 In nonrelativistic mechanics, phase space is generally con­
sidered as being the space of all possible initial data. Fortunately it 
is also the most convenient one to describe the system. However, 
we could enlarge it so as to include acceleration (or other) variables. 
As a consequence, densities including acceleration variables would 
be needed, but by virtue of the form of the equations of motion, this 
dependence would be trivial: it would be only through 15 factors 
such as d(F - 11r'(). It is not to such a trivial possibility that we 
refer (see Sec. 5 and Paper II). 

10 This opinion is not universally accepted. For instance, P. 
Havas and R. Balescu (private discussions) do not completely agree 
with this point of view. Conversely, R. Kurth, Axiomatics of 
Classical Statistical Mechanics (Pergamon Press, Oxford, 1960), 
agrees with his opinion. 

01 By "Hamiltonian formalism" we mean that (a) the equations 
of motion have a Hamiltonian form and (b) there exist canonical 
variables such that the Hamiltonian has actually the meaning of the 
energy of the system. Indeed P. Havas [Nuovo Cimento Suppl. S, 
363 (1957)] has shown that the equations of motion of non-Hamil­
tonian systems (such as the one consisting of a particle submitted to 
a friction force -fJv) may sometimes be cast into a Hamiltonian 
form. However, the Hamiltonian obtained has in general no physical 
meaning. 

mechanics. We return to the definition of statistical 
equilibrium in a later paper. 

5. DENSITIES AND RELATED QUESTIONS 

In this section we define densities on the r space 
considered above and examine some properties 
(normalization, equations, etc.) which they verify. 
In Sec. 2 we have given two formalisms, first a 
formalism of geometrical character and next a proper 
time-dependent one. Here we rather consider the 
inverse order. Both formalisms are mutually illumi­
nating. 

Proper Time-Dependent Densities 

The k-particle microscopic random density is defined 
as 

Rk(X~ , u~; ... ; x~u~; 7'1 ••• 7'k) 
;=k 

= I II 6[x~ - xf
l
(7';)] ® 6[u~ - ufl(7';)] (5.1) 

it.··· .it ;=1 

with 
i,. ~ i{J' Voc ~ f3 ~ k, i,. = 1 ..• N. 

Obviously, Rk depends on the "initial data" w through 
the factors xr(7') and uf(7') (which represent the 
trajectory of the ith particle in its own f-li space). The 
"initial data" being chosen at random, Rk is a random 
function. Rk represents the random joint density of 
particles reaching (xfur) at "times" 7'i (with i ~ k). 

Let us remark that definition (5.1) is valid in the 
relativistic case as well as in the classical one. In the 
latter, we obtain the multi-temporal distributions 
already considered92 by Klimontovich (Greek indices 
then go from 1 to 3 while the 'T/s are to be considered 
as usual times). The density Rk is normalized through 

i Rk(X~ , ui; ... ; xC, u~; 'Tl ... 'Tk) 
PiX'" Xl'k 

i=k 

X IT df-li = k! C~. (5.2) 
i=1 

Reduced distribution functions of order k are now 
easily defined as "average values" : 

k! C~Dk(X~; uf; ... ; xC, Uk; 'Tl, ... ,7'k) 

= (Rk(X~, uf; ... ; xC, uC; 'Tl' ... , 'Tk»' 

k ~ N, (5.3) 

where the brackets ( ) have been discussed in Sec. 4. 
The factor k! C~ has been chosen so that the Dk's are 
normalized to unity. For instance, one has93 

N! DN(XA.; 7'1 ••• 'TN) = (R~xA; 'Tl ... 'TN» (5.4) 

92 Although not so explicitly. 
18 xA stands for (x~, uP, ••• , x~, u~) or any other system of 

coordinates in l' space. The slight ambiguity of notations (the same 
as in Sec. 2) is not confusing. 
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from which one may verify94 that 

Dix'i., uf; ... ; x~, u~; Tl ... Tk) 

= f ... fDN(XA; Tl ... TN) dllk+1 ••• dllN' 
)S(N-k) times 

(5.5) 
We also have 

ND1(x", u,.; T) = (R1(x", u,.; T) 

= (~b[X" - Xf(T)) ® b[u" - Uf(T))) 

(5.6) 

as expected. In the same way one can obtain another 
important density 

N(N - l)D2(xf, uf; x~, u~; Tl' T2) 

= (R2(xf, uf; x~, u~; Tl' T2) 

= <!b[Xr - Xf(Tl)) ® blur - Uf(Tl)] 
i'/J 

® b[x~ - X~(T2)] ® b[u~ - U'ih))). (5.7) 

More generally, Dk may be calculated either from Rk 
or from Dk+'P (p > 0, k + P ~ N). 

Remarks 

It is possible to define other kinds of distributions 
by considering mean values of random products of the 
form 

R1(xrur' .. xfuf; Tl ... T1) 

® Rq{xfuf ... x~u~; Tl ... Tq). 

In this way we could generate the reduced distributions 
Dq+! plus "mixed" distributions such as the density 
of probability that we have a particle in the state 
(xrur) at "time" Tl' ... , while particle k is in the 
state (X~OU~l) at "time" Tko and undergoes transitions 
through states (X~lU:l) at "time" Tk

l
,"', (X~P~I) 

at "time" T kj , etc. The latter distributions are used in 
Paper II. Let us now give a simple and important 
example. To this end let us consider the average 
value (Rl ® R1 ). We have95 

(Rl ® R1) = <~) 
.,J 

= <t;) + < ~ ). (5.8) 

U To show this property, it is sufficient to pass through the inter­
mediary of the random densities and to take the average value of the 
final result. Of course, we use the mathematical property 

(i> = iO 
which is assumed to be valid. 

96 Let us indicate that the similar formula given by J(Jimontovich 
[Ref. 15, just after Eq. (5.6)] is incorrect. For comparison it is neces­
sary to integrate Eq. (5.9) over 'Tl and 'Ta' 

The first term of the right-hand side of Eq. (5.8) is 
nothing but N(N - 1) times D2 while the second term 
is 

NP2der == <~) == <~b[Xi - Xf(Tl)) ®b[ui-uf(Tl)] 

® b[x~ - xfh)] ® b[u~ - Ufh)]) (5.9) 

and represents N times the probability that a given 
particle be in the state 1 and next the same particle be 
in the state 2. 

(2) It must be pointed out that the various prop­
erties occurring in this paragraph are merely formal 
since the Dirac measure is not absolutely continuous 
with respect to Lebesgue measure and hence has no 
density. However, these formal definitions can easily 
be justified on the basis of correct mathematics. 

(3) The "physical meaning" of these densities could 
be specified as follows. Let ~ be an elementary96 

Lebesgue-measurable subset of r. Then, 

naCTI' .. TN) = L. DN(TI ... TN) dr 

[where we have used the shorthand 

DN(XA; Tl ... TN) = D N(1"I' .. TN)] 

represents the probability that particle 1 be in b1 C Ill' 
particle 2 be in 152 C 112, .• " particle N be in 
b Nell N, while their proper times are respectively 
1"1,"', TN' 

Let us emphasize, however, that, as in relativistic 
kinetic theory, the proper time-dependent densities 
are not "physical." The "physical" densities are 
rather the proper time-independent ones studied in 
the following. 

(4) Let us assume for a moment that the 6 N usual 
initial data (xfo' ufo; i = 1 ... N; xf E ~o) are actually 
sufficient to determine (in an action-at-a-distance 
formalism) the complete behavior of the system.97 

In other words, by a given point x A in r space 
passes only one manifold MN(XA ). Consequently, 
there exists a one-to-one correspondence between 
couples of points belonging to the same manifold 
M N, when using the proper time parametrization, i.e., 

Xf(TI' .. TN) = TTl" "TNxt; xt, xt E M N, 

where {TTl'" T) is a group (or semigroup) equivalent 
to the laws of motion. This is completely similar to 
the one-particle case (see Sec. 2). Now, if we denote by 

96 By "elementary," we mean: A = 151 X ... X t5N , where 151 
is a Lebesgue-measurable set in P.I space. 

97 This seems to have been shown by J. Rzewuski et al. (see Ref. 
49) in a nonphysical case, the case which consists in considering 
finite world lines. See also the remark by P. Havas (Ref. 18). 
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DN(XA; 0 ... 0) the distribution of initial data, then 
(as usual) DN(XA; Tl ••• TN) can be defined by the 
following conditions: 

(a) D1ix
A, Tl .•• TN) = TTl" 'TNDN(xt, O· .. 0), 

(b) DN(XA, Tl ••. TN) ~ 0, V(Tl'" TN) E R+N, 

(c) L DN(xA, Tl •.• TN) dr = 1, 

V(T1 ' .• TN) E R+N. 

One can show that, under the validity of the assump~ 
tion effected in this paragraph, this definition is 
consistent with the one given above.· 

(5) Let us now consider whether there exists a 
relativistic Liouville equation for a system of N 
particles. To this end let us consider the case of a 
system of independent particles. In the same way as in 
Sec. 2, we obtain by derivation of Rk and after taking 
the average value, 

~ D + flO D + Ffl (V V) ~ D - 0 
:I k Ui fli k ~Xi ,U i :I fl k - , 
UTi mi UUi 

i = 1 ... k, (5.10) 
k= 1·· 'N, 

where Ffl is the external force field. In particular, this 
shows that D N does not verify a Liouville equation 
but rather N one-particle Liouville equations. We find 
this property again by using the more sophisticated 
geometrical techniques given in the next paragraphs. 
The reason why this property occurs is the absence 
of a universal time. Indeed, in nonrelativistic physics, 
instead of RN(XA, t1··· tN) we have RN(XA, t··· t), 
and thus the derivation with respect to now only one 
t connects all the one-particle Liouville equations 
between them.98 Had we used the covariant notion of 
evolution defined by 

then we should have found a nontrivial Liouville 
equation. More precisely we should have found an 
equation of the form 

~ DN(XA; T' •. T) + 2 {U~Ofli + Ff :1
0 

} 
OT i m uUi 

X DN(XA ; T' .. T) = O. 

However, in doing so we lose information on the 
system and the knowledge of the new DN is not 

9S In classical physics the same situation occurs. Only densities 
involving one-time are generally used. This is due (in part) to the 
instantaneous character of Newtonian forces. However, in problems 
of fluctuations, many-time distributions may be used [see, e.g., 
N. Rostoker, Nuc!. Fusion 1, 101 (1960)]. 

completely equivalent to the knowledge of the details 
of the motion of the individual particles. 

Heuristic Considerations 

Let us assume provisionally that the system under 
study is constituted by a collection of N noninteracting 
particles. In that case we have 

DN(XA; Tl .•• TN) 

= D1(xi, uf; Tl) (8) ••• (8) D1(xj." uj.,; TN)' 

Integrating now each Dl over its own proper time, 
we obtain 

1+00
00 
.. J_+oooo dTI ... dTND N(XA; Tl .•. TN) 

i=N 
= (8) .N\(xf, un == .N' N(xA). (5.11) 

;=1 det 

It follows that the normalization of .N' N(XA ) 

l .. ·l .N' (XA)Ufll ... UflN 
+ + N 1 N 

l:lxVl l:NXVN 
X d'2:.fll · .. d'2:.flN d4u1 ... d4uN = 1, (5.12) 

where '2:.; (i = 1, ... ,N) is an arbitrary spacelike 
three-surface imbedded in Minkowski space-time.A(,t . 

From this example we could define the "time"-
independent densities as . 

.N'ixi, ui ... x~, u~) 

= r .. ·fDix':.ui ... x~ , u~, Tl .•. Tk) 
Jk times 

X dTI ... dTk, (5.13) 

where the .N'k(xiuf ... x~uD are normalized by 

r +' .• r + .N'k(x':.ui ... x~u~) 
Jl:lXVl Jl:kXVk 

X ur l •.. U~k d'2:.fll ... d'2:.flk d4Ul ... d4uk = 1. 

(5.14) 

Note that the reduced "time"-independent densities 
could as well have been defined through the relation 

.N'k(xiuf· .. x~u~) 

= 1 .. '1 .N' (XA)Uflk+l ... UflN 
+ + N ~1 N 

l:k+lXVk+l l:NXVN 
X d'2:. flk+l· .. d'2:.flN d4U~1 ... d4uN' (5.15) 

The consistency of definitions (5.13) and (5.15) is 
easily verified by passing through the intermediate 
step of the random densities and taking into account 
the properties of the Dirac distribution. 

The normalization condition (5.14) considered for 
k = N, shows that, as expected, the actual phase 
space of the system is a 6N-dimensional manifold 
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which involves N arbitrary spacelike three-surfaces. 
Moreover, this shows that the JfIe'S may be considered 
as the distribution functions which generalize to many 
particles, the ones ordinarily used in relativistic 
kinetic theory. 

In order that the reduced "time"-independent 
densities should not actually depend on the arbitrary 
l:/s, it is necessary (and also locally sufficient) that 
the tensors 

JPm' .. p'(x~ur ... x~u:; x:+l ... x~) 

-i . ··i Jf (xPuP ... xPuP) - + + r 11 rr 
Vk+l V, 

X U"k+l .•• U'" d,Ul ••• d,ur (S.16) 

should verify a number of conservation relations. 
These tensors can be called the generalized currents. 
The relations satisfied by these tensors are obviously 

a JPk+l'" "I ... "'(x"u" ... x"u'" x" ... x") - 0 
"I 1 1 Ie k' k+l r -

(S.17) 
with 

k<i~r~N. 

Relations (S.17) are in fact integrability conditions of 
the differential forms 

J"k+1 ... "I ... ", dl:", 

(without summation on the index i). 
These conditions are equivalent to 

(~/~l:k)Jfi = 0, with i < k ~ N. 

Furthermore, they express the fact that the Jf/s are 
independent of the chosen l:k'S and of the way from 
which they have been calculated (k > i). 

Geometrical Definitions99 

In order to deal with a more general point of view, 
let us start directly with the relativistic ensemble of 
manifolds M N previously considered (at the end of 
Sec. 4). As in the relativistic kinetic theory, it is 
possible to give an invariant definition of .N' N(XA ) 

only through the intermediate step of a generalized 
current in r space, namely 

(S.18) 
with 

~Al ... AN(XA) = ~f' @ ... @ ~1/ 

and where ~t- is the Ath component of the 8N-vector 

;i = 0 EB 0 ... EB 'Ii EB ... EB 0 (N factors), 

•• In this section we adopt the field point of view but we reason 
once a realization of the field is given. See the remarks after this 
paragraph. Note that the results obtained are also valid in the action­
at-a-distance for'nalism. 

where 'I has already been defined in Sec. 2 while the 
index i of 'Ii refers to the ith particle. 

The tensor ~A, .. ·AN is, in a sense, a generalized 
velocity in r space since it is "tangent" to the mani­
fold MN passing through the point x A E r. 

Let now S7N be an arbitrary 7 N-dimensional mani­
fold cutting all the manifolds MN of the ensemble. 
Moreover S7N must be such that it cuts each M N in 
only one point. Hence Jf N(XA) is normalized to I 
through 

f .N'N(xA)·~Al"·ANdSA1"'AN=1, (S.19) 
JS7N 

where dSA .. . A
N 

is the element of a 7 N-dimensional 
surface imbedded in an 8N-dimensional space (i.e., 
in r space). 

At first sight it seems that condition (S.19) would 
imply a 7N-dimensional actual phase space. However, 
we must bear in mind that, in general, we have also 
N relations between the components of the momenta. 
In such cases, the actual phase space is, as expected, a 
6N-dimensional manifold. Equation (S.19) is written in 
a fully covariant form (i.e., covariant with respect to 
arbitrary changes of coordinated in r space taking the 
(+ - - -) character of the metric of .)(" into 
account. However, it reduces to Eq. (S.12) with the 
coordinates [ ... x~, u~ ... )]. 

In order to express the conservation of particles in 
r space let us now state and prove Proposition 1. 

Proposition 1,' The differential form "numerical 
flux of particles" JA1··· AN(XA) dS A ... A is a closed 
form: ' N 

d{JAl"'AN(XA) dSA''''AN} = O. 

Proof' Let us consider the tube b generated by an 
open connected setlOO d 1 of an arbitrary surface 
SIN satisfying the above conditions, and the manifolds 
M N cutting d 1 • This tube comprises an 8N-volume. 
The frontier of this tube is a (8N - I) manifold. The 
quantity 

1 JA,·· 'AN( A) dS X A,"'AN' 
d, 

which is thejiux through d 1 of the generalized current, 
represents the probability that the system be in a state 
characterized by a point in r space belonging to d 1 • 

Let us now cut b by another 7 N-manifold S~N and let 
d 2 be 

d 2 = b n S~N . 

The physical condition that d 2 and d 1 contain the 

100 For the topology induced on S·N by that of r. 
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same number of systems reads101 

r JAl · ··AN(XA) dSAl ... AN Jl1l 
= r JAl···AN(XA)dSAl ... AN. (5.20) JI1, 

Note that the integral occurring in the right-hand side 
of Eq. (5.20) has a meaning since ~2 is open (for the 
topology induced by that of r on S~N) and hence is 
measurable (for the measure induced on S~N by 
Lebesgue measure in r space). 

Let now ~?N be an arbitrary measurable manifold 
imbedded in the frontier of 1) [this is of course possible 
since the frontier of 1) is a (8N - 1) manifold] in such 
a way that the 7 N-dimensional manifold 

~l U ~?N U ~2 == V7N 
def 

encloses a (7N + 1) volume. Let us assume for a 
moment that such ~?N'S can be found (this is in 
general not true). Then condition (5.20) can be 
written as 

(5.21) 

since 

Indeed, the differential form induced by JAl ··· AN 
X dS A ... A on ~?N vanishes identically since 

1 N 
JA I ... AN is "tangent" to ~?N while dS AI ... A is 
"orthogonal" to it. Therefore condition (5.21) implies 
that the differential form ]AI··· AN dS A ... A be a 
closed form: 

1 N 

(5.22) 

This latter condition is merely a local condition so that 
we can get rid of the assumption of the existence of 
~?N in the following way. To this end it is sufficient 
to take for ~l a small neighborhood of a point xA 

in r space, and a small ~2 near ~l. Then, it is easy 
to show that there exists an infinitesimal ~?N with 
the required properties.102 Q.E.D. 

Equation (5.22) is equivalent to the conditions 

VA/Al···A, ... AN(XA) =0, i=l···N, (5.23) 

101 Because of the fact that ,il and ,i, are cuts of 1>, which is 
invariant under {TTl ... TN}. Note that in the field point of view 
{TTl ... TN} actually exists but for each realization of the fields. In 
other words {TTl ... TN} is, in the field point of view, a random group 
(or semigroup). 

10' In order to show this possibility, it is sufficient to give sets of 
R8N having the same properties as ,iI' ,i" siN, S~N, 1> etc., and 
next to take a homeomorphism and map these sets into ,iI' ,i, , S7N, 
1> etc. Fortunately, in R8N we can easily find such sets by taking 
"cubes" and sections by planes. 

where the caret denotes the antisymmetrical part of 
JAl · .. AN. Equation (5.23) can equivalently be written 
as 

V A.{.N' N(XA)~tl(XA) " ... " ~tf(XA)} = 0, 

or 
i=N 
~ (- )i+lX N(xA)V A,~f;(XA) 
i=1 

i = 1 ... N (5.24) 

"~tl(XA)"···" ~~N(XA) + OAiXN(XA)~tl(XA) 
" ... " ~ti(XA) " ... " ~1l(XA) = 0. (5.25) 

Remarks and Discussion 

(1) The requirement of condition (5.22) or of the 
equivalent Eqs. (5.23), (5.24), and (5.25) is nothing 
but the relativistic form of the conservation of the 
number of particles of the system [i.e., Eqs. (5.24) are 
nothing but continuity equations in r space]. There­
fore we see a first important difference with the 
nonrelativistic case. 

(2) Instead of conditions (5.23) we could have 
imposed the simpler relations 

OA/A I •• ·Ai ·· .AN(XA) = 0, i = 1 ... N. (5.26) 

However, it would be stronger than Eq. (5.23) since it 
would also imply the vanishing of the divergence of the 
symmetrical part of JA I ••• AN. In fact, only the anti­
symmetrical part of JA I ••• AN is physically relevant103 

since the differential form dS A ... A is (by construc-
I N 

tion) completely anti symmetrical. We might perfectly 
have defined the generalized current as being 

instead of Eq. (5.18). [Note also that despite the 
symmetrical definition of JA I ·• .AN, this quantity is 
actually not symmetrical. The only symmetry property 
of JA I ..• AN(X A) is the followinglo4: 

JA I • •• Ai·· . Ar .. AN(xiui ... xfuf ... xjuj ... x~u~) 

= JA I •· ·A;·· ·Ai ·· .AN(xiui· .. xjulj ... xfuf ... x~u~) 

V(i,j)::;; N, 

which is not 

JAl·· ·Ai·· ·AJ·· .AN(XA) = JA I •• ·A i ·• ·Ai·· .AN(XA).] 

Relations (5.23) or (5.26) may be simplified further 
and yield the N relations 

V'A.{XN~ti} = 0; Ai = 1··· 8N, i = 1··· N, 

(5.27) 

103 See Sec. 6. 
100 Of course, this symmetry property holds only when we deal 

with identical particles. 
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which [in the system of coordinates ( ... xfuf ... )] 
reduces to 

a {X ¥lA,} = o· Ai N""" , Ai = 1 ... 8, i = 1·· ·N. 

(5.28) 
When relations 

oA,'YJf' = 0; Ai = 1 ... 8, i = 1 ... N (5.29) 

holds, then the N equations (5.28) reduce to N one­
particle Liouville equations. Therefore, we can never 
have a Liouville equation, though a relativistic 
Liouville theorem be true. Indeed, we have 

i=N 
dX N = ! 'YJf' . OA,X N dTi = 0 (5.30) 

i=l 

since each term of the preceding sum vanishes 
identically. Therefore we find again results obtained 
in a much simpler manner with the proper time­
dependent formalism. 

(3) In the preceding paragraph, we used the most 
general 7 N manifold cutting the various M N of the 
ensemble. As a consequence we obtained N equations 
of continuity in r space. Nevertheless, we might as 
well have chosen as S7N a manifold of the form 

S7 N = SaN X U~ X • • . X U~ 

with saN c J~(,4N. In such a case, continuity equations 
read 

a Jill'" IlN(XIl '" xll ) = 0 
Pi 1" N , i = 1 ... N (5.31) 

or 

all/Ill'" IlN(X~ , ... , xj.,) = 0, i = 1 ... N (5.32) 

according to the choice of Eq. (5.23) or (5.26), 
respectively. 105 

On a surface saN of the type 

S3N = ~1 X ... X ~ N 

X N(XA) is, in a sense, the relativistic analog of a 
classical many-time distribution. In the case where 

~1 = ~2 = ... = ~ N = ~, 

then, on S3N = (~)N, X N is similar to a single time 
distribution. These similarities are much more 
convincing when the surfaces ~i are chosen to be 
spacelike 3-planes. 

(4) All the preceding results are valid in the field for­
malism when we are given a realization of the incident 
field. However, they are not completely general and we 
see in Paper II how to modify them. 

106 In Eqs. (5.31) and (5.32) we have used for the currents in .A(,tN 
the same symbol J already employed for the current in r sp~ce. How­
ever, the argument of these tensors is sufficient to avoid a possible 
confusion. 

Reduced Densities 

Exactly as in the first paragraph of this section, we 
can obtain various reduced densities. For instance we 
have 

X N- 1 = r XN(XA)'YJA d~A(N) (5.33) 
Jr.I7) cll(B)(N) 

(where the index A goes from 1 to 8 and where riA 
has been defined in Sec. 2). Note that in Eq. (5.33) 
d~A(N) is the differential form "element of surface" 
corresponding to a surface imbedded in #(S)(N), itself 
corresponding to the variables referring to the Nth 
particle. 

In order that X N-1 should not depend on ~ (7), the 
following conservation relations must hold: 

VAi{X N(XA)'YJA'(xfuf)} = 0 (5.34) 

(Ai = 1 ... 8; i = 1 ... N), and they are nothing 
but Eq. (5.28). Of course, other reduced densities 
can be obtained in the same way. More generally, one 
has 

with 
Ai=I"",8(-k); i=l,···,(l-k) 

and where the cpf"s are defined in a way similar to 
that of ~fi, the difference being only in the number of 
components. 

The independence of the Xk's (a) from the Xz's 
through which they have been obtained, (b) of the 
various surfaces ~7(l-k), implies a number of con­
servation relations; these relations are, however, 
automatically verified when Eq. (5.28) holds. In the 
same way, one may find the form of integrability 
conditions in .;\(,4N: they are Eq. (5.17). 

Currents in r Space Connection with the "Time"­
Dependent Densities 

In the relativistic phase space we can define the 
generalized random currents as being 

J~~~~~~N(XA) = f,)"" .. 1+00
00 

dTl ... dTN(N!r
1 

X ~tl(Tl) ® ... ® ~~N(TN) 
i=Ni;=N 

x! II b[xf - X~(Ti)] 
i=1 ir1 

® b[uf - uflTii)] (5.35) 

== r+oo 
••• r+"'dTI ..• dTNRN(XA; Tl ••• 

J-oo J-oo 
... TN)~tl(Tl) ® ... ® ~1l(TN)' 
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Then, using the properties of the b's occurring in Eq. 
(5.35), we get 

JA1 ... AN() tAl 
Random XA = S"l @ ••• 

@ ~~N L+ooOO' .. L:OOdTl ... dTNRN(XA' Tl ... TN) 

which proves, after taking the average value of both 
sides of this last equality and comparing the result 
with the previous definition of JA 1· • . A N , that 

L+ooOO ... 1:00 

DN(XA, Tl ... TN) dTl ... dTN = .N' N(X.A) 

as is expected. Of course, this is the same argument 
which has been applied to distributions Dl and .N'1 
at the end of Sec. 2. 

6. AVERAGE VALVES 

In this section we generalize the average values 
discussed at the end of Sec. 2. The same troubles as 
those already indicated also occur (mutatis mutandis). 
Once average values are defiried, entropies for the 
reduced densities are obtained in a straightforward 
way. This allows us to derive the canonical distribution 
of a relativistic simple gas as an illustration of the 
whole formalism. 

Assume that the system possesses a property 
represented by a certain tensor B~:.' .' .' ~p(XA). Then we 
can define the localflux $Ill" ·llaPI· . ,PN(XIl ... XIl) as 

VI" .vp 1 N 

(/)IlI···Ilr;t.P···PN( Il ... Il) =i BIlI"'lla( ).N' ( ) v;)V1 •.. V Xl X N VI .•• vp X A N X A 
P v+N 

In fact, we should skew-symmetrize the indices 

P '" P of the tensor $IlI'" VaPI'" PN(XIl . .. Xll). How-
l N VI" • vp 1 N 

ever, as we have already indicated in Sec. 5, the 
symmetrical part of $ (in the indices PI ... PN) plays 
no role in the following integral (6.2). The total amount 
of the quantity Bill" 'lla(X A) through the 3N-dimen-

VI' .• vp 

sional surface 3 3N, will be the total fluxlo6 through this 
arbitrary surfacelo7 of the tensor $: 

(Bill" 'Ila( » - r (/)1l1" 'llaPI ... PN d.... (62) 
VI'" Vp X.A S3N - J

s
3NV ;)VI'" Vp ~PI'" PN . 

and, in general, will depend on 3 3N. When the 
property B~~ :: : ~p(x A) is a permanent property of the 

108 The conventional definition of average values is, of course, 
found anew when we take as E3N the 3N plane. tl = const;· .. ; 
tN = const. 

107 Arbitrary, but "spacelike." 

system, then the local flux $ satisfies the integrability 
conditions: 

~ $1l1'" llaPl ... Pi ... PN( Il... Il) = 0 (I' = 1 ... N). U Pi VI'" vp Xl X N 

(6.3) 

As an example, let us consider the local flux of the 
energy-momentum four-vector of a fluid consisting of 
identical particles. We have 

i~N 

BIl(x.A) =! muf 
i~l 

$IlPI' .. PN(X!f. ... X:V) 

i~N 

= i~ f muru~1 ... u';t.N' N(X A) d4u1 ... d4u N 

= N f muiuflu~2 ... U'Jl.N' N(X.A) d4ul ... d4uN 

and the total energy-momentum four-vector of the 
fluid considered on a 3N-dimensional surface 33N is 

(pll)S3N 

= Nff mu'tufl ... u'j'.N' N(XA)d3pl '" PNd4U1 ... d4uN 

S3N 

= Nff muiufl.N'l(xipi) d~PI d4U l 

1:1 

= r PPI(X':J d~PI . 
J1:1 

(6.4) 

[In deriving Eq. (6.4) we have used the properties of 
"reduction" of .N' N to .N'l: ~l is a three-dimensional 
spacelike surface imbedded in 33N and depending on 
the variable xi only.] 

Entropies 

Given a reduced distribution function at fixed t and 
of order k, its entropy at time t is generally defined as 
being the average value of its logarithm. lOS 

Consequently, we take as the entropy of the distri­
bution .N' k' the average value of log .N' k on a surface 
'j:j'3k . ...... . 

108 We say "generally" because the entropy (in the sense of 
information theory) is not defined unambiguously [either for a 
continuous random variable or even for a discrete one which depends 
on an external parameter: see, e.g., B. Mandelbrojt, IBM research 
note NC-I07 (1962)]. Furthermore the entropy of a measure is 
always defined with respect to a subjacent measure. In statistical 
mechanics this subjacent measure is almost always the Lebesgue 
measure. Here we are concerned with this last point of view, a 
possible generalization being straightforward. 
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where A is an arbitrary positive constantl09 and where 
aPI' .. Pk is the k-entropy flux tensor given by 

"PI' .. Pk(X~ ... x~) = flOg X k 

x X kUf.1 ••• U~k d4ul ••• d4uk 

as it should be. Hence, the entropy of X N is 

S~E7N) = -A L)Og X N(XA) 

x X ~XA)~AI ... AN dJ:. AI' .. AN' 

(6.6) 

(6.7) 

When the k entropy of a physical system is constant, 
then the associated entropy flux tensor satisfies con­
servation relations: 

G p,qPI'" Pk(xi ... x~) = 0, i::;; k. (6.8) 

Equation (6.5) and (6.6) are the generalization of the 
entropy and entropy current given by Tauber and 
Weinberg, by Chernikov, and by Israel: 

Sl(J:.) = -J. La/l dJ:.,l> (6.9) 

a/l(x.) = flOg Xl' Xlu/l d4u. 

So an H theorem is expressed by stating 

G/la/l < O. 

Remarks and Discussion 

(6.10) 

(6.11) 

(I) Local average values may be defined as being 

$/lI'" /laPI'" PNJ I (B/li' .. /la) = VI' .. vp Pl' .. PN . 
VI' .. vp "'v {JPI' .. PNJ} _< 

Pl" . PN "'V;=xv,V._N 

(6.12) 

This definition is the natural generalization of Eq. 
(2.35) and it suffers the same troubles. In particular, 
it seems to be hardly possible to give them a form 
similar to the nonrelativistic one. 

(2) In Sec. 4 we mentioned that our phase space 
might be insufficient and thus should be enlarged. l1O Let 
us now ~xplain this point. It is clear that our preceding 
statistical notions (r space, densities, average values) 
only permit the calculation of average values of those 
quantities wbich depend on the variables ( ... xr, 
ur .. '). If we want to calculate the average value of 
a quantity depending, for instance, on acceleration 
variables, then phase space would have to be enlarged 
so as to include them. It would be a 12N-dimensional 
space. Of course, subsequent densities on it would have 

101 A depends on the system of units chosen. It is in general equal 
to the Boltzmann constant k. It also depends on the basis used for 
the log. 

110 In such a case, densities are also insufficient and should be 
generalized so as to be densities on the enlarged phase space. 

to be defined: they are straightforward generalizations 
of the definitions given in Sec. 5. In practice we know 
only quantities depending on ( ... x~, ur ... ). How­
ever, when dealing with radiation phenomena, 
acceleration variables should be taken into account.lll 

These questions are studied in a detailed manner in 
Paper II. 

(3) Because of the fact that DN(xA; 1'1 ••• TN) is a 
true probability distribution, one might think that 
average values could be defined as usual: i.e., as 

(B~::: :~p(x~, ui' .. x~, U~»(TI" . TN) 

= f/:tI::::;(XA)DN(XA; 1'1' .. TN) dr. 

However, these mean values depend on the adopted 
parametrization. Therefore they must be considered as 
unphysical. However, they have some interesting 
consequences. For instance we can compute the mean 
value of XA (A = 1 ... 8N); it is a function (xA >(T ... T ) 

I N 
of the N proper times, which determines a mean 
manifold in r space. In the same way we can define 
the "center of mass" 112 of a relativistic fluid when we 
know its "instantaneous" distribution Dl(x"p/l; 1'), by 

(X/l)T = i x/lDl(x/l, p/l; 1') df.l. 

In ..A(,4 this equation defines a mean world line whose 
points are the centers of mass of the fluid at different 
"times." Of course, this mean world line is not unique; 
it depends on the initial data and on the parametriza­
tion. Let us remark that this lack of uniqueness of the 
center of mass, due to the arbitrariness of the param­
etrization, is a kind of "temporal" counterpart of 
the arbitrariness of the "physical space," i.e., spacelike 
3-manifolds. Indeed it is well known113 that, in 
general, the center of mass of a relativistic fluid 
depends on the three-surface where it is computed and 
hence is largely arbitrary. 

In this connection it is interesting to note that we 
have a kind of "Ehrenfest theorem" which reads 

(djdT)(X/l)T= (u/l)" 

(djdT)(U/l\ = <:> 
and which may easily be proved in the one-particle 
case.1l4 

111 For instance, the radiation field is proportional toF ::da { u/lyV -
uVy/l}, where y/l can be expressed in terms of (xv, Uv , yv) (see Paper 
II). 

112 Neither the expression "center of mass" nor "center of gravity" 
nor "barycenter" is appropriate. See, e.g., J. L. Synge, Ref. 59. 

113 See, e.g., C. M011er, The Theory of Relativity (Clarendon Press, 
Oxford, 1952), or J. L. Synge, Ref. 59. 

114 In the case of interacting particles, its proof needs some weak 
conditions on the nature of interaction. 
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An llIustration of the Formalism 

As a simple application of the above formalism let 
us derive the canonical distribution of a relativistic 
gas of noninteracting particles, at local equilibrium. no 
To this end, we assume1l6 that such a distribution can 
be obtained (a) from the maximization of the entropy 
while (b) the average total momentum-energy and (c) 
the number of particles within the gas, are given. 
Since we are dealing with local equilibrium conditions, 
(a), (b), and (c) have to be replaced by their local 
equivalents. They are 

(a) 15(log.N'N)",. = l5{a"l"'''NU''l'''''N} = 0, 

(b) (P")",. = Tj""l' ""NU"l" '''N' (6.13) 

(c) (n)",. = J"l'''''NU''l'' '''N' 

where 

U"l' .. ".v == J"l ... "N{J"l ... "N J }-! I 
III . .. JlN ::C"i=ZV ' 

Vi ~ N, 

Introducing now five x.-dependent Lagrange multi­
pliers log A, ~'" conditions (a), (b), and (c) lead to 

15{ U "1 ... "N f d,u1 .. -. d,u NU~l ... u'ff.N' N 

X [log.N'N - log A + m:fuf~"J} = 0 

(6.14) 
and finally we obtain 

{ 

i=N } 
.N'N(XA) = A exp -~".2 muf . 

.=1 
(6.15) 

This result is, as expected, consistent with the Jiittner­
Synge distribution. 

Let us remark that contrary to the nonrelativistic 
case we can define another kind of canonical distri­
bution: instead of the conservation of the four­
momentum of the gas we can impose the conservation 
of the total mass of the gas. Then instead of relation 
(6.15), we should find 

.N'N(XA) = A exp [ -~(~ mouifl (6.16) 

We discuss the case of interacting particles in Sec. 7. 

116 Since the notion of a box is not a covariant concept, the uni­
form density in configuration space is not normalizable. Conse­
quently we limit ourselves (and this is not an essential limitation) to 
the case of local equilibrium, which case allows the normalization of 
the distribution function. 

116 In general, the canonical distribution may be obtained from 
the microcanonical one. However, on the basis of information theory 
arguments [see, e.g., E. T. Jaynes, Phys. Rev. 106, 620 (1957)] the 
canonical distribution may also be derived. 

7. AN UNSOLVED PROBLEM: EQUll..IBRIUM 

In this section we discuss the possibility of defining 
relativistic equilibrium states. We also suggest ele­
ments for a possible solution of this unsolved problem. 

A Preliminary Unsolved Problem: What is 
Equilibrium? 

(1) Let us consider a nonrelativistic system of 
particles whose equations of motion are given 

Assume now that the initial data ( ... X iO , viO ," .) 

are chosen at random so that we actually deal with 
statistical mechanics. When may such a classical system 
be considered as being in an "equilibrium state"? If 
the equation of motion (7.1) can be cast into a 
Hamiltonian form,91 then the usual definitions of 
equilibrium applyll?: We first define a microcanonical 
distribution with the help of the physically interesting 
constant of motion, next the canonical distribution is 
derived for a subsystem.1l8 At this point it should be 
emphasized that the equilibrium distributions obtained 
are both integrals of motion and solutions of the 
continuity equation in phase space (by virtue of the 
Liouville theorem). It should also be pointed out that 
the notion of temperature is closely related to the 
choice of the energy as constant of motion to be 
introduced in the microcanonical distribution. 

(2) When Eq. (7.1) cannot be set into a Hamiltonian 
form,91 then the situation is by no means so "simple." 
It seems indeed hardly possible to define equilibrium 
states as is shown from the following. [Let us consider 
the trivial example119 of one particle acted on by a 
friction force and performing (for simplicity) a one­
dimensional motion: 

m(dv/dt) + {Jv = 0; dx/dt = v ({J is the friction 
coefficient). 

117 D. Massignon, Mecanique statistique des fluides (Dunod Cie, 
Paris, 1957) . 

118 A. I. Khinchin, Mathematical Foundations of Statistical 
Mechanics (Dover Publication, Inc., New York, 1949). 

nl This example only illustrates this point. One might argue that 
nonconservative forces do not exist in nature. However, this is not 
completely correct (cf. the Lorentz equation taking radiation 
reaction into account). One might also say that nonconservative 
forces are nonconservative only at a macroscopic level and that there 
will always exist either a conservative model at a lower level or 
possibly a larger system responsible for the energy nonconservation. 
In our opinion, these arguments are irrelevant when dealing with a 
theoretical problem: Newton's second law allows any choice of 
velocity dependent forces and thus we have to face (from a theoret­
ical point of view) such a general case. Furthermore such systems 
do exist in nonquantal relativity and hence the problem should be 
solved. 
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The main properties of this system are 
(a) solutions: 

{

V(/) = Vo exp {-fJ/}, 

X(/) = Xo - fJ-1vo[exp { - fJ/}, -1]. 

(b) Phase space: {xo} X {vo} (two dimensions). 
(c) Constant of motion: mv + fJx = const. 
(d) Ergodism: 

lim - [V(t)]<' dt = 0, 1 iT 
T .... +oo T 0 

q > O. 

Microcanonical distribution cannot be defined be­
cause the constant of motion (c) has no direct physical 
meaning. The explicit form (a) of the solution of the 
equations of motion indicates that, anyway, the 
velocity tends to zero at infinity in times; consequently 
all possible densities at I = + 00 will have the form 

(e) p(x, v) 

= {arbitrary positive function of x} x b(v), 

which agrees with property (d). However, although 
p(x, v) satisfies the continuity equation 

(f) ~p+v~p+~{-fJvp}=O at ax ov 

in phase space, it is no longer a constant of motion, 
i.e., (dfdt)p:;6 O. Note also that energy is not well 
defined.] 

Furthermore energy is not always defined and so 
the notion of temperature fails. The above example 
shows, however, that statistical equilibria (if not 
thermodynamical)120 might be defined. 

Finally we stress that the question of equilibrium 
is not a specifically relativistic one and should be 
solved first in a classical framework. l2l 

(3) What might be expected from an equilibrium 
state? First an equilibrium distribution should satisfy 
the continuity equation whether there exists a Liouville 
theorem or not. Next it must be stationary in time and 
perhaps also invariant under space translations. [Let 
us come back to the above example. These conditions 
only imply that p should verify 

(ofov){fJvp} = 0 

120 We distinguish between "statistical equilibrium" and "thermo­
dynamical equilibrium," so the microcanonical equilibrium is a 
statistical equilibrium (arising only from mechanical considerations) 
while the canonical one arises also from considerations extraneous 
to mechanics (occurrence of macroscopic parameters). 

121 The situation can be even worse if we consider the possible 
existence (at least theoretical) of the so-called "hereditary systems" 
whose study was first initiated by Volterra [V. Volterra, Sur les 
!onctions de ligne (Gauthier-Villars, Paris, 1928), -and J. Math. 
Pures Appl. 7, 249 (1928)]. The action-at-a-distance formalism 
furnishes an excellent exanIple of such a system. 

or 
pv = const, 

which yields 

p = constfv + (another const) x b(v) 

and finally since p is to be positive and normalized to 
unity, it follows that p = b(v).] However, these con­
ditions are not sufficient by themselves in spite of the 
chosen example, which is much too simple. Unfor­
tunately we do not know what conditions should be 
added.122 Anyway an equilibrium distribution is in 
general not a first integral of the motion.123 

Relativistic Equilibrium in the Field Point of View124 

The notion of equilibrium used in the field view­
point by a number of authorslO.125 is far from being 
completely clear. Indeed, apart from usual infinities 
which occur in dealing with electromagnetic phenom­
ena,126 there always remain the divergences due to 
the self-fields. Furthermore, infinite bare masses are 
involved in the equilibrium pseudodistribution ob­
tained and therefore its physical meaning seems to be 
troublesome.127 

However, the use of the so-called field oscillators 
may be considered as a heuristic tool. In particular, it 
is interesting to note that the canonical distribution for 
a blackbody indicates that the electromagnetic field is 
a Gaussian random process with zero average value 
and a spectrum given by Planck's law. 

This suggests a definition of the equilibrium for the 
radiation field128 by assuming: 

(a) Ff:d is a Gaussian random process invariant 
under space-time translations. 

(b) with: (Ff:'d) = 0, o",,(Ff:'d) = 0, o",,(Ff:.t) = O. 
(c) with: Fourier transform of (Ff:d @ Ff:'d)""'" 

{blackbody spectrum}. 

In actuality, the notion of thermal equilibrium seems 
to have only a weak meaning when radiation is 
considered especially due to the absence of classical 
photons. It is, however, usual to speak about "the 
equilibrium of the field," etc., notions which might 

122 Perhaps a condition of maximization of entropy would be 
sufficient to select the "equilibrium distribution" among the solutions 
of (o,ov){Ff} = 01 

123 We return to the discussion of equilibrium in a future paper. 
124 In all that follows we consider only the case of electromagnetic 

interactions. 
120 Ph. de Gottal, Physica. 32, 548 (1966). 
128 They are irrelevant here since they also occur in the classical 

case. 
12. Note that the microcanonical ensemble for the system 

(particles + field) cannot be defined, both because of mathematical 
impossibilities and because of the invariance requirements. 

128 And not for the total field. In fact, it is difficult to separate all 
different kinds of fields. We show, however, in Paper II that this is 
actually possible for the radiation field. 
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have a sense only within the framework of quantum 
electrodynamics. 

Equilibrium in the Action-at-a-Distance Formalism124 

(1) In Paper II, we give several hierarchies either 
verified by the distribution functions .N'l , .N' 2' etc., or 
by generalized similar densities; i.e., relations of the 
form 

A.N'l = B.N'2 + EP2, 

C.N'2 = D.N's + ... , 

relating these densities (A,"', E are operators). 
These hierarchies are generalizations of the well­
known BBGKY chain. If we impose now that these 
densities should be invariant under space-time 
translations, if we impose that .N'l should be the 
Jiittner-Synge distribution, then the hierarchy ob­
tained might be considered as an equilibrium hierarchy 
similar to the classical one. In so doing, we have 
computed the relativistic correlation function129 at 
order 1 in e2 of a gas at equilibrium. However, it is 
not clear whether or not higher orders can also be 
calculated (see Paper II for a discussion and the 
details). 

(2) A possible way out of these difficulties consists 
in assuming that canonical equilibrium1l6 is obtained 
as in Sec. 6 from a maximization of entropy (subject 
to the constraints arising from the knowledge of the 
number of particles of the system and its total 
momentum-energy). However, in so doing, we obtain 
a very complicated functional expression from which 
we have not yet been able to derive the equilibrium 
densities. 

In conclusion, (a) the notion of equilibrium gives 
rise to unsolved problems even in a classical theory, 
(b) equilibrium densities should verify one of the 
hierarchies given in Paper II and which are, in a sense, 
something similar to the classical continuity equation, 
(c) equilibrium densities have to be invariant under 
space-time translations,lso (d) it is perhaps possible to 
start directly with canonical equilibrium. In such case, 
temperature13l is defined as in Jiittner-Synge distri­
bution. 

129 This calculation is needed in order to obtain a relativistic 
generalization of Guernsey kinetic equation: R. L. Guernsey, Phys. 
Fluids 7, 792,1600 (1964). 

130 At local equilibrium we have to impose a weaker condition: 
their invariance under a one-parameter transformation group 
whose orbits are timelike. 

131 It is not at all sure that the relativistic notion of temperature 
has a sense. In particular, its definition through 1iittner-Synge 
distribution may be questioned since this density has never (and for 
good reasons!) been proved on the basis of microscopical considera­
tions as it is the case for the usual Maxwell-Boltzmann distribution. 
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APPENDIX. MICROCANONICAL ENSEMBLE 
(CASE OF THE PERFECT GAS) 

Let us consider a perfect gas in the absence of 
external forces. Its random distribution function is132 

:RN(Xpl, P,.l;· .. ; xpN' PpN) = L+","'·· J:: dTl'" dTN 

i=l i=N 
X :2 IT b{XPi - xpOij - m-lppiT;} ® b{PpOij - PPi}' 

i=N ;=1 

(AI) 

Such a system is conservative so that the total momen­
tum-energy 4-vector of the gas does not depend on the 
manner through which it is calculated. Therefore we 
have 

i=N 
p,. = :2 pC; = const. (A2) 

i=l 

It follows that the microcanonical distribution is 
obtained by averaging RN over the initial data 
( ... x~, pC' . '). The average operation should be 
uniform in configuration space .A(,4N and in the acces­
sible momentum space. We then get 

.N'N(X~, p~;'" x'/v, iN) = const b{P" -:~Pf} (A3) 

or, taking into account the N constraints PfP~ = m2, 

we have 

.N' N(xL pf; ... ; xN, PN) 

= const b{ pp - i% Pf} ® !f b{pfp! - m 2} 2f)(p~), 
(A4) 

where the constant is to be fixed by the normalization 
condition 

I I 
"1 IlN 

JPl ... PN = ... .N' N ~ ... P; d4Pl'" d4P N , 

(AS) 

{Jill' .. PN . Jill'" IlN }1/2N = Po = constant density. 

[Since Jill'" IlN is a constant tensor, the usual 
normalization 

IJlll ... PN d"1:. = I 
Pl" 'IlN 

is no longer valid. We might, however, define a 

13. In the following we use the variables ( ... :x~, p~ = mur· .. ) 
instead of ( ... :x~, u~ •• '). 
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"local microcanonical ensemble" which would be nor­
malizable; to this end it is sufficient to make the five 
constants which are at our disposal (i.e., PI)> PP), 
Xy -dependent.] 

Equation (A3) essentially agrees with the one already 
given by Lur~t and Mazur1llS in another context. 
However, their distribution (which is in fact a phase 
space factor, useful in the statistical model of pions 
production) is not correctly normalized (i.e" through 
a current). This is the reason why their final result 
(the canonical distribution) is not correct, if considered 
from the point of view of relativistic statistical 
mechanics,lM 

Let us check that X N actually leads to pP as the 
total energy momentum 4-vector for the gas. As in 
Sec. 6, we calculate the generalized momentum-energy 
tensor: 

13P1 •• , !,x
y =f' . ·fx N • {II ti} . n (P:i) d.p. 

i-1 .-1 m 
= pv. JP1" 'PN (A6) 

In F. Lur~at and p, Mazur, Nuovo Cimento 31,140 (1964), 
184 In particular their normalization leads to an incorrect factor 

Xl in the Jlittner-Synge distribution (instead of Xi), 

from which follows the total energy-momentum131> 

Ptot - "~Pl' "PN 
IJ. - ppfJP1"'IJ.N ~ 

(A7) 
as expected. 

Note that the averaging operation {) is simply 
obtained from oN' N' Had we considered the case of 
interacting particles, the situation would have been 
inextricable and another difficulty would arise. 
Indeed, instead of Eq. (A2), we should have a much 
more complicated expression [see Ref. 49, Eq. (7·96) 
and following] and furthermore the averaging 
operation W01.dd not be simply obtained from X N 

because ofthe richer content of { }. Indeed it seems 
that, at any rate, Cauchy data are not merely 
( ••• X iO , UIO • •• ) for interacting particles. 

1111 Note that this average value coincides with the local one, The 
difficulty of the nonnormaiizable character of Xx is only apparent 
and is due to the inadequacy of considering a uniform measure over 
RN as possessing a density with respect to Lebesgue measure. 
Indeed, a uniform probability measure is such that: p(RN) = 1. 
peA) = 0, VACRN (with A: I' measurable), Anyway, we may always 
assume a X" dependence in Po. 
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Basic Algebra of Antilinear Operators and Some Applications. I 
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Institute of Nuclear Sciences "Boris Kidrich," Belgrade, Yugoslavia 

(Received 13 October 1966) 

The primary aim of this work is to find the canonical (i.e., simplest) form of antilinear operators 
which is the analog of the diagonal form of linear ones, as well as to obtain that class of antilinear 
operators which corresponds to the class of normal, i.e., diagonalizable, linear ones. To achieve this 
aim two basic tools are used: polar factorization of an arbitrary antilinear operator into a linear, 
Hermitian, positive, semidefinite, and anti-unitary operator A. = !l,U. = u.Ii., and representation of 
antilinear operators by antilinear matrices, which are products of a matrix factor transforming by 
unitary congruence transformations and the operation of conjugation which is the same for all antilinear 
operators and all bases. The canonical form is defined as the simplest form of the matrix factor. The 
criteria of simplicity are: a quasi-diagonal form with smallest possible submatrices, a maximal number 
of zeros in them, and as many positive numbers as possible among the nonzero elements. It is found that 
the analog of the diagonal form of linear operators is the second-order canonical form consisting of a 
diagonal part with nonnegative elements, which is as large as possible, and of two-by-two submatrices 
with zeros on the diagonal and with at least one positive element. The operators having this form are those 
whose polar factors can be simultaneously canonical, taking for the anti-unitary factor, essentially the 
Wigner canonical form. These antilinear operators are called normal ones, and they can also be defined 
by the following relations between the polar factors: [Ii" Ii.l- = 0 and [Ii" U!l_ = 0 or by the single 
commutator, [A., (A!)'l_ = o. A simple procedure to obtain the canonical form of a given normal 
antilinear operator is developed. A few applications of the results obtained are outlined. They belong to 
different fields such as electric network theory, quantum mechanics, and self-consistent Hartree­
Bogoliubov theory. 

INTRODUCTION 

THE only well-known example of an antilinear 
operator (hereafter AO) used in quantum physics 

is that of time reversal. Therefore, AO's are not a 
standard tool of theoretical physicists, and it seems 
desirable to begin with a short summary of basic 
definitions. 

AO's are those operators in a complex vector space 
which anticommute with pure imaginary constants, 
commute with real constants, and preserve summation, 
i.e., 

Aioc la) + ~ Ib» = oc* Aa la) + p* Aa Ib), 

where oc, ~ are complex numbers, la), Ib) are vectors, 
and the index a on Aa denotes antilinearity. 

In a unitary space, the adjoint operator of Aa, AZ , 
which is also antilinear, is defined byl 

(al (AZ Ib» = (bl (Aa la» = [«bl Aa) la)]*. 
As in the case of linear operators, Hermitian and 

skew-Hermitian, AO's satisfy AZ = Aa and AZ = - Aa, 
respectively. Unitary AO's (more often called anti­
unitary operators) are defined by 

«al oZXOa Ib» = [(al(OJOa Ib»]* = [(a I b)] ~ 
which leads to OJ = 0;;1. 

• Present address: Institut de Physique Nuc1eaire, Faculte des 
Scientes, 91 Orsay, France. 

1 For notation, see A. Messiah, Quantum Mechanics (North­
Holland Publishing Company, Amsterdam, 1962), Vol. II. 

The theory of anti-unitary operators has been given 
an equally firm ground as that of unitary linear 
operators in a paper by Wigner.2 

Studying the variational objects of the Hartree­
Bogoliubov self-consistent theory in nuclear physics, 
we found it necessary to deal with AO's which are not 
unitary, but skew-Hermitian.3 Hence, we have 
investigated a few basic problems in the algebra4 of 
AO's, inspired by Wigner's paper2 and making use of 
the analogy with linear algebra.5 

The treatment of this paper has been restricted to 
finite dimensional complex unitary vector spaces Vn 
for the sake 'of simplicity. 

I. POLAR FACTORIZATION OF ANTILINEAR 
OPERATORS 

Generalizing the polar factorization of a complex 
number into a nonnegative number and a phase 
factor, one may write every AO in polar form, i.e., as 
the product of a linear Hermitian,positive, semidefinite, 
and anti-unitary operator: 

Aa = hlOa. (1) 

Polar factorization in the reverse order is also possible 

I E. P. Wigner, J. Math. Phys. 1,409 (1960). 
• F. Herbut and M. Vujicic, Antilinear Operators in Hartree­

Bogoliubov Theory (1967) (to be published.). 
, We use the word algebra here in the same sense as it is used in 

the term linear algebra, and not as a closed algebraic structure. 
S A. I. Mal'cev, Basic Linear Algebra (State Technical Press, 

Moscow, 1956). 
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with the same anti-unitary factor: 

Aa = OaH2' (1') 

First, we give a proof for (1'). We observe that 
Hi is uniquely determined as AJAa, which is a linear 
Hermitian, positive, semidefinite operator, i.e., one 
with nonnegative eigenvalues. It is known that there 
exists a unique operator of the same kind which is its 
square root, 

(2) 

It is easy to see that H2 and Aa are isometric, i.e., 

IIH2 Ix)11 = IIAa Ix)ll, Ix) E V .. , 

where Illx)11 = «x I x»! is the norm of a vector. 
Isometry of a linear and an antilinear operator 
always implies the existence of an anti-unitary 
operator which connects them in the sense of Eq. (1 '). 
To see this, one has to notice that isometry requires 
coincidence of the zero-eigensubspaces (null spaces) 
of Aa and H2, i.e., V(Aa = 0) = V(H2 = 0), and, 
consequently, Aa and H2 define the same inverse 
classes (we call an inverse class the set of all those 
elements which a linear or antilinear operator maps 
into the same image). The set of inverse classes is a 
linear space isomorphic to the subspace of images 
(range) of H2, R(H2), and anti-isomorphic to the range 
of Aa , R(Aa). As a consequence, we have a unique anti­
isomorphism, O~I), mapping R(H2) onto R(Aa): if 
la) E R(H2) then there is a vector Ib) such that 
la) = H2 Ib), and by definition O~I) la) = Aa Ib). The 
isometry between Aa and H2 has the further conse­
quence that O~I) preserves the norm, i.e., it is a unitary 
anti-isomorphism. 

If Aa is nonsingular, then R(Aa) = R(H2) = V .. , 
and Oa of Eq. (1') is unique and equal to O~l). If Aa is 
singular, then we take an arbitrary unitary anti­
isomorphism, 0~2), mapping the orthogonal com­
plement of R(H2) [i.e., V(H2 = 0)] onto that of 
R(Aa) , and define Oa so that Oa Ix) = O~l) IX(I) + 
0~2) IX(2), where Ix) E V .. , and Ix(!) and IX(2) are 
its components in R(H2) and in V(h2 = 0), respec­
tively. Actually, in Eq. (1') 0~2) does not act at all, 
and one could write Eq. (1') as Aa = 0~l)h2' Though 
0~2) is not determined by Aa , it is introduced in order 
to obtain Oa defined in the whole space. 

Having proved (1'), we now turn to Eq. (1) by 
writing (1') in the form Aa = (Oah20!)Oa and 
observing that Oah20! is a linear Hermitian, positive, 
semidefinite operator which we denote by H1 , i.e., 

h 1 = OaH2 OJ . (3) 

Though, in general, Oa is not unique, h1 always is, 
because a more detailed analysis could show that 

O~2) actually gives no contribution in Eq. (3). Anyway, 
the uniqueness of HI is obvious from the fact that 

(4) 

which follows from Eq. (1). 
~ In order to clarify the relation of O~l) and 0~2) to 

HI' we notice that R(Aa) and R(HI) coincide, which 
means that O~l) maps R(H2) onto R(hl ), and 0~2) 
maps V(h2 = 0) onto V(h1 = 0). 

We have discussed the factorizations (1) and (1') in 
the whole space. For application below, let us point 
out that if a subspace and its orthogonal complement 
are invariant for Aa , then they are also invariant for 
AJ . This follows from the fact that if a subspace is 
invariant for a linear or antilinear operator, then its 
orthogonal complement is invariant for the adjoint 
operator. 

We have an immediate corollary when Aa commutes 
with a linear Hermitian operator h and thus reduces 
in its eigensubspaces, i.e., when each eigensubspace 
of h is invariant for Aa. In this case the polar factori­
zations (1) and (1') can be performed separately in 
each eigensubspace, and then also the polar factors 
commute with H. 

At last, we want to point out that having reduced a 
complex object like an AO to the product of two simple 
and well-understood operators, one is able to analyze 
the complexity of the AO through the relation that 
exists between the polar factors. Another tool which we 
make use of in our analysis below is the representation 
of AO's by antiIinear matrices. 

n. REPRESENTATION OF ANTILINEAR 
OPERATORS BY ANTILINEAR MATRICES 

Now we are going to use the standard factorization i 

of an AO, Aa , into a linear and a conjugation operator 
to obtain a representation of Aa in the space of column 
vectors. For that purpose we write 

Aa = (AaK!Q)K!Q), (5) 

where K~Q) is defined as that AO for which all the 
vectors of a given basis (Q) are invariant. K~Q) is 
obviously an involution, i.e., (K~Q)2 = 1. If (Q) is 
an orthonormal basis, K~Q) is anti-unitary. 

The reverse factorization is also possible: 

Aa = K!Q)(K!Q)Aa). (5') 

The factorization in Eq. (5) is basis-dependent in 
the sense that the conjugation operator K!Q) is 
defined by the basis (Q). In this basis the linear factor 
AaK~Q) is represented by the matrix (AaK~Q)Q' The 
antilinear factor K~Q) is represented by an operation 
K which consists in complex conjugating all matrices to 
the right in matrix multiplications. 



                                                                                                                                    

ANTI LINEAR OPERATORS 1347 

Aa itself is represented by (AJ(~Q»QK, which is 
more complicated than an ordinary matrix, because 
K, though a very common operator in the space of 
column vectors, is not expressible as a matrix. We 
refer to such products of a matrix factor and con­
jugation as antilinear matrices. Since K is one and 
the same for all AO's, every AO is essentially repre­
sented by its matrix factor. The latter can be put in 
polar form,5 so that its Hermitian and its unitary 
factor (the latter together with K) represent the corre­
sponding polar factors of Aa. 

The set of all linear and antilinear operators in the 
abstract space is represented by the set of all ordinary 
and antilinear matrices in the space of column vectors, 
when a basis (Q) is specified. One should notice the 
following peculiarities when dealing with such an 
extended set of operators: Multiplication is always 
defined and the product belongs to the set; the sum, 
though always defined, belongs to the set if and only 
if both terms are of the same kind, i.e., linear or 
antilinear. The direct or Kronecker product, however, 
is not uniquely defined unless' all factors are of the 
same kind. Namely, the direct product of an AO, 
Aa , and of a linear operator, fJ, Aa @ E, acting on a 
vector Ix) @ Iy) = 1/ pix) @ ply), where p = Ipl eiq>/2 
is any complex number other than zero, would give 
Aa Ix) @ fJly), and also eiq>(Aa Ix) @ fJly», which shows 
that the image has a completely arbitrary phase. 

In the rest of this paper, we consider representations 
of AO's only in orthonormal bases; therefore, we now 
discuss a few specific properties of anti linear matrices 
in connection with such bases. Hereafter, every basis, 
unless otherwise stated, is assumed to be orthonormal. 

The elements of the matrix (AaK~Q»Q are obtained 
by the following formula: 

(ml (AaK~Q» In) = (ml (Aa In», (6) 

where 1m), In) E (Q). This is due to K~Q) In) = In). 
These matrix elements are obtained from Aa in the 
same way as those of a matrix representing a linear 
operator. 

In transition from one basis to another, the whole 
antilinear matrix transforms by a unitary similarity 
transformation: 

S(AaK~Q»QKS-l = S(AaK~Q»QKSt 
= S(AaK~Q»QSK, 

where S is the matrix of the transition operator from 
the new basis to the basis (Q), and S is its transpose. 
The matrix factor itself transforms by a unitary 
congruence transformation 

S(AaK~Q»QS, (7) 

The matrix representing a linear operator trans-

forms as a mixed second-rank tensor in arbitrary 
bases, whereas the matrix factor of an AO transforms 
as a twice contravariant tensor only in orthonormal 
bases. 

There is no need to investigate the transformation 
properties of K because it is the same operation in the 
space of column vectors for any choice of a basis in the 
abstract space. 

AO's can also be represented by antilinear matrices 
in the space of bras. For this purpose Eq. (5') is more 
convenient. 

We mention a few most important examples of 
antilinear matrices. If two AO's are mutually adjoint, 
their matrix factors are mutually transposed. If an 
AO is nonsingular, then the matrix factor of its 
inverse operator is the conjugate inverse of the matrix 
factor of the AO. The matrix factors of Hermitian and 
skew-Hermitian AO's are symmetric and skew­
symmetric, respectively, unlike the representing 
matrices of the linear operators of the same kind. It 
should be noted that Hermitian and skew-Hermitian 
AO's give a geometrical, i.e., basis-independent 
meaning to symmetric and skew-symmetric matrices. 
The matrix factor of an anti-unitary operator is 
unitary, like the matrix of a linear unitary operator. 

Dealing with antilinear matrices is almost as simple 
as with ordinary matrices, because all the difference is 
due to the unique operation K, which must be taken 
into account. In the following, we find representation 
of AO's by antilinear matrices as useful as matrix 
representation of linear operators usually is. 

III. CANONICAL FORM OF ANTILINEAR 
OPERATORS 

One of the most important problems in linear 
algebra is to find the spectral form of linear operators. 
Essentially it means replacing the operator by the 
direct sum of constants. This can be done for normal 
operators, i.e., for those which commute with their 
adjoints, and only for them. An alternative and more 
convenient approach to this problem is to diagonalize 
the representing matrix by a suitable unitary similarity 
transformation. Most important applications of linear 
algebra in physics are based on this reduction to the 
simplest, i.e., canonical, form. 

It is very likely that the canonical form of AO's will 
also play an important role in applications. A few 
examples to support this are given in Sec. V and in 
subsequent papers. 

An AO has the canonical form, i.e., acts in the 
simplest way on a basis, if and only if the representing 
antilinear matrix in this basis has the simplest form. 
We call such a basis canonical. 
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Since the conjugation K is always the same, the 
simplicity of an antilinear matrix depends only on its 
matrix factor. Therefore, the problem amounts to 
finding a suitable unitary congruence transformation 
which will make the matrix factor canonical. 

We want to stress that we are looking for the 
simplest form of the matrix factor with respect to a 
limited class of bases, namely, the orthonormal ones. 
Taking into account the larger class of all bases, i.e., 
the transformations S(AaK~Q»Q(S-l)* (S arbitrary, 
nonsingular), one would obtain for some AO's a 
simpler form of the matrix factor, but that is beyond 
the scope of this paper. 

It seems natural to take the following three criteria 
for the canonical form of the matrix factor: firstly, it 
should be quasi-diagonal with as small submatrices as 
possible (the submatrices on the diagonal correspond 
to invariant subspaces for the AO); secondly, within 
these nondiagonal submatrices, the largest possible 
number of zeros should appear; thirdly, among the 
nonzero elements, one should have as many positive 
numbers as possible. 

We are going to approach the problem of finding 
the canonical form of an AO by using the canonical 
forms of its polar factors. In doing this, two steps have 
to be distinguished: first, finding the simplest form of 
the factors, and secondly, the analysis of their mutual 
relationship, which decisively affects the canonical 
form of the AO itself. 

The simplest form of the linear Hermitian polar 
factor is, of course, the diagonal form. As to the 
anti-unitary polar factor, its normal form has been 
given by Wigner.2 

To express Wigner's result by an antilinear matrix, 
we use Eq. (6) and obtain that the matrix factor in the 
normal form is quasi-diagonal having on its diagonal 
a unit submatrix (corresponding to the subspace where 
the anti-unitary operator Oa is an involution) and 
two-by-two submatrices of the form 

(
0 (u*)!), 

u! 0 
(8) 

corresponding to the subbases lu*), lu), which consist 
of eigenvectors of 0: with the eigenvalues u*, u, 
always appearing in pairs. When u = -I, then, by 
convention, (-I *)! = -i. 

Merely changing the phases of some vectors of the 
basis giving the above matrix factor, one can achieve 
the canonical form of Oa, which instead of (8) has 

(9) 

the unit submatrix being unchanged.6 This form we 
call the Wigner canonical form of anti-unitary operators. 

Wigner's method is based on the diagonalization of 
0: prior to the selection of the canonical basis for 
Oa. Among the eigenbases of 0: there is none which 
could give a simpler form than Wigner's canonical 
one. Namely, in any eigenbasis of 0: only those 
vectors which correspond to the eigenvalue 1 may 
give nonzero diagonal elements in the matrix factor 
of Oa, as follows from 

(ul (Oa lu» = u* (ul (Oa lu». 

Therefore, wherever u ':;I: 1, one must have nothing 
but zeros on the diagonal. 

It remains to be shown that only eigenbases of 0: 
can be canonical for Oa. To that purpose we derive the 
Wigner canonical form using the above general 
criteria. 

By the first criterion, the canonical form must be 
diagonal wherever possible. Changing the phases of the 
basis vectors and using antilinearity, the diagonal 
elements can be made positive, and because of uni­
tarity they all have to be I. Thus, the corresponding 
basis elements are eigenvectors of 0: with the eigen­
value 1. So, two-by-two nondiagonal submatrices are 
allowed only in the orthogonal complement of the 
subspace where Oa is an involution. Since these 
submatrices are unitary, they can have at most two 
zeros and both of them must be on the diagonal. If 
we required both nonzero elements to be positive, 
they would both be 1, which would imply that the 
corresponding vectors are still in the subspace where 
0: = 1. Therefore, the two-by-two submatrices in the 
canonical form cannot be simpler than (9). Squaring 
the antilinear matrix so obtained, one concludes that 
0: is diagonal, i.e., the canonical basis is necessarily 
an eigenbasis of 0:. 

To see how one should select a canonical basis for 
Oa out of the eigenbases of 0:, we briefly describe, 
following Wigner,2 a procedure consisting of three 
parts. 

(1) In the subspace where Oa is an involution, one 
takes an arbitrary normalized vector, and adds to it 
its image by Oa with subsequent normalization, unless 
the sum is zero, when one takes the vector itself 
multiplied by i. If the subspace is more than one 
dimensional in the orthogonal complement of the 

• One can also achieve the form having 

instead of (8), which is as simple as (9). We choose (9) because for 
u = -1, it is the known canonical form of skew-symmetric unitary 
matrices under unitary congruence transformations (cf. Sec. VA). 
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first-basis vector so obtained, the procedure is re­
peated, etc. 

(2) In the subspace where 0; = -I, i.e., where Oa 
is a skew involution, an arbitrary normalized vector 
is taken and it is paired with its image by Oa in reversed 
order. If the subspace is more than two dimensional, 
another normalized vector orthogonal to both 
previous ones is taken, and the above procedure is 
repeated, etc. This subspace is necessarily even dimen­
sional. 

(3) When u :F I, -I, a basis is chosen in the eigen­
subspace of 0; with the eigenvalue u, and each element 
of it is paired with its image by Oa, which necessarily 
belongs to the eigensubspace with the eigenvalue u*. 
These pairs in the order lu*), lu) give the submatrices 
(9). Though u and u* play essentially symmetrical 
roles, we have only one of them in the submatrices, 
depending in whose eigensubspace we make the 
arbitrary choice of an orthonormal basis. 

It should be noted that the choice of a canonical 
basis for Oa is not unique. The group of transforma­
tions connecting one canonical basis with all the 
others has been given by Wigner. 2 Every canonical 
basis gives one- and two-dimensional invariant 
subspaces for Oa, which are also nonunique. The 
only unique invariant subspaces for Oa, made use of 
in the above procedure, are the eigensubspaces of 
0; with the eigenvalues 1 and -1, and the direct sums 
of the eigensubspaces with the eigenvalues u and u*, 
when u :F I, -1. 

The Wigner canonical form itself is unique except 
for the order of the submatrices on the diagonal and 
conjugation within each submatrix. 

Having discussed the Wigner canonical form of 
anti-unitary operators in sufficient detail, we may turn 
now to the problem of finding the canonical form of 
more general AO's. Using the method of Simultaneously 
canonical polar factors, we show that this is possible 
for AO's whose polar factors are simply related to each 
other. 

The simplest mutual relation of the polar factors is 
their commutation. It is obviously equivalent to 
- fl - ~ HI = 2, as well as to [Aa , Aa]- = 0 [see Eqs. (1), 

(1'), (2), and (4)]. The class of AO's satisfying this 
relation we call proper normal AO's. 

From the commutation of the polar factors of a 
proper normal AO it follows that every eigensubspace 
of the Hermitian factor is invariant for the anti-unitary 
one. In each eigensubspace, one may find a Wigner 
canonical basis independently. All these together form 
a canonical basis in the whole space. In this way, for 
a given proper normal AO, a canonical basis is that one 
which is Simultaneously an eigenbasis for the Hermitian 

factor and a Wigner canonical basis for the anti-unitary 
factor. 

The canonical matrix factor of a proper normal AO 
is in general the direct sum of a diagonal matrix and of 
several two-by-two matrices. The diagonal submatrix 
corresponds to the subspace, where Oa is an involution 
and has only nonnegative diagonal elements, which 
are eigenvalues of the Hermitian factor. The two-by­
two submatrices are of the form 

(10) 

where h is an eigenvalue of the Hermitian factor, and 
u :F I is an eigenvalue of 0;. 

So far we have not yet proved that this form is 
indeed canonical for proper normal AO's. This proof 
is given at the end of Sec. IV for a class of AO's which 
contains the proper normal ones. 

To the proper normal AO's (HI = H 2) belong as 
special cases, the anti-unitary operators (for which HI 
is the identity operator), the Hermitian AO's (whose 
O~l) is an involution) and the skew-Hermitian AO's 
(O~l) skew-involution). 

For all proper normal AO's, Oa is the direct sum of 
0~1), which acts in R(H1), and 0~2) acting in 
V(HI = 0). It is convenient to choose 0~2) always to 
be an involution (see Sec. IV). 

We have defined the proper normal AO's as those 
which commute with their adjoints. In this respect 
they are the analogs of the linear normal operators. 
But the proper normal AO's can also be defined by 
their canonical form, and regarding this form they do 
not correspond to the diagonalizable linear operators. 
Because we consider the nature of the canonical form 
as the basic property of a class of operators, we now 
search for the analog of the linear normal ones. 

In linear algebra the diagonal canonical form defines 
the normal linear operators. Since their diagonal 
elements are complex in general, it is possible to 
obtain the most important subclasses of linear normal 
operators (Hermitian, skew-Hermitian and unitary 
ones) by restricting the diagonal elements to be real, 
pure imaginary, or of unit modulus, respectively. In 
contrast to this, in the case of AO's, only Hermitian 
ones can be diagonalized (as follows from 0; = I). 
Furthermore, their canonical form consists of non­
negative elements exclusively, and it cannot be further 
restricted. This form we call the first-order canonical 
one. Since the corresponding class of AO's is too 
narrow, one should not consider the Hermitian AO's 
as the analogs of the normal linear operators, nor the 
first-order canonical form as the analog of the diagonal 
one for linear operators. 
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As a starting point in finding this analog, one 
should take the Wigner canonical form of anti-unitary 
operators, because the polar factorization reveals their 
fundamental role. With respect to the three criteria for 
the canonical form, the Wigner one exhibits the 
following properties. 

It is first-order canonical wherever possible. The 
nondiagonal part consists merely of two-by-two 
submatrices. Each of these has both diagonal elements 
equal to zero, and at least one off-diagonal element is 
positive [cf. submatrix (9)]. 

Beside these, the Wigner canonical form has two 
more properties, which are further restrictions due to 
the specific nature of anti-unitary operators and are 
not imposed by the three criteria. 

All the diagonal elements in the first-order canonical 
part are equal to 1, and so are the off-diagonal 
elements in the first rows of the two-by-two sub­
matrices; the off-diagonal elements in the second 
rows u are of unit modulus, which cannot take the 
value 1. 

Abolishing only the latter two specific restrictions, 
i.e., allowing any nonnegative numbers instead of the 
1 's and any complex numbers instead of the u's, we 
define the second-order canonical form as the following 
quasi-diagonal matrix: 

° h~ 

where j + 2k = n, all lui = 1, and all h, h', h" ~ 0, 
Notice that if any of the h' equals zero, then the 
corresponding h"u > 0. This is required by criterion 
3 and can always be achieved. The matrix elements 
are written in polar form to anticipate their origin as 
the products of eigenvalues of III or 112 and 0:. 

Since (11) is not more complicated, according to the 
criteria, than the Wigner canonical form, and, on the 
other hand, contains the canonical forms 0' all proper 
normal AO's as special cases, we consider it as the 

natural analog of the diagonal form of linear normal 
operators. 7 

We call normal those AO's which have the second­
order canonical form as their simplest form. We study 
their properties in the next section. 

IV. NORMAL ANTILINEAR OPERATORS 

Having defined the normal AO's by their canonical 
form, we now search for an alternative definition in 
terms of the polar factors. 

The Hermitian polar factor III of (11) is uniquely 
determined and turns out to be diagonal. If (11) is 
singular, the unitary polar factor is not unique. We 
use this nonuniqueness in order to make it as simple 
as possible. To that purpose, we take every h, h', or 
h" which is zero with a phase factor 1. In this way one 
immediately obtains the unitary factor in a form which 
may differ from the Wigner canonical one only by 
having submatrices (9) with u = 1 as well. This 
generalization of the Wigner canonical form, which 
we call the second-order canonical form of an anti­
unitary involution, is a consequence of our definition 
of the second-order canonical form in general, in which 
we have given up all accidental restrictions not con­
tained in the three criteria. This is justified below, 
where we show that the normal AO's can be defined 
in a very simple way. 

Referring to the above slight generalization of the 
Wigner form as to the canonical form of Oa' we say 
that the class of normal AO's is the widest class of 
AO's whose polar factors can be put simultaneously in 
canonical form. 

We now derive the necessary conditions for the 
polar factors of a normal AO. 

Since 

H2 is diagonal in the same basis, and so 

[HI' H2]_ = 0. (12) 
Similarly, 

[HI' O!]_ = 0, (13) 

[H2 , 0:1- = O. (14) 

As a consequence, besides Eq. (3) we also have 

112 = OalllO!. (15) 
The matrix representing .4: is diagonal and to the 

7 We went beyond the canonical form of the proper normal AO's 
because. due to the commutation of the polar factors. it also has 
two specific restrictions with respect to the second-order canonical 
form. Namely. in the submatrices (10) the two eigenvalues of the 
Hermitian polar factor coincide, and u ~ 1. 
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two-by-two submatrices of (11) corresponds 

(
h'hO"U* 0) 

h'h"u . 

Obviously, it follows that the polar factors5 fI and 
o of A! satisfy fI = fllfl2' 0 = 0;, and 

[fI, 0]_ = 0, (16) 

i.e., A! is a linear normal operator. 
At last, we have 

[fllfl2' Oa]_ = 0, (17) 

which follows from Eqs. (3), (15), and (12). 
Now we show that the conditions (12)-(15) are 

also sufficient for an AO to be normal. 
In order to obtain the Wigner canonical form of an 

anti-unitary operator Oa' one first diagonalizes 0:. In 
case of a proper normal AO, Aa = fllOa, fli = fl2' 
one diagonalizes fli and 0: as a first step. Now we 
begin by diagonalizing fll' fl2' and 0:, simultaneously, 
which is possible because they all commute [see Eqs. 
(12), (l3), and (14)]. Actually, we need only the com­
mon eigensubspaces of these operators, in which we 
proceed to find the vectors of a basis canonical for Oa 
as well. 

To that purpose we break up the whole space into 
two mutually orthogonal subspaces. The first is the 
direct sum of all those common eigensubspaces where 
the eigenvalues of fli and fl2 coincide, i.e., where Aa 
is proper normal. The second is its orthogonal 
complement, and we say that there Aa is improper 
normal. In the first subspace, the procedure is the 
same as described in the previous section. To obtain a 
procedure in the second subspace, it is important to 
notice that, besides the fact that Oa of any AO maps 
an eigenvector of fl2 into one of fli with the same 
eigenvalue [which follows from Eq. (3)] for those 
AO's which satisfy Eq. (15), it is also true the other 
way round, i.e., fli Ix) = h' Ix) implies fl2(Oa Ix» = 
h'(Oa Ix». Thus, a common eigenvector of fli and fl2 
with the eigenvalues h' and h", respectively, is taken 
by Oa into another common eigenvector of the same 
operators, now corresponding to the eigenvalues 
h" and h', respectively. This has the consequence that 
to each common eigensubspace corresponds another 
with exchanged eigenvalues of fli and fl2 and with 
the conjugate eigenvalue of 0;. Now we choose an arbi­
trary basis in one of them, e.g.lh'h"u)i' i = 1,2, ... , m, 
and in the other we take that basis which is the image 
by Oa of the first one, i.e., Ih"h'u*\, i = 1,2, ... , m. 

It is easy to see that in the basis obtained in this 
way, when its elements are arranged so that each of 

them is next to its image by Oa' e.g. Ih"h'u*)i' h'h"u)i' 
the matrix factor of Aa has the desired canonical form. 

It should be observed that our procedure for the 
improper normal part of Aa is fully analogous to 
Wigner's procedure2 for u ¢ 1, -1, though here both 
u = 1 and u = -1 may occur. Besides, in this part 
of the space the diagonal form of Aa is never achieved, 
not even where u = 1. 

It is of interest to find among the above four 
necessary and sufficient conditions [Eqs. (12)-(15)] the 
smallest number of independent ones. 

One immediately obtains (14) and (15) from (12) 
and (13). To show the mutual independence of the 
latter two, one may take two simple examples of 
antilinear matrices, e.g., 

Aa = (: : ~) (~ ~ ~) K, 

o 0 h' 0 1 0 

A~ = 2-!G :)(: ~,)K' 
where h ¢ h' in both cases, Aa satisfies (12) and not 
(l3), and A~ vice versa. 

Therefore, one can say that the polar factors of an 
AO can be brought simultaneously into the canonical 
forms if and only if they satisfy (12) and (13). We have 
thus obtained a second definition of normal AO's. 

It is important to replace the above two relations by 
conditions on Aa itself, because one would like to 
recognize whether a given AO is normal or not 
without having first to calculate its polar factors. 

We are now going to show that normal AO's can be 
defined as those which satisfy only one relation, 

(18) 

This condition can be easily obtained from Eqs. 
(12) and (13) if we write Aa in (18) in polar form. 
Actually, we use Eqs. (12) and the adjoint of (13), 
together with (17). 

In order to show that (12) follows from (18), we 
take the latter and its adjoint to obtain an equation 
which is equivalent to the former, 

~ At ~ t A A 2 A 2 
[AaAa, AaAaL = [HI' H 2]_ = o. 

To derive Eq. (13) from Eq. (18) we use the follow­
ing argument. We first show that 

(19) 

and that A! is a linear normal operator. Therefore, 
(13) can be derived separately in the range of A; and 
separately in its zero manifold. In the former O! is the 
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unitary polar factor of A! and, as a consequence of 
Eq. (19), it commutes with HI . In the zero manifold of 
A! ,we are able to achieve 0: = 1 which will obviously 
commute with HI' 

To prove Eq. (19), we observe that its equivalent 
[H~, A!]_ = 0 follows immediately from Eq. (4) and 
the adjoint of Eq. (18). The linear operator A! is 
normal if [A!, (AJ)2]_ = 0, and this is a corollary of 
Eq. (18). Consequently, the range and the zero 
manifold of A! coincide with those of its Hermitian 
polar factor H, i.e., with R(H) and V(H = 0), respec­
tively. Using Eqs. (18) and (12) we derive H2 = 
~2(A~2)t _ A At At A _ ..... 72 "'"2 _ ( ..... 7 ..... 7)2 . Aa a - AaAaAaAa - n 1n 2 - n l n 2 ,I.e., 

H = HIH2 = H2HI . (20) 

Furthermore, Eq. (18) implies that Aa commutes with 
H2, thus 

(21) 

From the argument near the end of Sec. I, we also have 

(22) 

From Eqs. (19) and (22) we conclude that R(H) 
and V(H = 0) are invariant for both HI and 0;. 

In R(H) the unitary polar factor of A! is unique and 
can be obtained with the help of Eqs. (20) and (22), 
A; = (OaHJ(H10a) = HO!, i.e., 

0; = H-IA!. (23) 

Since HI commutes with both factors in Eq. (23), Eq. 
(13) is valid in R(H). 

Turning now to V(fI = 0), we notice that the 
arbitrary 0~2) has both its domain V(H2 = 0) and its 
range V(HI = 0) inside this subspace, because of 
fI = HI H2 • We now restrict the arbitrariness of 
0~2) so that O~ in V(H = 0) will become the identity 
operator. To this purpose we break up V(fI = 0) into 
three mutually orthogonal subspaces, 

V(fI = 0) = V(HI = 0 ¢ H2) 

+ V(fII ¢ 0 = H2) + V(HI = fI2 = 0). 

From Eq. (22) one may conclude that O~l) also reduces 
in V(H:::;: 0). Since it always maps R(H2) onto R(fII), 
here it maps V(HI = 0 ¢ H2) onto V(H ¢ 0 = H2)' 
All we have to do now is to choose 0(2) to act as 
(O~l)-l in mapping V(HI ¢ 0 = fI2) ont~ 

V(HI = 0 ¢ H2), 

and separately in V(fII = H2 = 0) as an arbitrary 
involution. Thus, Eq. (13) is obtained in the whole 
space. 

We want to point out that the above choice of 
0~2) amounts to taking the undetermined phase 

factors equal to 1 when anyone of the h, h', h" is zero, 
because V(H = 0) corresponds exactly to the totality 
of these submatrices. 

It is now established that commutation of an AO 
with the square of its adjOint, i.e., Eq. (18), is a necessary 
and sufficient condition for the AO to be normal. 

Obtaining the second-order canonical form implies 
finding one- and two-dimensional invariant subspaces 
for a normal Aa, and essentially Aa is replaced by the 
direct sum of its components in these subspaces. 
However, these subspaces are not unique. The unique 
ones are firstly, the common eigensubspaces of HI' 
H2 and O~, V(h, h', u), with h = h' and u real, and 
secondly, the direct sums V(h, h', u) + V(h' , h, u*) in 
all other cases. We have based our procedure for 
selecting a canonical basis for Aa on breaking up the 
space into these unique, invariant, and mutually 
orthogonal subspaces, in analogy with Wigner's 
procedure2 for anti-unitary operators. 

At last, it remains only to be shown that the second­
order canonical form of a normal Aa , achieved through 
the canonical forms of its polar factors, is indeed its 
simplest possible form according to the general 
criteria stated in the previous section. 

The diagonal submatrix of the second-order 
canonical form with nonnegative numbers corresponds 
to that invariant subspace where Aa is Hermitian, i.e., 
to 

VI = 2'V(h = h', u = 1). 
h?:O 

This subspace is uniquely associated with Aa and any 
diagonal submatrix of Aa achieved by whatever 
method necessarily corresponds to a part of VI' 

Further, we have a number of nondiagonal two-by­
two submatrices with three zeros in them. Their 
totality corresponds to 

V2 = 2"[V(h, 0, u = 1) + YeO, h, u = 1)]. 
h>O 

The nonzero elements are positive, and such matrices 
cannot be made simpler. One cannot achieve a larger 
number of such submatrices by some other method, 
because any of them has to correspond to a part of 
V2 , which is immediately seen when these submatrices 
are written in polar form. 

The totality of the remaining nondiagonal two-by­
two submatrices corresponds to the orthogonal 
complement of VI + V2, where Aa is necessarily 
nonsingular, as it is clear from the fact that all 
determinants of these two-by-two submatrices are 
nonzero. Namely, although the determinant of a 
matrix is not invariant under the unitary congruence 
transformations, its being zero or not is an invariant 
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property, and it can be taken as a necessary and 
sufficient criterion for singularity or nonsingularity of 
Aa as it is the case for linear operators. Therefore, in 
this part of the space, two-by-two submatrices obtained 
by any method cannot have more than two zeros and 
they must be both on the diagonal. The polar factors 
of such matrices, which are immediately obtained by 
writing the matrix elements in polar form, are seen 
to be canonical, and so the nonzero elements cannot 
be made simpler. 

This analysis shows that polar factorization, 
leading to the diagonalization of 111 , 112 , and O!, is 
the natural way to obtain the canonical form of a 
normal AO. 

V. APPLICATIONS 

We outline a few applications of AO's in different 
branches of physics, mathematics, and electric 
network theory. In most of them, polar factorization 
and the canonical form of normal AO's prove very 
useful tools. 

A. Electric Network Application 

According to Youla,8 "The problem of finding a 
canonic form of an arbitrary matrix under the group 
of unitary congruence transformations is not only of 
mathematical interest but of the utmost importance 
for applied electrical engineering network theory .... " 

We have already seen that one can associate a basis 
independent object with any matrix transforming 
under the unitary congruence transformations. This 
object is an AO in the abstract space Vn (see Sec. II). 
Therefore, AO's are the natural geometrical inter­
pretation of such matrices. Since we have defined the 
canonical form of an AO as the canonical form of its 
matrix factor, all our results are directly valid for the 
matrices under unitary congruence transformations. 

We have mentioned that to Hermitian and skew­
Hermitian AO's correspond symmetric and skew­
symmetric matrices, respectively. Our results coincide 
with the classical ones9,lO on the canonical forms of 
these matrices. The results of this paper on the second­
order canonical form give the solutions of the above­
mentioned network theory problem for considerably 
larger classes of matrices. 

The Wigner canonical form should be interpreted 
as the canonical form of a unitary matrix under 
unitary congruence transformations. 

To proper normal AO's, correspond matrices satis­
fying the condition 

AAt = (AtA)*, (24) 

8 D. C. Youla, Can. J. Math. 13, 694 (1961). 
• 1. Schur, Am. J. Math. 67,472 (1942). 

10 L. K. Hua, Am. J. Math. 66, 470 (1944). 

which defines the class of conjugate-normal matrices, as 
we may call them. It should be observed that this 
property is unitary congruence invariant in the sense 
that it is valid for any unitary congruence transform of 
A, in contrast to the property AAt = AtA, which is 
unitary similarity invariant. Unitary, symmetric and 
skew-symmetric matrices belong to the class of 
conjugate normal ones. 

To normal AO's, correspond matrices for which the 
following relation is valid: 

AAtA = AAtA, (25) 

and we may call them congruence-normal matrices. 
Conjugate-normal matrices belong to them as a 
special case. The class of congruence-normal matrices 
is the largest class of matrices for which we have 
found the canonical form, and they may be considered 
as the analogs of the class of normal matriCes under 
unitary similarity transformations, because relation 
(25) is a necessary and sufficient condition for a matrix 
to have the second-order canonical form under the 
unitary congruence transformations. [See the end of 
Sec. III and Eq. (18).] 

We intend to give a more detailed discussion of our 
results on the canonical form of congruence-normal 
matrices in matrix language, and applications to 
electric network theory in a separate paper later. 

B. Connection of AQtilinear Operators with 
Two-Particle Wave Vectors 

A column vector representing a two-particle wave 
vector 1'11'(1.2» in a basis which is obtained as a direct 
product of a one-particle basis with itself, can be 
written as a matrix which transforms as a twice 
contravariant tensor, i.e., under unitary congruence 
transformations. This enables us to establish a one-to­
one correspondence between the unitary space of all 
AO's and the unitary space of all two-particle wave 
vectors. This correspondence turns out to be, what we 
call, an extended isomorphism, because it connects all 
the known operations in these two sets, including 
even those for which they are not closed. This 
extended isomorphism permits transfer of any prob­
lem from one set to the other, and consequently, its 
solution where it is more convenient. The canonical 
forms of two-fermion and two-boson wave vectors are 
thus readily obtained from the canonical forms of 
skew-Hermitian and Hermitian AO's, respectively. 

This extended isomorphism, and the use of AO's in 
defining orthogonal and symplectic subgroups of the 
unitary group, as well as application of AO's to the 
problem of the canonical form of a two-particle 
interaction are described in a separate publication.ll 

11 F. Herbut and M. Vujici¢ (to be published). 
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C. Transposition and Conjugation of Linear Operators 

We have analyzed two factorizations of AO's, the 
polar and the standard one (see Secs. I and II, respec­
tively). In general, the standard factorization cannot 
be of any help in finding a canonical basis for a 
normal AO, because its antilinear factor is defined as 
an arbitrary involution, with no regard to the nature 
of the AO. On the contrary, in the polar factorization, 
both factors depend crucially on the AO. For Her­
mitian AO's and only for them, the polar factorization 
is a special case of the standard one. Now we discuss a 
widely used example of these operators: the adjoining 
of linear operators, in order to illustrate the relation 
between the two factorizations. 

Let Vn2 be the space of all linear operators which act 
in Vn. The operation of adjoining, 6a, in Vn2' is 
obviously an antilinear operator and furthermore an 
.involution. Unitary metrics in Vn2 can be defined by 
introducing the following scalar productl2: 

(A, b) = tr At b, for all A, b E Vn 2. (26) 

Having introduced unitary metrics in Vn2' one can 
easily see that 6a is anti-unitary. Being also an involu­
tion, it is a Hermitian AO. Its canonical basis is any 
set of n2 orthonormal [in the sense of Eq. (26)] 
Hermitian linear operators acting in Vn . 

It is interesting to note that the same metrics in 
Vn2 can be obtained by the requirement that the basis 
in Vn2 

(27) 

associated with an orthonormal basis leI), .•. , len) in 
Vn should also be orthonormal. None of the associ­
ated bases can be canonical for 6a, since (Iei)(ej/)t = 
lej)(eil for i ¥= j are not self-adjoint. 

However, the associated bases (27) (and no others) 
can be used to generalize the matrix concepts of 
transposition and conjugation to the corresponding 
operations for abstract linear operators. Namely, if 
we choose a basis in Vn , e.g., (q), and form its 
associated basis (Q) in Vn., then the standard factors 
[Eq. (5)] of 6a for the basis (Q), when represented in 

11 J. von Neumann, Ann. Math. 41, 94 (1940). 

(Q), are the transposition and the conjugation of 
matrices which represent linear operators from Vn2 
in the basis (q). Therefore, it is natural to interpret 
the standard factors of 6a themselves as transposition 
and conjugation of linear operators. Obviously, these 
concepts are basis-dependent, as it is always the case 
with the standard factorization. 

D. A One-Particle Operator Approach to 
Hartree-Bogoliubov . Theory 

The results of this work have another interesting 
application in the variational theory of Hartree­
Bogoliubov.3 Namely, because of its transformation 
properties, the pairing tensor in this self-consistent 
theory can be interpreted as the matrix factor of a 
skew-Hermitian antilinear operator fa. We call the 
anti-unitary polar factor of fa the pairing operator, and 
it is a generalization of the time-reversal operator as 
far as its role in this theory is concerned, because in 
the special case of the BCS theory, the anti-unitary 
polar factor of fa is just the time-reversal operator. 
The Hermitian polar factor of fa is a simple function of 
the one-particle density operator. So, the polar factors 
of fa become the main variational objects of Hartree­
Bogoliubov theory. Since the pairing operator is a 
skew-involution, the elements of its canonical basis 
display the well-known pairing property, which is 
inherent in every Bogoliubov-Valatin transforma­
tion.13 

Our operator treatment of the kinematical and the 
dynamical quantities (self-consistent fields) should 
offer new possibilities for finding workable approxi­
mations within the theory of general linear canonical 
transformations. These problems are discussed in a 
separate paper. 3 
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